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Abstract
Ovine progressive pneumonia virus (OPPV) is an important virus that causes serious dis-

eases in sheep and goats with a prevalence of 36% in the USA. Although OPPV was

discovered more than half of a century ago, little is known about the infection and pathogen-

esis of this virus. In this report, we used RNA-seq technology to conduct a genome-wide

probe for cellular factors that are associated with OPPV infection. A total of approximately

22,000 goat host genes were detected of which 657 were found to have been significantly

up-regulated and 889 down-regulated at 12 hours post-infection. In addition to previously

known restriction factors from other viral infections, a number of factors which may be spe-

cific for OPPV infection were uncovered. The data from this RNA-seq study will be helpful in

our understanding of OPPV infection, and also for further study in the prevention and inter-

vention of this viral disease.

Introduction
Ovine progressive pneumonia virus (OPPV), or visna/maedi virus (VMV) in sheep [1–3], and
caprine arthritis encephalitis virus (CAEV) in goats [4–6], all actually belong to one viral spe-
cies called small ruminant lentiviruses (SRLV) according to current viral classifications [7].
These viruses are genetically very similar, with some OPPV strains being more closely related
to CAEV than to other OPPV strains [7]. Additionally, the SRLV are able to infect across sheep
and goat species [8–10]. OPPV infection in sheep has a prevalence of 36% in the USA [11].
OPPV infects sheep chronically, and can persist for the animal’s lifetime. OPPV infection usu-
ally causes multi-organ failure, and can lead to serious diseases such as pneumonia, mastitis,
arthritis, wasting, and neurological disorders [7], bringing tremendous financial loss to the
sheep industry, while seriously affecting animal health and well-being. OPPV displays a broad
genetic diversity, similar to other lentiviruses such as human immunodeficiency virus type
1 (HIV-1) [12]. Subtype classification of SRLV has been also applied based on viral genetic
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sequence diversity [13–18], and recently circulating recombinant forms (CRFs) have also been
identified in current epidemic transmission [19, 20].

Although OPPV was identified more than half a century ago, research on this virus has
been limited [7]. Consequently, little is known about the viral infection process and pathogene-
sis, and there has not been an effective vaccine or treatment developed thus far. The traditional
method for dealing with infected animals is to slaughter sick flocks in order to eliminate
infected animals; however, this approach is slow, inefficient, and not economically sound.
Therefore, a better solution is needed to prevent OPPV infection and maintain healthy flocks.

Infection by OPPV occurs naturally among adult animals (i.e., older than one year of age),
via the respiratory route. However, infection of lambs through ingestion of infected colostrum
and milk can also occur [21]. OPPV primarily targets macrophages and monocytes [22, 23],
but not T-lymphocytes, of the infected hosts, and unlike HIV-1, it does not lead to CD4 T-cell
depletion. Even though there is only limited sequence homology between the two viruses,
OPPV resembles HIV-1 in a number of ways [12]. For instance, OPPV is also macrophage-
tropic, causes slow disease progression, and infection is persistent, leading to life-long disease.
Like HIV-1, OPPV belongs to the genus Lentiviridae in the family Retroviridae [11, 12], with a
similar genomic organization, consisting of three major structural genes (gag, pol and env) and
several accessory genes, such as vif, tat and rev [24]. The functions of these OPPV genes have
not been well studied, and the molecular characterization of these genes is limited; therefore, it
is not clear whether they function similarly to those of HIV-1.

The major goal of this research using the RNA-seq approach is to uncover the host cellular
factors that are associated with OPPV infection. Identifying host factors associated with OPPV
infection will help lead to therapeutic treatments. Further, this information can be used to
develop strategies for preventing infection, such as the breeding of genetically resistant animals,
and for the development of an effective vaccine, with the hope of virus eradication.

RNA-Seq is a recently developed, powerful approach for transcriptome profiling that uses
the novel next-generation sequencing (NGS) technology [25, 26]. This approach has been fully
evaluated, and offers the ability to quantify transcripts in the form of an entire transcriptome.
It allows for the identification of up- or down-regulated genes on a genomic scale. RNA-Seq
can also provide a more precise measurement of the levels of all gene transcripts and isoforms
as compared to other existing methods such as Microarray [25, 27]. In this study, we used
RNA-seq to probe the ovine host gene responses in OPPV infection.

Materials and Methods

Cell lines and plasmids
Permissive goat synovial membrane (GSM) cells and the OPPV viral strain (Dubois LMH19)
was provided by Dr. Donald Knowles at Washington State University [28]. The ovine IFITM3
gene was synthesized from GenScript and cloned into the pcDNA3.1(+) vector, designed plas-
mid pIFITM3.

OPPV infection and mRNA preparation
OPPV-permissive goat synovial membrane (GSM) cells were cultured in 6-well-plates in
DMEM supplemented with 10% fetal bovine serum, with addition of 1% penicillin-streptomy-
cin, and infected at an MOI of 5.0 when 70% confluent. Cells were collected at 0h, 12h, 24h,
and 48h post-infection by scraping into TRIzol (Invitogen) reagent. Three independent infec-
tions or mock infections were harvested for each time point and pooled for sequencing. RNA
extractions were performed according to manufacturer’s instructions. Following TRIzol extrac-
tion, RNA samples were subjected to further clean-up using RNeasy mini columns (Qiagen).

OPPVRNA-Seq

PLOSONE | DOI:10.1371/journal.pone.0150344 March 7, 2016 2 / 15

Lincoln. The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



Deep sequencing
The sequencing library of each RNA transcriptome sample was prepared with the TruSeq RNA
Sample Preparation kit based on the protocol provided by the manufacturer (Illumina, San
Diego, CA). The RNA samples from each group in equal amounts to generate one mixed sam-
ple per group. These mixed RNA samples were subsequently used to construct a complemen-
tary DNA (cDNA) library and perform Illumina deep sequencing. Briefly, a fragmentation
buffer was mixed with magnetic beads and Oligo (dT) was used to isolate the messenger RNA
(mRNA), and then the mRNA was fragmented into shorter fragments. The first strand of
cDNA was then synthesized with random hexamer-primer using the mRNA fragments as tem-
plates. Double-stranded cDNAs were purified with the QiaQuick PCR extraction kit (Qiagen,
Germany) and eluted with EB buffer for end repair and poly (A) addition. Finally, sequencing
adapters were ligated to ends of the fragments, and the fragments were purified by agarose gel
electrophoresis and enriched by PCR amplification to create a cDNA library. The sequencing
was conducted in the UNL Genomic Research Core facility by an Illumina Solexa, and the
Genome Analyzer System.

RNA-Seq and pathway analysis
Genomic sequences and feature annotations of Capra hircus version 1.0 (Refseq assembly
accession: GCF_000317765.1), and Ovis aries version 3.1 (RefSeq assembly accession:
GCF_000298735.1) and Visna/maedi virus (NC_001452.1) were downloaded from NCBI
website. Bowtie indices were generated using bowtie2-index program (bowtie version 2.1.0).
Illumina sequence reads were mapped to reference genome sequence with TOPHAT 2.0.8.
Transcripts and their isoforms were identified using CUFFLINKS 2.0.2. Differentially
expressed genes were analyzed using CUFDIFF 2.0.2. The time series samples of 0, 12, 24,
and 48 hours after infection and their corresponding uninfected samples were compared to
find significantly up- and down-regulated genes. The heatmaps of the most significantly up-
and down-regulated genes were generated with heatmap 2 R command.

Since the whole genomic sequence of OPPV viral strain (Dubois LMH19) was not available,
we used a typical Iceland strain Visna/Maedi virus (VMV, NC_001452.1) for our viral dynamic
analysis which was the highest homologous strain in the databases with the (81.26%) similarity
in nucleotide sequences.

Gene evolution and phylogenetic analysis
The completed genome sequences of Capra hircus and Ovis aries were used for all annotated
genes mapping analysis with the all reads from the next-generation sequencing. Especially, due
to the annotation coverage for the genome of the Capra hircus, the Ovis aries was used for the
complimentary analysis. All individual gene or protein sequences were obtained from NCBI
databases (details see below). The sequences were aligned using MUSCLE 3.8.31 [29] with out-
put in PHYLIP interleave format. Phylogenetic tree was made using PHYML 3.0 with maxi-
mum likelihood algorithm [30]. The tree was visualized and edited using FigTree 1.4.0.

All protein sequences were downloaded from NCBI as follows: IFITM3 of Ovis aries (GI:
426252173), Bos taurus (GI:118151354), Pan troglodytes (GI:311771579),Home sapiens
(GI:148612842),Macaca mulatta (GI:109104829),Mus musculus (GI:21539593), Sus scrofa
(GI:319401913), and Gallus gallus (GI:50747606); ZAP of Ovis aries (GI:426228507), Bos tau-
rus (GI:358411961), Sus scrofa (GI:294489384), Tattus norvegicus (GI:125630384), Pan troglo-
dytes (GI:410212358), Homo sapiens (GI:27477136),Macaca mulatta (GI:383420071),
and Gallus gallus (GI:61098418); APOBEC3F of Ovis aries (GI:199945618), Bos taurus
(GI:118150804), Sus scrofa (GI:147905488),Macaca nemestrina (GI:315284485), Pan
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troglodytes (GI:410352161), Homo sapiens (GI:24416443), Rattus norvegicus (GI:74353701);
Tetherin of Ovis aries (GI:295844819), Bos taurus (GI: 401664170), Sus scrofa (GI: 239916109),
Macaca mulatta (GI: 259157110), Pan troglodytes (GI:298112972), Homo sapiens (GI:
4757876),Mus musculus (GI: 37674242); SAMHD1 of Ovis aries (GI: 426241450), Bos taurus
(GI: 115496804), Sus scrofa (GI: 350594905),Macaca mulata (GI: 410442524), Pan troglodytes
(GI: 387538824), Homo sapiens (GI: 38016914),Mus musculus (GI: 213418055), Gallus gallus
(GI: 71895035), and Danio reno (GI: 229576924); MOV10 of Ovis aries (GI: 426216256), Bos
taurus (GI: 115497510), Sus scrofa (GI: 350583523),Macaca mulatta (GI: 386781562), Pan
troglodytes (GI: 410331601),Homo sapiens (GI: 14211540),Mus musculus (GI: 254540181),
Gallus gallus (GI: 61098155), and Salmo salar (GI: 291190072).

Plasmid transfection and viral infection
The IFITM3 plasmid and pcDNA3.1 (+) control vector were transfected into the GSM cells
using Fugene-6 transfection reagent (Roche) in a 6-well plate. One day after the transfection,
OPPV infection was performed using LMH19 viral stock at a higher MOI (5.0). The free
viruses of medium samples were collected for RT assay one week after the viral infection.

Reverse transcriptase (RT) assay
The reverse transcriptase assay was performed as standard DEAE filter paper (DE81, What-
man) assay method using a poly(A)dT12-18 template-primer for the radiolabeled thymidine
5’-triphospahte (TTP) incorporation into the synthesis cDNA molecule. The RT reaction sam-
ples were put on the DEAE paper followed by washing away unincorporated 3H-dTTP. The
radioactive intensity retained on the DEAE paper was quantified by scintillation counter
[31, 32].

Results

Host cellular gene responses during OPPV infection
During OPPV infection, the host responds to the infection and launches anti-viral defenses
from both the innate and adaptive arms of the immune system. All of these responses are char-
acterized by genetic regulation of many host cellular factors; some of these genes are up-regu-
lated and some down-regulated, while others are kept consistent. These gene regulations can
be monitored by changes in mRNA or protein expression levels. We used the newly developed
RNA-seq technology for deep sequencing of the entire goat genome transcriptome expressed
during OPPV infection. The whole goat genomic sequence was primarily used as the reference
sequence for RNA-seq analysis [33]. The viral infection dynamics were monitored by measur-
ing the reads of viral genes at 12, 24, and 48 hours (h) post-infection (p.i.). Our results indicate
that OPPV infection dynamics peak at 12h p.i., and are reduced about one half by 24h p.i.,
remaining constant until 48h p.i. (Fig 1). It is assumed that after 24 h infection, the viral repli-
cation would reach an immunological balance with the host cells, it can maintain this level for
a longer time in this in vitro tissue cultural system.

A total of approximately 22,000 goat host genes were detected and analyzed. In response to
OPPV infection, these host genes were differentially expressed (DE) over time. If we use fold-
change (FC) to measure the DE gene expression levels compared to those in the uninfected
host cells at the same time points, the truly up- or down-regulated genes can be identified.
Table 1 summarizes the results of the goat DE gene response to OPPV infection at different
time points: 12h, 24h and 48h post-infection. This clearly shows that there are many more
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genes significantly differentially expressed (up or down) at the 12h and 24h time points, but
largely reduced at 48h time point.

The profile of most significant cellular gene regulations were obtained from gene sequence
analysis and data were shown as a heat-map (Fig 2) and a companion table (Table 2). The
scores for their expression levels were calculated based on their fold-changes of infected

Fig 1. OPPV infection dynamics. Viral titers were measured at different time points post infection by measuring the reads RPKM (reads per kilobase per
million). Viral strain tested, OPPV Dubois LMH19, permissive cells, goat synovial membrane cells (GSM).

doi:10.1371/journal.pone.0150344.g001

Table 1. Statistical summary of up- or down-regulated genes during OPPV infection.

DE gene type and category No. of DE genes

12 hpi 24 hpi 48 hpi

Upregulated genes 1 < FC � 1.5 444 660 55

1.5 < FC � 2 122 247 31

FC > 2 91 163 92

Total no. of up-regulated genes 657 1070 178

Downregulated genes 1 < FC � 1.5 582 476 39

1.5 < FC � 2 197 158 12

FC > 2 110 101 8

Total no. of down-regulated genes 889 735 59

Benjamini-Hochberg adjusted p value (q value) less than 0.05

DE—differentially expressed genes

FC—log2 fold change compared with untreated sample at the same time point

doi:10.1371/journal.pone.0150344.t001
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samples and compared to the uninfected controls from the matching time point, as opposed to
uninfected cells from time zero, so as to capture the transcriptional profiles in real-time. This
allowed for fluctuations in gene expression which would occur as a result of time spent in cul-
ture even in the absence of viral infection to be removed from background in our dataset. The
top 65 up- or down-regulated genes during OPPV infection at different time points were iden-
tified. From the heat-map, it was evident that some related genes were grouped and similarly
differentially expressed (or up or down regulated) during OPPV infection (Fig 2). Some known
cellular factors such as some cytokines and chemokines were identified (Table 2). However, in

Fig 2. Heatmap of OPPV infection at different times post infection. Color green, indicates genes down regulation, color red, up-regulation. The color
intensity from green to red indicates the gene expression levels. The expression profiles can be also clustered based on their similarities. The gene list of
fold-changes during viral infection. Viral strain, OPPV Dubois LMH19, permissive cells, goat synovial membrane cells (GSM).

doi:10.1371/journal.pone.0150344.g002
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some cases, we found some most significant expressed genes were not identified through the
Capra hircus genome sequence analysis but were identified when using Ovis aries genome
sequence as a reference (Table 3). We have found out that this is due to the current genomic
sequence annotation that contain some differences between goat and ovine. Actually, the gene
sequences between goat and sheep are highly homologous and it is about 98.4% in average so
that the data can be reasonable applied to Capra hircus when they are generated from Ovis
aries.

It is exciting that our RNA-seq data has captured a genome-wide picture of host gene
expression during OPPV infection. Within the most up- or down-regulated genes are factors
that are clearly related to OPPV infection (Tables 2 and 3). For instance, the SAA1 lung cancer
biomarker, neuro-inflammation factor MMP1, the chemokine ligands (C-C motifs) CCL2,
CCL5, and CCL20, and cytokines such as IL6, IL8, IL16, were all significantly modulated. Some

Table 2. The most significant up- or down-regulated genes inCapra hircus during OPPV infection.

Gene Encoding protein description 12hpi 24hpi 48hpi

CXCL6 Chemokine (C-X-C motif) ligand 6 4.06 3.88 2.47

MMP1 Matrix metalloproteinase-1 3.90 2.68 1.30

CCL2 The chemokine (C-C motif) ligand 2 3.83 3.27 2.73

SLC2A6 Solute carrier family 2, facilitated glucose transporter member 6 3.58 1.99 1.87

ICAM1 Intercellular Adhesion Molecule 1 3.51 2.55 0.82

CHI3L1 Chitinase-3-like protein 1 3.33 3.01 2.75

ADAMTS5 A disintegrin and metalloproteinase with thrombospondin motifs 5 2.37 3.34 1.18

MX1 Interferon-induced GTP-binding protein Mx1 2.37 1.76 1.17

NFKBIA Nuclear Factor NF-Kappa-B P105 Subunit 2.28 2.21 1.04

CCBE1 Collagen and calcium-binding EGF domain-containing protein 1 2.23 1.50 1.26

IL6 Interleukin 6 2.01 2.70 1.95

RGS16 Regulator of G-protein signaling 16 1.85 2.20 1.08

CA12 Carbonic anhydrase 12 1.79 1.76 1.20

SERPINB2 Serpin Peptidase Inhibitor, Clade B (Ovalbumin), Member 2 1.60 2.05 2.00

DDX58 DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 58 1.46 1.26 0.83

SFRP4 Secreted frizzled-related protein 4 1.43 0.95 1.56

ANPEP Alanyl (Membrane) Aminopeptidase 1.33 0.80 -1.57

IER3 Immediate Early Response 3 1.20 0.71 0.97

LUZP2 Leucine zipper protein 2 1.10 1.46 1.57

KIAA1324L KIAA1324-Like 1.02 2.39 0.80

HERC6 HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase Family Member 6 0.99 2.31 1.28

VEGFA Vascular endothelial growth factor A -1.50 0.83 1.01

SORT1 Sortilin 1 -1.59 -0.84 -0.82

ITGA11 Integrin, Alpha 11 -1.61 1.75 -0.95

EREG Epiregulin -1.63 0.71 0.68

TMEM100 Transmembrane protein 100 -1.74 -1.04 -0.74

RCAN1 Regulator Of Calcineurin 1 -1.85 0.73 0.70

HSPB8 Heat shock protein beta-8 -1.88 -1.71 -1.17

KIAA1456 KIAA1456 -1.89 -0.98 -0.82

HTR1B 5-Hydroxytryptamine (Serotonin) Receptor 1B -1.95 0.92 -0.69

ITGA8 Integrin alpha-8 -2.01 2.00 -0.96

DUSP5 Dual specificity protein phosphatase 5 -2.11 -1.01 -0.98

ANKRD1 Ankyrin Repeat Domain 1 -4.37 -3.04 -1.91

doi:10.1371/journal.pone.0150344.t002
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known lentiviral restriction factors were affected, including tetherin (BST-2) and members of
the IFITM family, along with the innate anti-viral factors OAS1 and OAS2.

When we performed the analysis of biological process or pathways, we found that a high
degree of intra-cellular factors were most up-regulated, including metabolic and catalytic pro-
teins, DNA and RNA binding proteins, transcriptional factors and signaling pathways factors
(Fig 3). These analyses suggest that OPPV infection induces broad cellular responses which are
involved in a series of biological pathway activations, such as signal transduction through inter-
action with cellular surface markers, leading to downstream intra-cellular events (Fig 3). The
immune response pathways, such as chemokines and cytokines, transcription cofactors were
also observed to be activated presumably as an antiviral defense, and were immediately up-reg-
ulated in response to the OPPV infection (Figs 2 and 3). It is interesting that the zinc finger
transcription factors appear to be dominant in response to the viral infection (Fig 3C2).

The host cellular factors that restrict viral infection, replication, and
budding
Host restriction factors play important roles in retroviral infection and pathogenesis [34, 35].
There are many studies in human immunodeficiency virus (HIV), influenza and hepatitis
viruses [34–40], but few studies in small ruminant lentiviruses (SRLV). In this study, our goal
was to specifically search for cellular factors that can restrict OPPV infection because their
identification of these will help to develop intervention strategies against viral infection and
transmission. The phylogenetic relationships among some known lentiviral restriction factors
of sheep (Ovies aries) and those of other mammals, including the closely related bovine (Bos
Taurus), have been analyzed and shown in genetic evolution trees (Fig 4). It is suggested that
the current known restriction factors could also exist in goats and ovine and have the same or
similar function against OPPV infection. Our RNA-seq data identified a number of previously
known host restriction factors against OPPV or other similar retroviruses such as HIV or SIV
[34, 35, 38–42] which were significantly differentially regulated at 12h p.i. (Fig 5). They include
members of the interferon-inducible transmembrane protein (IFITM) [43, 44], apolipoprotein
B mRNA-editing catalytic polypeptide (APOBEC3) [45], interferon-inducible, transmembrane
protein (Tetherin/BST-2 or BST-1) [46], and MOV10 [47–49] and TMEM154 (Transmem-
brane Protein 154) which has found to yield resistance to OPPV infection [28, 50]. Within
these known restriction factors, some natural variants may have stronger capacities to with-
stand OPPV infection. Therefore, we will attempt to experimentally identify isotypes that show

Table 3. Significant responsive genes identified throughOvis aries genomic sequence.

Gene Description Identity (%) 12h 24h 48h

SAA1 Serum amyloid A protein, lung cancer marker 97.917 10.09 5.54 5.84

MMP1 Matrix metalloproteinase-1 98.826 3.96 2.83 1.18

PTX3 Pentraxin3, antiviral activity 99.129 3.63 - -

CHI3L1 Chitinase-3-like protein 1, biomarker of asthma 98.203 3.31 3.07 2.75

MX1 Interferon-induced GTP-binding protein Mx1 97.423 2.5 1.3 1.13

IFI44L interferon-induced protein 44-like 98.637 2.11 0.81 0.55

LRRN3 Leucine-rich repeat neuronal protein 3 98.879 1.97 - 3.08

IFITM3 Interferon-induced transmembrane protein 3 98.148 1.32 -0.06 0.14

* Nucleotide sequence identity between the homolog genes in Capra hircus and Ovis aries

doi:10.1371/journal.pone.0150344.t003
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Fig 3. Differentially expressed genes in their functional pathways during OPPV infections. The responded genes from different biological processes
(A), molecular functions (B), protein classes (C) were divided by different color areas with their percentiles of the pies. For the genes in protein classes which
were further divided into signaling proteins (C1) and transcriptional factors (C2), and the different protein genes were also divided by different color areas with
their percentiles of the pies.

doi:10.1371/journal.pone.0150344.g003
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Fig 4. The evolutionary trees of six known restriction factors in human and other mammalian animal species. The protein sequences were used for
analysis and building the trees. The programMUSCLE was used for sequence alignment and PHYML was used for building trees, and bootstrap 1000 steps
were performed to reveal the branch knot possibilities. The unit of genetic distances is also shown in the diagrams. Ovine (Ovis aries) is in bold.

doi:10.1371/journal.pone.0150344.g004
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higher anti-OPPV activity, and isolate the natural genetic forms of sheep which could be uti-
lized in a controlled breeding setting.

The host cellular restriction factor IFITM3 against OPPV infection
The objective of this study is to uncover the cellular factors that may be associated with the
SRLV infection in a genomic scale. Therefore, in order to evaluate our RNA-seq data reliability
in this genome-wide screening, we have chosen the cellular restriction factor IFITM3 for exper-
imental testing. The sheep IFITM3 gene was synthesized and cloned into the pCDNA3.1
expression vector. The plasmid containing the sheep IFITM3 gene was transfected into the
OPPV permissive cells, goat synovial membrane cells (GSM), followed by OPPV infection.
Three days after infection, the media were collected for viral titers assay and the results were
shown in the Fig 6. It was evident that the overexpression of the IFITM3 protein leads to lower
viral titers than those observed in un-transfected GSM cells as measured by reverse transcrip-
tase (RT) activity (Fig 6). This data suggests that the IFITM3 gene mediates anti-viral restric-
tion activity against OPPV infection. This data also supports the integrity of our RNA-seq
data, by way of demonstrating interactions between host cells and viruses.

Discussion
Our RNA-seq analysis of OPPV infection has revealed many interesting host cellular factors
that may be associated with the viral infection process. Some of these factors may directly play
essential roles during OPPV infection, while others may have undiscovered or indirect involve-
ment with OPPV infection and pathogenesis.

In this study, we have confirmed some known cellular restriction factors that are associated
with interference against other lentiviruses (e.g. HIV/SIV), such as Trim5alpha, APOBEC,
Tetherin. Actually, Trim5alpha has been reported to inhibit OPPV infection [51]. Given its route
of transmission and tropism for alveolar macrophages, factors that have not been previously
reported appear to be relevant to OPPV disease, such as lung cancer biomarker (SAA1), asthma
biomarker (CHI3L1), and neuro-inflammation complement factor (CFB). The interferon
induced factors such as ISG17, TIM family members, macrophage inflammatory protein

Fig 5. Differentially expressed profiles of known viral restriction factors during OPPV infection. Fold-changes (FC) determine by compared to the
gene expressed levels in uninfected synovial membrane cells (GSM) at the matching control time points at 12, 24, and 48 hours post-infection.

doi:10.1371/journal.pone.0150344.g005
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3 (MIP3A), monocyte chemotactic protein-1 (MCP-1), RANTES (CCL5), CD14, TNF receptor
CD40, and some interleukins (IL3, IL4, IL6, IL8, and IL16) were all up-regulated. It is surprising
that some GPCR protein family members such as RTP4 (chemosensory transport protein 4), and
interferon-induced GTP-binding protein (Mx1) also experienced up-regulation during OPPV
infection. However, some ion channel genes (calcium channel or potassium channel) appeared to
be down-regulated; and growth factors (EGF, EGR, VGF etc.) were also down; and eventually the
transcription factors such as the elongation factors were also reduced during the OPPV infection.
These responses could be indicative of cellular shutdown to prevent further viral infection.

Our fundamental goal for studying OPPV is to identify naturally occurring genetic restric-
tion factors against infection, allowing for sheep/goat breeding programs that would selectively
produce virally-resistant flocks. The end result of such endeavors will be the gradual control
and elimination of OPPV infection and transmission from animal herds. To meet this chal-
lenge, we intend to further characterize and analyze the individual factors identified by our
RNA-seq research.

In conclusion, our study using RNA-seq technology to search for host cellular association
factors during OPPV infection has captured useful information on relevant or important
genetic factors that are involved in the infection and pathogenesis of this agriculturally relevant
virus. This data has provided significant insights into OPPV research which may lead to reduc-
tion in overall prevalence, and eventual elimination from animal herds.
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