
RESEARCH ARTICLE

SMARTbot: A Behavioral Analysis Framework
Augmented with Machine Learning to
Identify Mobile Botnet Applications
Ahmad Karim1*, Rosli Salleh1, Muhammad Khurram Khan2

1 Department of Computer Systems and Technology, University of Malaya, Kuala Lumpur, Malaysia,
2 Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh, Kingdom of Saudi
Arabia

* ahmadkarim@um.edu.my

Abstract
Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone tech-

nologies after leaving imperative impact on personal computers. It refers to the network of

computers, laptops, mobile devices or tablets which is remotely controlled by the cybercrim-

inals to initiate various distributed coordinated attacks including spam emails, ad-click

fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares

and much more. Likewise traditional PC based botnet, Mobile botnets have the same opera-

tional impact except the target audience is particular to smartphone users. Therefore, it is

import to uncover this security issue prior to its widespread adaptation. We propose

SMARTbot, a novel dynamic analysis framework augmented with machine learning tech-

niques to automatically detect botnet binaries from malicious corpus. SMARTbot is a com-

ponent based off-device behavioral analysis framework which can generate mobile botnet

learning model by inducing Artificial Neural Networks’ back-propagation method. Moreover,

this framework can detect mobile botnet binaries with remarkable accuracy even in case of

obfuscated program code. The results conclude that, a classifier model based on simple

logistic regression outperform other machine learning classifier for botnet apps’ detection, i.

e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have

extracted interesting trends in those applications. As an outcome of this research, a mobile

botnet dataset is devised which will become the benchmark for future studies.

Introduction
Botnet refers to a coordinated activity possibly with some malevolent intension in order to per-
form certain tasks. The working architecture of a mobile botnet is shown in Fig 1. The entities
associated with a botnet attack include: bots and Command and Control (C&C). Bots in case
of mobile botnet are smartphones, tablets or handheld devices which belong to a particular bot-
net and are infected by a self-replicating backdoor program. Eventually, it enables a pathway
for cybercriminals to control devices remotely and execute commands to perform illegitimate
actions. Meanwhile, cybercriminals use a platform i.e. C&C in order to control/instruct bot

PLOSONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 1 / 35

OPEN ACCESS

Citation: Karim A, Salleh R, Khan MK (2016)
SMARTbot: A Behavioral Analysis Framework
Augmented with Machine Learning to Identify Mobile
Botnet Applications. PLoS ONE 11(3): e0150077.
doi:10.1371/journal.pone.0150077

Editor: Kim-Kwang Raymond Choo, University of
South Australia, AUSTRALIA

Received: January 10, 2016

Accepted: February 9, 2016

Published: March 15, 2016

Copyright: © 2016 Karim et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
available via GitHub (http://github.com/ahmadbaloch/
SMARTbot.git).

Funding: This research was supported by a
research grant from the R&D program (IPPP) of the
University of Malaya— Project No. FP034-2012A.
The authors also extend their sincere appreciation to
the Deanship of Scientific Research at King Saud
University for its funding of this Prolific Research
Group (PRG-1436-16).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0150077&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://github.com/ahmadbaloch/SMARTbot.git
http://github.com/ahmadbaloch/SMARTbot.git

enemies, execute commands, disseminate malware code and expand bot network. Precisely,
this illustration of mobile botnet suggests that the ultimate goals of a mobile botnet vendor are
similar to previous generation of PC based botnet i.e. to manipulate personal information of a
user, steal financial account particulars, acquire root privileges, generate massive spam and
phishing attacks to user’s contact addresses, launch Distributed Denial of Service (DDoS)
attacks to turn down the legitimate websites, start enormous hidden processes to perform ad-
click fraud without user knowledge and to mine crypto-currencies. The only difference
between mobile botnet and PC based botnet is the operational environment/platform within
which it executes.

In the past few years, several mobile botnets, such as NotCompatible.C, Zues botnet, Droid-
Dream, BMaster, and TigerBot, have evolved to hinder the performance of smartphone
devices. The Zues botnet also affects the Symbian platform. A recent report [1] stated that a
variant of the existing malware NotCompatible called NotCompatible.C, which has remote
administration capabilities, targets Android devices. The report mentioned that NotCompati-
ble.C is the most dangerous mobile malware with traditional PC-based botnet capabilities ever
introduced. Compared with other sophisticated botnets (e.g., Obad, DroidDream, and Gei-
nimi), NotCompatible.C discriminates itself by having a P2P C&C architecture and by employ-
ing numerous evasion techniques. Moreover, it offers cross-platform compatibility by sharing
its C&C system with Windows bots. Other advancements in botnets include Zeus botnet [2],
which affects Android, Symbian, Blackberry, and Windows users, unlike DroidDream botnet
[3], which is particularly designed only for Android devices. IKee.B [4] botnet, which scans the
IP addresses of target victims, is designed for iPhones, whereas BMaster [5] and TigerBot [6]
particularly aim to disrupt Android-based devices. According to [7], Obad botnet has the most
sophisticated design as it can exploit several unexplored vulnerabilities in Android OS. Its
C&C communication channel is implemented through SMS and HTTP protocols. Moreover,
Obad propagates its attack through fake Google Play stores and untrustworthy third-party
Android app stores. Given the race among mobile botnet authors, various off-the-shelf mobile
malware tools [8] that can perform specific malevolent actions on the behalf of attackers have
been introduced. A report published by Forbes [9] states that 97% of mobile malware has an
Android architecture. Therefore, botnets are expected to perpetuate their severe effects on the
mobile domain in the future.

The two common types of mobile malware analysis approaches include static or code-based
and dynamic or runtime execution analyses. Static or code-based analysis does not require the
execution of a malware program code; in this analysis, related features are extracted either by
directly fetching from the executables [10,11] or by disassembling the program code [12,13]. In
addition, high-level structural properties, such as CFGs or FCGs, are also extracted from the
disassembled code of the malware binaries and utilized as the primary source of information

Fig 1. Basic Botnet Architecture.

doi:10.1371/journal.pone.0150077.g001

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 2 / 35

for malware detection [14,15]. By contrast, dynamic analysis-based systems require malware
binaries to be run in a virtual environment called sandbox to monitor the execution traces of
these malware binaries and fetch their runtime behavior, such as API calls or system calls, for
further analysis and detection [16–18]. As described earlier that mobile botnet is somewhat dif-
ferent from mobile malware because of the involvement of the C&C system in the former.
However, the majority of existing detection solutions target mobile malware in general. Thus,
we proposed in [19] a static analysis approach to detect mobile botnet applications.

SMARTbot is a dynamic analysis framework composed of three basic components: dynamic
analysis, feature mining, and learning. Initially, Android applications are inputted into the
dynamic analysis component using the prebuilt cloud-based malware analysis platform called
Andrubis [20]. The outcomes of the dynamic analysis component are trace and log files in
XML and PCAP formats; these files are transmitted to the feature mining component. In the
feature mining process, various behavioral properties and features, which are particular to a
botnet attack, are observed and extracted. Finally, in the learning component, an ANN back-
propagation model is applied to the unlabeled Drebin dataset to train the botnet detection clas-
sifier. Subsequently, six machine-learning classifiers (i.e., BayesNet, SVM, multilayer
perceptron (MLP), simple logistic regression, J48, and Random Forest) are applied and evalu-
ated using the labeled Drebin dataset [21] to select the optimum classifier model.

We are unaware of a system that can identify botnet features in suspicious mobile applica-
tions through the dynamic observation of infected binaries. Similarly, to date, no study has
been conducted to distinguish botnet features in existing mobile malware binaries through
dynamic analysis augmented by machine-learning techniques. Therefore, this study explicitly
leverages the identification of Android-based mobile botnet applications using dynamic analy-
sis integrated with machine-learning algorithms. The current study’s contributions highlighted
in this paper are as follows:

1. We propose SMARTbot, a robust systematic framework based on the dynamic analysis of
Android applications augmented with machine-learning techniques, to distinguish botnet
behavior in malicious mobile applications.

2. This study identifies the critical features of malicious mobile applications; these features
enable these applications to initiate and persist and eventually conduct a mobile botnet
attack. Specifically, C&C communication patterns in malicious mobile applications are
investigated through behavioral signatures.

3. The most challenging task in any machine-learning system is to correctly label class attri-
butes. We performed class labeling (botnet or malware) by using ANN’s backpropagation
algorithm.

4. The proposed classifier model was evaluated with six existing machine-learning classifica-
tion algorithms (i.e., BayesNet, SVM, MLP, simple logistic regression, J48, and Random For-
est). Simple logistic regression was selected as the best classification algorithm that can
effectively identify botnet applications from the malicious corpus.

5. Various interesting properties pertaining to an HTTP-based mobile botnet attack were
manually investigated.

6. To assist the research community, we uploaded the necessary codes, classifier models, and
generated mobile botnet dataset to a public repository [22].

Consequently, we determined that applications that belong to a specific botnet family dem-
onstrate certain C&C communication patterns. Specifically, each malware application

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 3 / 35

belonging to a particular family performs similar actions while executing remote commands
[23,24], sharing information, and implementing request/response mechanisms. Thus, the main
aim of this study is to identify the properties and features that can lead to a botnet attack by
conducting behavioral observations, distinguishing botnet from other malicious applications,
and employing machine-learning approaches.

The rest of the paper is organized as follows: Section-2 discusses the related work, Section 3
describes the working architecture of our proposed detection approach, Section 4 presents
cross validation results. Section 5 and 6 presents the comparative analysis of botnet and mal-
ware applications and performance evaluation respectively. Section 7 summarizes and con-
cludes this paper.

RelatedWork
A dynamic taint tracking system TaintDroid was proposed by [25] to track vulnerabilities in
Android systems with four granularities of taint disseminations: methods, message, variable and
file level. The taint tracking systemmarks sensitive data generated frommultiple sources. The
main goal of their approach is to mark infected data before leaving the taint sync. However, the
approach is limited in scope because it does not track implicit control flows due to performance
overhead. Many dynamic analysis approaches also use static analysis as a prerequisite to recog-
nize potentially harmful actions. Static analysis is helpful in minimizing resource overhead during
large scale dynamic analysis. Based on this analogy, SmartDroid [26] was designed to automati-
cally identify UI-specific conditions which cause malicious activities. Initially, it generates Activi-
ties and Function Call Graphs for each application by using static analysis. Later each application
is passed through a dynamic analysis procedure to obtain a sequence of UI-specific events causing
the execution of sensitive API. As the system only triggers UI events, thus, activities generated as
background process cannot be traced. Likewise, another study [27] states that many malicious
activities are initiated by the services running at backend.

In a hybrid analysis approach DroidRanger [28], the applications are first scrutinized based
on their dangerous permission usage. Next, the behavior of these applications is compared
with known malware samples on the basis of applications’manifest, used packages, function
call graphs and code architecture. In addition to that, applications with untrusted code are
treated as zero-days and are further analyzed by the system. However, the system does not
cover tracking of network communication of these applications. Another dynamic analysis
scheme VetDroid [29] is designed to examine the permission usage of each application and the
analyzed applications are executed in a secure sandbox for a certain time. This approach uses
Monkey runner [30] to trigger UI events. A permission analysis component of VetDroid
extracts all permissions and highlights the connections between them. As a result, the system
generates a function call graph through which malicious applications are identified.
DroidBox is a sandbox for behavioral analysis, proposed by Lantz [31], which can effectively
analyze Android applications. However, it lacks in executing applications prior to Android ver-
sion 4.2. Both DroidBox and TaintDroid are available as open source packages.

Few approaches [32,33] employ standard machine learning classifiers to detect Android
malware whereas, a tool DroidAPIMiner was proposed by [33] to detect malicious application
by measuring the frequency of APIs called by each application. They conclude that the rate
with which APIs are called in applications with conditions on parameters is 6% higher in mal-
ware than benign applications. Further, the authors applied standard machine learning classi-
fier KNN to verify their claim.

Another approach, MAST [34], which uses Multiple Correspondence Analysis (MCA) to
compute the distance between analyzed application and predefined group of malicious

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 4 / 35

applications. The features extracted for comparison include: permissions, intent filters, zip
archives, and native code. The approach results in a general rank showing the possibility of
malicious actions in mobile applications. The system is specifically designed for analysis of
large scale market stores. A machine learning based hybrid detection and classification
approach is proposed by[35]. The authors built their software using an open-source framework
known as CuckooDroid. The approach is comprised of anomaly detection engine and misuse
detection engine by static and dynamic analysis approaches. The system is evaluated on Drebin
dataset, however the system is still underway for cloud based production environments.

A more recent study MARVIN [36] is proposed to investigate malicious Android applica-
tions with the help of machine learning classifiers which assists user to predict maliciousness in
applications by generating a malice score for each observed application. It is an off-devise anal-
ysis system and its results strongly rely on the output of already developed cloud based
sandbox service known as Andrubis. This work is somewhat related to our approach. However,
we aim to identify bot application binaries, whereas the said approach is used for mobile mal-
ware detection in general. Moreover, we used Andrubis only for data acquisition. Furthermore,
MARVIN is a generic toolkit to identify maliciousness in Android application with the help of
SVM, L1 and L2-regulerzation classification algorithms, whereas our approach is particular to
identification of C&C enabled Android applications with the help of ANN’s back-propagation
modeling.

Proposed Framework
We propose SMARTbot, a framework which learns to distinguish applications having C&C
functionality from malicious corpus through dynamic analysis of Android applications. Our
framework is purely based on machine learning techniques that can classify applications based
on various features collected at runtime. Among the various features, the more prominent ones
we selected are opened connections, reading/writing data using network operations, started
services, cryptographic operations, HTTP traffic sent/received, DNS requests, and SMS sent/
received. Fig 2 shows the basic architecture of the SMARTbot framework together with the
component hierarchy.

The proposed system is based upon passive analysis. Therefore for data collection phase, we
consider the following sources: (a) 3rd party market store, (b) google market store, (c) and Dre-
bin dataset. The framework consists of three major components: Dynamic Analysis Compo-
nent, Features Mining Component, and Learning Component. This study leverages our
previous study [19] in order to obtain concrete observations with the help of dynamic analysis
and machine learning techniques to detect malicious mobile applications having C&C features
with more accuracy.

Dynamic Analysis Component
In SMARTbot’s Dynamic Analysis Component each application is executed in a sandbox in
order to observe applications’ behavior at runtime. Currently, various off-the-shelf dynamic

Fig 2. SMARTbot Framework Overview.

doi:10.1371/journal.pone.0150077.g002

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 5 / 35

analysis tools are available with desktop or cloud based[37,38] environment. For example,
AndrubisAndrubis [20], DroidBox [31], DroidScope [39], APK Analyzer [40], or APKScan
[41] are some of the tools recently adopted and tested by research and development commu-
nity. DroidBox is an open source package for dynamic analysis which cannot be used explicitly
for large datasets because of its limited resultant parameters and deficiency to execute latest
Android applications. In contrast, Andrubis provides an automated cloud based malware anal-
ysis platform which can generate reports with rich parameters (static and dynamic). Therefore,
we have selected Andrubis (SaaS) sandbox in order to execute and collect network traces.
Through an automated script we have uploaded the whole dataset of Drebin to Andrubis and
obtained the dynamic analysis results in XML files. After downloading each application report,
SMARTbot has further analyzed those reports in later stages and labeled them accordingly. As
an additional step to dynamic analysis, collection of network traces are also required to identify
any potential remote access feature which is discussed in Section (Future work).

Feature Mining Component
Feature selection and feature extraction plays a vital role in learning based systems. Both of
these tasks are performed in our Feature Mining Component. As the system only deals with
dynamic code analysis, therefore we are only considering properties pertaining to run-time
analysis of applications. For a better learning system, selected features reflect the truthfulness
of that system. For this purpose, we studied the behavior of various known botnet applications/
families in a nutshell followed by execution of various samples from previously identified bot-
net families onto sandbox and extraction of dynamic features associated with them. Subse-
quently, our system learns this behavior pertaining to botnet applications and compares it with
other kinds of malware attacks (e.g, spam, banking Trojan, premium-SMS, and device outage
attack etc). As a result, we have classified our datasets into two domains: one of them is labeled
botnet dataset and the other is unlabeled Drebin dataset which will be labeled using ANN’s
backpropagation model in Learning Component. These labels will eventually be used for evalu-
ation (i.e testing).

Dataset Used. SMARbot uses different datasets for training and testing. The datasets cho-
sen for analysis and evaluation purpose is presented in Table 1.

In order to learn runtime behavior of botnet applications we have chosen 36 malicious
applications that belong to 49 different malware families [21].

Among the selected applications, 62% represent known botnets, whereas the remaining
38% belong to other malware families without the enabled C&C feature. A short summary of
the selected sample dataset is presented in Table 2. We labeled this sample dataset (either mal-
ware or botnet), which became the baseline for the dynamic feature selection and was used to
train our neural network model. Ultimately, our framework employs the same sample set for
learning the behavioral properties of botnet applications. After executing these applications in
a sandbox, we collected the features that are most relevant to a botnet activity. The execution
time for feature selection was 2 minutes, and the resultant schema was stored in a CSV file for
further analysis using a Python script. For the evaluation, we selected the Drebin dataset
because it is currently the largest malware dataset that is publicly available. This dataset is unla-
beled and is up for labeling based on our class-labeling criteria discussed in Section 3.

Table 1. Dataset Used.

Dataset Total Samples Total Botnet/% Total Malware/% # of Features

Sample Botnet 36 23/62% 14/38% 16

Drebin 4891 3145/64% 1746/36% 16

doi:10.1371/journal.pone.0150077.t001

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 6 / 35

Feature Selection. SMARTbot uses the dynamic feature space and selects the features
which show the behavior of mobile applications in terms of botnet actions, as presented in
Table 3. As a result, we selected the features with respect to file system activities, network con-
nections, information leakage, started services, SMS, cryptographic operations, DNS request,
HTTP traffic parameters and unknown TCP and UDP conversations, majority of these proper-
ties are already proven as the causes of traditional PC and mobile botnet attacks [27,50–57].

Table 2. Summary of Selected Sample Dataset.

No Malware Family/
Name

Operational Impact Year
Introduced

C&C Category

1 NotCompatible.C
[1]

a) Uses a two-tiered C&C architecture b) The gateway C&C server works as a load
balancer, which has the responsibility to filter and segment geographically disperse
IP address regions of infected devices and allows legitimate clients to connect.c)
This kind of architecture is hard to discover by existing dynamic analysis
approaches.

2015 DNS Mobile
Botnet

2 FakeNotify [42] a) sends SMS messages to premium numbers. b) collects and sends user
information. c) download applications

2012 SMS Premiums
MS

3 HijackRAT [43] privacy leakage, theft of banking credential 2014 SMS Banking
Trojan

4 Hippo [44] a) Sends SMS messages to a premium rated number. b) deletes the incoming
SMS messages

2014 SMS Premium
SMS

5 Opfake [45] send premium SMS messages 2012 SMS Premium
SMS

6 Obad [7] a) sends SMS messages to premium numbers b) download other malicious
programs and install on user device without user notice c) Spread these infected
programs using Bluetooth.

2013 HTTP Mobile
Botnet

7 DroidDream [3] a) It uses two known exploits, exploid and rageagainstthecage. b) Instructed by
C&C

2011 HTTP Mobile
Botnet

8 Geinimi [46] Once the malware is installed on a user's phone, it has the potential to receive
commands from a remote server that allows the owner of that server to control the
phone.

2011 HTTP Mobile
Botnet

9 Plankton [47] Works similar to as IRC Spam Bot 2011 HTTP Mobile
Botnet

10 SpamSoldier [48] The infected device connects to C&C and receive instructions: a) The SMS spam
message and; b) A list of 100 US phone numbers to spam;

2012 SMS/
HTTP

Mobile
Botnet

11 DroidKungFu [49] a) Extract user’s device information (IMEI, OS version, device version etc.) from
infected device. b) Store this information on a separate file and sends this file to
remote host for further instruction.

2011 HTTP Mobile
Botnet

doi:10.1371/journal.pone.0150077.t002

Table 3. Feature Vector.

Features Parameters Rationale

File Activity Read/Write Write/Read file system to and from SD card.

Network Operations a) Opened Connections b) Network Read c)
Network Write

Establish and persist remote connection by the malicious application.

Information Leaks a) Network Leaks b) File Leaks This parameter observes the network and file leaks on the network.

Services Started Services Background services started by malicious applications.

SMS a). Sent SMS b) Received SMS To identify SMS based botnets this feature is very import to consider.

Cryptography Cryptographic Operations Crypto operations are performed by malicious writers in order to minimize
the code coverage.

DNS Traffic DNS Requests Frequency DNS requests indicates a botnet attack.

HTTP Traffic a) HTTP Conversations b) HTTP Connection
Attempts

HTTP based botnet uses this features to establish TCP based connection
with outside word.

Unknown
Conversation

a)TCP Conversation b) UDP Conversation Establishment of connection with use defined TCP or UDP ports should also
be noted.

doi:10.1371/journal.pone.0150077.t003

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 7 / 35

Feature Extraction. As part of dynamic analysis component, we need to extract only those
features which are most appropriate for an application to initiate a botnet attack. For this pur-
pose, we bind a program with the API provided by [20], execute each malicious binary in an
automated fashion on publically available cloud based sandbox and collect run-time execution
traces of each application. This service executes program instructions through a modified Dal-
vik VM deployed virtual machine introspection (VMI) for system-level inspection. In addition
to that, a rich external stimulation is implemented to capture maximum program behavior and
to increase code coverage [30]. Average running time of each application is 3 to 5 minutes
depending upon the instruction set. After collecting all reports which are stored in XML file
format, we need to extract features mentioned in Section 3. For this purpose, we devise a
python program logic which can automatically extract botnet features and stores in a CSV file
for further analysis. For this purpose, we have used element tree xml API of python [58,59]
and regular expressions to build the said feature vector.

During the specified running time we have collected the frequencies of feature vector called
by those applications. For instance, how many total DNS requests are initiated by an applica-
tion? Similarly, what is the total number of opened HTTP connections in order to establish
C&C communication? etc.

Learning Component
Machine learning and data mining are extensively used in anomaly detection especially in
establishing generic and heuristic methods [60]. Data mining is on top of the machine learning
to device methods for prediction, classification, inference and regression. Ultimately, selection
of an appropriate method depends on the nature of application. In our study, we are selecting
classifier based on feature length, performance, number of classes and ranking criteria.

We have chosen simple logistic regression, NaiveBayes, RandomForest, SVM, MLP and J48
as our classification algorithms to build and test the generated classification model. A short
description of these algorithms is presented in the next subsection. Training set consists of
malicious samples not having C&C properties and well-known mobile botnet applications. As
the system is specific for botnet detection, therefore we have selected features which are most
relevant to a botnet life cycle which includes connection, infection and resilience. Conse-
quently, training function computes the conditional and marginal probabilities in order to for-
mulate algorithm for the final classification decision.

Class Label Assignment Criteria
Initially, we have learned against the known botnet and malware applications to identify their
behavioral patterns with the help of features discussed in feature mining component. On the
same grounds we need to train Drebin dataset in order to correctly classify botnet application
from malicious corpus. For this purpose, we have adopted ANN’s backpropagation model to
assign class labels to Drebin dataset and attained high accuracy. The reason to choose ANN’s
backpropagation modeling is that, during our initial classification results, MLP outperform in
terms of accuracy, precision and recall rates when applies to sample dataset. Similarly, MLP
utilizes backpropagation as a supervised learning technique to train the network. Therefore, we
have opted the ANN’s backpropagation modeling to classify Drebin dataset.

Backpropagation is a commonly used neural network for supervised training of multilay-
ered neural networks [61]. During execution, a non-linear relationship is created between
input and output patterns so that more accurate output from incoming training patterns is
achieved. For this purpose, backpropagation adjusts the internal weights and revises all weights

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 8 / 35

among each layer. Backpropagation is a learning algorithm where operations are taken place in
two steps: Forward Pass and Backward Pass, as shown in Fig 3.

In our case, the number of inputs in input layer is the total number of features we have nomi-
nated that is 16. Similarly, the output layer contains two predicted outputs i.e malware and botnet.

Backpropagation performs operations in two different steps: forward pass or feedforward
and backward pass or backpropagation. Forward Pass step receives input pattern via nodes at
input layer and keeps forwarding input pattern from each of the multi-layer hidden nodes until
it reaches nodes at output layer where output is generated. During Forward Pass, pre-defined
weights are used to process input pattern throughout the network from input layer towards
output layer. Once the output is obtained from nodes of output layer, each output node gener-
ates error signal by comparing obtained output with expected output. This error signal will fur-
ther be utilized by second step of Backpropagation

1. For first hidden layer

NetInputh1:j ¼
Xn

i¼1

weightinputi$h1;j
� inputi

" #

Squash NetInputh1:j

� �
¼ 1

1þ e�ðNetInputh1:j Þ

2. For hidden nodes of each next hidden layer L

NetInputhL:j ¼
Xn

i¼1

weightinputi$hL;j
� SquashðNetInputhL�1:j

Þ
" #

SquashðNetInputhL:jÞ ¼
1

1þ e�ðNetInputhL:j Þ

where: j = 1,2,3,. . .,m for corresponding layer

3. For each output node o

NetOutputo ¼
XP;m
j¼1

weighthP;j$outputo
� SquashðNetInputhP:jÞ

" #

ObtainedOutputo ¼
1

1þ e�ðNetOutputoÞ

Fig 3. Backpropagationmodel.

doi:10.1371/journal.pone.0150077.g003

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 9 / 35

Where:
P is last hidden layer

Finally, Backward Pass is performed to update weights throughout the network. Backward
Pass is initialized at output layer and carried out by propagating error signals backwards from
output layer to each hidden layer until input layer. As all hidden nodes have collectively con-
tributed in obtained output, they all have effect on generated error signals. Error signal is now
propagated to each node of immediate hidden layer and new weights for the links connecting
this hidden layer to output layer are calculated. In the same way weights between each layer are
calculated relative to their contribution in error signals. These updated weights are assumed to
show minimum error for later training patterns. Thus, the aim of Backpropagation to solve
learning problem is achieved.

1. For weights between last hidden layer and output layer

Optimizedweightoutputo$hP;j
¼ weightoutputo$hP;j

� Z� @ðErrorÞ
@ðweightoutputo$hP;j

Þ

where η is learning rate,

@ðErrorÞ
@ðweightoutputo$hP;j

Þ ¼
@ðErrorÞ

@ðObtainedOutputoÞ
� @ðObtainedOutputoÞ

@ðNetOutputoÞ
� @ðNetOutputoÞ
@ðweightoutputo$hP;j

Þ

And

Error ¼
X2

o¼1

1

2
ðExpectedOutputo � ObtainedOutputoÞ2

2. For weights between hidden layers

OptimizedweighthL;j$hL�1;j
¼ weighthL;j$hL�1;j

� Z� @ðErrorÞ
@ðweighthL;j$hL�1;j

Þ

where:

@ðErrorÞ
@ðweighthL;j$hL�1;j

Þ ¼
@ðErrorÞ

@ðSquashðhL;jÞÞ
� @ðSquashðhL;jÞÞ

@ðNetInputhL:jÞ
�

@ðNetInputhL:jÞ
@ðweighthL;j$hL�1;j

Þ and

@ðErrorÞ
@ðSquashðhL;jÞÞ

¼
X2

o¼1

@ðErrorÞ
@ðObtainedOutputoÞ

� @ðObtainedOutputoÞ
@ðNetOutputoÞ

� weightoutputo$hP;j

3. For weights between first hidden layer and input layer are:

Optimizedweighth1;j$inputi
¼ weighth1;j$inputi

� Z� @ðErrorÞ
@ðweighthL;j$inputi

Þ

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 10 / 35

Cross Validation
In this section, we will present the classifier validation results that are collected by applying
machine learning classifiers to labeled Drebin dataset.

Classifier Evaluation
As discussed before, our main objective of this system is to build a classification model which
classifies malicious applications having C&C features with other types of malwares. For this
purpose, we have used six different types of machine learning classifiers: SVM, Naïve Bayes,
Random Forests, J48, MLP and simple logistic regression. These classifiers belong to different
classifications families. J48 [62] belongs to the C4.5 Decision Trees [63] which is used for gen-
erating a pruned or unpruned model. Similarly, Random Forest classifier decides the predic-
tor’s accuracy by constructing various random trees. Moreover, simple logistic regression is
based on Logistic Model Trees [64], whereas the Naïve Bayes is derived from Bayes Theorem
[65] with the predictors having independence assumptions. In SMARTbot framework, the rea-
son to use different classifiers with diverse logic is to produce higher classification accuracy.
We observed that, MLP performs well in terms of accuracy, precision, recall and F-measure for
Sample dataset, on the other hand, simple logistic regression outperforms in terms of classifica-
tion accuracy, precision, recall and F-measure for Drebin dataset which we have labeled based
on the method described in previous section.

All the experiments are performed in a powerful feature of Weka workbench [66] known as
Weka Experimental [67]. It has a GUI explorer built-in for experimenting machine learning
algorithms on big datasets, and robust enough to produce a large number of experimental
results needed for evaluation and comparison. Normally, the validation in machine learning
classifiers is performed in two different ways to assess accurate performance measures for clas-
sifiers. One method is called K- fold cross validation [68] and the other is known as random
sampling validation [69].

We have used K -Folds cross validation as a process to validate our classifier’s model accuracy
and compare the results with random sampling in order to measure the efficacy of our model
(section 0). In our case, we used K as 10 to perform cross validation tests for our classifier model.
Although K = 10 is commonly used [70], however K is not a fix parameter. To evaluate each clas-
sifiers’ performance we used the following standard classification as described in Table 4.

Classification Results for the Drebin Dataset
In this section, we used Drebin dataset to validate our results and assess the applicability of our
model in a large-scale environment. The steps involved in labeling this dataset are discussed in
last section.

Table 4. Observed Classification Parameters.

Parameters Formula (if any)

True Positive Rate (sensitivity, recall, hit-rate) TP
TPþFN

True Negative Rate (Specificity) TN
TNþFP

False Positive Rate FP
FPþTN

False Negative Rate FN
TPþFN

Accuracy TPþTN
TPþTNþFPþFN

Precision TP
TPþFP

F-Measure F ¼ ð2� j percision�recall
precisionþrecall

� �
Þ

Area Under ROC Curve -

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 11 / 35

Figs 4–7 and show the accuracy rates (in percent), precision, recall, F-measure for Drebin
dataset using 10-fold cross validation. Although all ML classifiers produced relatively good
accuracy rates i.e higher than 90% however, simple logistic regression outperforms the other
tested classifiers. It correctly classifies 99.49% of Drebin dataset using the selected features to
distinguish botnet applications. In difference, Naive Bayes, SVM, MLP, J48 and RF achieve
accuracy rate of 91%, 96%, 97%, 98% and 99% respectively. Table 5 also reveals that the preci-
sion values support the accuracy rates of the machine learning classifiers in establishing an
effective model. The SVM has the maximum precision value than other classifiers. The preci-
sion value for the SVM is 1.00 while the precision values for Naive Bayes, MLP, simple logistic
regression, J48, and RF are 0.87, 0.94, 0.99, 0.98, and 0.99 respectively. Moreover, results of
Recall rate and F-measure for 10-fold cross validation conclude that on the average, the maxi-
mum recall rate generated by Simple Logistic which is 1.00, whereas the recall rates for Naive
Bayes, SVM, MLP, J48 and RF is 0.87, 0.88, 0.99, 0.97, and 0.98 respectively. Similarly, the high-
est F-measure of simple logistic regression having 0.99 values other than the obtained results of
Naive Bayes, SVM, MLP, J48 and RF. Whereas, the attained F-measure for Naive Bayes, SVM,
MLP, J48 and RF are 0.87, 0.93, 0.96, 0.97 and 0.98 respectively.

Fig 4. Accuracy of each classifier for Drebin dataset.

doi:10.1371/journal.pone.0150077.g004

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 12 / 35

Moreover, Figs 8 and 9 derive the overall performance of classification algorithms when
applied on Drebin dataset. From the Fig 8, it can be concluded that the simple logistic regres-
sion performs the best in terms of accurately classifying the Drebin dataset with 99% using the
selected feature vector. Similarly, simple logistic regression has the highest recall rate of 100%
from its counterpart classifiers while having the minimum FNR of 0. However, the TPR of
MLP is slightly improved than simple logistic regression (0.97) which is 0.99. Moreover, the
FNR for Naive Bayes, SVM, J48, and RF are 13%, 12%, 3% and 2% respectively.

Comparative Features Evaluation
In this section, we will discuss and compare different features with respect to botnet and mal-
ware applications in order to evaluate SMARTbot framework.

Cryptographic Operation Statistics
Mobile application developers use cryptographic operations which include message authenti-
cation codes and block ciphers to secure communication and data. From the Fig 10 we can

Fig 5. Precision of each classifier for Drebin dataset.

doi:10.1371/journal.pone.0150077.g005

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 13 / 35

observe that, the most common cryptographic algorithms observed during the dynamic analy-
sis of botnets were AES (20%), DES (12%), AES/ECB/ZEROBYTEPADDING (5%), and DES/
CBC/PKCS5Padding (3%). Malware, on the other hand, mainly used AES (4.3%) and DES
(2.0%). According to [71], DES was the predominantly used cryptographic algorithm in 2010
(98%); however, its usage reduced to 1.53% in 2013. After which, malware writers changed
their motivation to stronger algorithms like, AES and Blowfish. In our analysis we observed
that the Blowfish trend in the botnet applications was only 0.2% in all samples and no malware
sample used this algorithm.

Message Digest (MD5) is a widely accepted standard for enforcing message integrity during
the network communication. However, recently researcher have found some serious security
concerns in the form of collision attacks [72] and replay attacks [73]. Therefore, recent studies
[74] not encourage users from adopting this option. The results regarding MD5 misusage by
botnet and malware applications are shown in Figs 11 and 12 respectively. We observed high
spikes when digest operations were misused in a large number of botnet applications. On the
average, each botnet application misused 14±2 digest operations, whereas only 12 malware
samples misused 3±1 digest operation on the average.

Fig 6. Recall Rate for each classifier in Drebin Dataset.

doi:10.1371/journal.pone.0150077.g006

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 14 / 35

DNS Statistics
From the defense point of view, we must be aware of what properties exist which can distin-
guish botnet traffic from legitimate network traffic relying heavily on DNS protocol. For this
purpose, various studies have conducted to compare DNS queries generated by botnet attack
or by benign sources. As a result, according to [50,51], we can differentiate botnet and regular
DNS queries by investigating (a) botnet structures (b) botnet synchronization and (c) bots
response time. Another study [52] stated that various factors contribute to the malicious

Fig 7. F-Measure for each classifier in Drebin Dataset.

doi:10.1371/journal.pone.0150077.g007

Table 5. Overall Accuracy and Precision for Drebin dataset (rounded).

Naive Bayes SVM MLP simple logistic regression J48 RF

Accuracy (%) 91 96 97 99.49 98 99

Precision 0.87 1.00 0.94 0.99 0.98 0.99

Recall 0.87 0.88 0.99 1.00 0.97 0.98

F-measure 0.87 0.93 0.96 0.99 0.97 0.98

doi:10.1371/journal.pone.0150077.t005

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 15 / 35

behavior of DNS traffic, such as (a) low time to live (TTL) values, (b) large volume of DNS
query requests that indicates a botnet intention (c) number of failed DNS queries and (d) the
number of responses return by the DNS server i.e DNS_TYPE_A record.

Fig 13 shows the comparison of the top 1746 botnet and malware applications with respect
to DNS requests. It clearly indicates that the botnet applications request more DNS queries
than the malware applications. On the average, each botnet application requests 4.4 DNS que-
ries, whereas on the average each malware initiates 3.1 times DNS requests. Overall 96% of bot-
net applications perform DNS requests, in opposite only 51% of malware samples requested
DNS queries. Another important factor to assess the botnet intuition is to determine the fre-
quency of failed DNS queries. This also affirms our classifiers’ accuracy that botnet dataset has
higher failure rate with respect to DNS queries, while malware has lower rate of failed DNS

Fig 8. Overall performance comparison against each classifier for Drebin Dataset.

doi:10.1371/journal.pone.0150077.g008

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 16 / 35

requests. Consequently, 80% of the botnet applications have failed DNS requests, while only
28% of the malware samples have failed DNS requests. As for as DNS response record is con-
cern, 95% of the botnet applications receive (average of 2.7) DNS server replies, whereas only
48% malware samples receive (average 0.9) DNS response. Fig 14 shows the response generated
by DNS server also known as DNS_TYPE_A_Requests. Similarly, the total number of unsuc-
cessful DNS queries is presented in Fig 15. On the average, the DNS server’s responses for bot-
net applications are more than those for malware samples. Moreover, a similar trend was
observed for unsuccessful DNS queries generated by the botnet applications, i.e it is higher
than malware applications.

File Operation Statistics
Android applications can access internal storage and external storage from SD cards. Accord-
ing to analysis conducted by [71], overall 72% of benign application and 96% of malicious

Fig 9. Overall accuracy comparison against each classifier for Drebin Dataset.

doi:10.1371/journal.pone.0150077.g009

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 17 / 35

application access files for reading, whereas 83% of benign and 95% of malicious applications
access file system in write mode. Botnet application can use file system activities to store mal-
ware binaries to external storage.

Fig 10. Cryptographic Operations.

doi:10.1371/journal.pone.0150077.g010

Fig 11. Message digest operationsmisused by Botnet applications.

doi:10.1371/journal.pone.0150077.g011

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 18 / 35

Botnet applications need to access the file system of Android OS in order to store malware
binaries and to interpret personal data. For this purpose, apps extensively utilize internal and
external storage from SD cards. Figs 16 and 17 show the read and write operations’ frequency
in all malware and botnet applications respectively. We observed that, on the average read and
write operations performed by botnet applications are predominantly higher at 404.25 and

Fig 12. Message digest operationsmisused by Malware applications.

doi:10.1371/journal.pone.0150077.g012

Fig 13. DNS Requests for botnet andmalware apps.

doi:10.1371/journal.pone.0150077.g013

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 19 / 35

Fig 14. DNS_TYPE_A record comparison.

doi:10.1371/journal.pone.0150077.g014

Fig 15. Unsuccessful DNS queries by applications.

doi:10.1371/journal.pone.0150077.g015

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 20 / 35

208.28 respectively, whereas the trend for reading/writing operation in malware applications is
extensively low at 6.66 and 5.60 respectively. Moreover, as for as the file system access to pri-
mary storage (/sdcard) and access to secondary storage (/mnt/sdcard) is concern, the Fig 18
apparently shows that access to secondary storage is far more prevalent in botnets: 12% of bot-
net applications access SD card, while 2% malware applications access secondary storage.
Moreover, the primary storage is 3% utilized by botnet applications whereas malware applica-
tion used only 0.2% access to primary storage of Android systems. Furthermore, access to
shared media libraries (libmedia_jni.so and libsoundpool.so) is also highly recommended by
botnets. Moreover, we also gathered the statistics regarding the applications intended to call
root level Linux system commands which are presented in Fig 19. We concluded that root level
access commands like chmod, chown and mount has higher frequency of calling in botnets
than in malware. The reason is simple that is to get controlled over the device. Similarly, the
commands related to content searching like find, cat, grep, help, and man are also desirable for
botnet applications. As a sum, chmod, chown,mount, find,man, help, grep and cat commands
are used by 26,1,6,46,11,77,2, and 14 malware applications respectively. In contrast, for botnet
dataset 118, 15, 40, 448, 163, 190, 49, 116 applications used the above mentioned commands.

Fig 16. Average File Read/Write operations bymalwares.

doi:10.1371/journal.pone.0150077.g016

Fig 17. Average File Read/Write operations by botnets.

doi:10.1371/journal.pone.0150077.g017

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 21 / 35

HTTP Statistics
Smartphones are connected to the Internet, and the C&C functionality for Android botnets is
constantly controlled through the network. In consequence, bots in a mobile botnet are

Fig 18. File System Access to Applications.

doi:10.1371/journal.pone.0150077.g018

Fig 19. Linux Commands Usage.

doi:10.1371/journal.pone.0150077.g019

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 22 / 35

enforced to receive control server commands through Hypertext Transfer Protocol (HTTP).
Despite the fact that INTERNET permission is explicitly utilized when an application has to
obtain network access, this permission is considered common and cannot be the only identifier
for malicious behavior of an application. One of the popular example for HTTP based botnet is
Geinimi botnet [46], which enables encrypted communication between C&C server and bots
with the help of DES encryption scheme and via legitimate HTTP POST requests. Moreover,
Geinimi also used DES to encrypt domain names of C&C servers. Hence, it was proven as the
most sophisticated botnet that times [53].

HTTP protocol governs communication in two ways, by GET or POST request. A GET
request is meant to retrieve static contents like images, binaries etc. while POST requests are
used in server side programming to dynamically retrieve the resources. Thus, HTTP attacks
generated by GET requests are simpler to create, and can more effectively scales in a botnet sce-
nario [54]. Fig 20 shows the number of HTTP connections opened/established by botnet data-
set. It clearly shows that, 92% of botnet dataset established TCP connection, whereas only 33%
malware do so. Moreover, the average connections established by each botnet and malware
application are 10 and 2.5 respectively. In order to get insight into the HTTP traffic, we also
observed the GET requests initiated by both datasets. It can be seen from the Figs 21 and 22
that 40% of the botnet applications use GET command for communication, however, 23% of
the malware samples use this feature to communicate externally via HTTP.

Fig 20. Total Number of Established Connections.

doi:10.1371/journal.pone.0150077.g020

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 23 / 35

Data Leak Statistics
Data leakage is considerably more frequent among botnet than malware: overall, 26% of botnet
applications leak user information over the internet, whereas 11% of malware applications do
so. However, botnet and malware applications leak device-specific information, for instance,
International Mobile Subscriber Identity (IMSI), International Mobile Station Equipment
Identity (IMEI), Integrated Circuit Card Identifier (ICCID) and subscribers’ phone number.
Overall, 44% and 23% botnets leaks the IMEI and phone number respectively, whereas only
9% of malware leaks ICCID. Similarly, it is common in botnet samples to leak names and
phone numbers from the subscribers’ address book and disseminate this information to their
C&C. Whereas, leakage of names and phone number is uncommon factor observed in malware
dataset. Fig 23 shows the trends of file leakage in top 1745 botnet and malware samples.

Network Operation Statistics
Mobile botnet applications rely not only on permissions but also on different API functions,
such as Connect, openConnection, execute, URL and Socket etc. We also observed these meth-
ods in our behavioral analysis system. The results in Fig 24 affirm that botnets are more inter-
ested in using these network methods than malware. Most popular network methods among
botnet samples are, connect, execute, getInputStream, URL, Socket, openConnection and Close
commands which are called by 52%, 39%, 18% 64%, 15%, 52% and 37% of the botnet applica-
tions respectively. In opposite, 36%, 24%, 14%, 44%, 2%, 40% and 16% of malware samples uti-
lized above mentioned commands respectively,.

Fig 21. HTTP Get Requests by botnet Applications.

doi:10.1371/journal.pone.0150077.g021

Fig 22. HTTP Get Requests by Malware Applications.

doi:10.1371/journal.pone.0150077.g022

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 24 / 35

From the Fig 25 we can conclude that, the most commonly observed opened network con-
nections for botnet dataset occurred on port 80 (HTTP, 92% of samples), port 443 (HTTPS,
69%), port 123 (NTP, 44%) and port 13 (Daytime, 9%). Whereas, 8088(HTTP), 8080 (HTTP),
6888 (P2P), 6543 (lds-distrib), and 5432 (postgresql) with less than 1% of applications each.
However, for malware we observed 80 (HTTP, 37%), 443(HTTPS, 3%), and 123 (NTP, 33%).

Fig 23. File Leak statistics among all Botnet and Malware.

doi:10.1371/journal.pone.0150077.g023

Fig 24. Most Common Network Methods Called by Botnet and Malware Applications.

doi:10.1371/journal.pone.0150077.g024

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 25 / 35

Services Statistics
Android applications use service model to initiate background services. Service model does
not provide graphic interface to configure (similar to as Activity model) rather they are
designed to offer background functionality of an applications. Malware authors use this model
to establish communication pathway with Command and Control (C&C) servers of botnets,
steal personal information or forward contact information to an adversary without user
information.

As we described earlier, botnets initiate large number of services as compared to benign or
malware applications. Previous researchers [27] reported that Android malware usually request
for more services, permissions and receiver components as compared to benign applications.
This behavior is attributed to, the attempts of Android malware to hide malicious actions while
inaudibly executing more background services. A recent report by Forensiq [75] states that
mobile botnets are costing advertisers $1 billion in ad fraud by loading bulk of advertisements.
The process is carried out through loading far more ads than any benign application would—
more than 20 ads per minute. In many cases the ad events are generated when the applications
are not being interacted i.e. by enabling various background services/processes. Therefore, the
same results reflected in our observation shown in Fig 26 that botnet applications require more
services to initiate as compared to malware ones. On average, botnet applications requested
58±10 background services, whereas on the average malware applications calls background ser-
vices 15±2 times.

SMS Statistics
A common activity that needs to be investigated during runtime analysis of mobile applications
is the frequency of sending SMS. From the Fig 27, we observe that, the percentage of sending
SMS messages is higher in malware samples i.e 35% of malware apps called SENT_SMS per-
mission. While the percentage of sending SMS in the botnet dataset is only 5%, which could be
explained by the following reasons: (a) our training dataset contains 80% of botnet applications
having HTTP communication protocol. (b) Sending messages to a premium rated number is a
popular technique used by mobile malware [57]. Hence, the results affirm our classifier’s accu-
racy by showing the high sent SMS frequency rate in the malware dataset.

Fig 25. Vulnerable Ports Analysis between botnet andmalware applications.

doi:10.1371/journal.pone.0150077.g025

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 26 / 35

Performance Evaluation
In this section, we present various performance measures to recognize the degree of effective-
ness of our SMARTbot framework. We make comparison with respect to model efficacy, scal-
ability and performance comparison. Furthermore in this section, we provide a case study that
helps to demonstrate the usability of our framework.

Model Efficacy
To measure the reliability of our classifier, we further applied random sampling method to our
selected datasets. For random sampling, we assigned 66% training data instances and 33% for

Fig 26. Started Services frequency analysis between botnet andmalware applications.

doi:10.1371/journal.pone.0150077.g026

Fig 27. Sent SMS frequency Analysis between botnet andmalware applications.

doi:10.1371/journal.pone.0150077.g027

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 27 / 35

test dataset. Although, we obtained similar results while choosing the best option between
cross validation and random sampling, yet 10-fold cross validation generates slightly better
results as compared to random sampling. The results in Table 6 affirm the viability of the sim-
ple logistic regression classifier as a basis for effective botnet application detection within the
specified feature domain. Ultimately, this will become our final choice for classifier building in
production environments.

In addition to that, we can implement this classifier model on user devices in order to pre-
dict the granularity of botnet behavior in running applications. As our future work to imple-
ment this model in mobile apps it will make users able to predict correct class of application
with the help of observed behavior. Similarly, Table 6 depicts the learning time comparison
between 10-fold cross validation and random sampling. Training time is ranging from 1.9957s
to 3.5611s in 10-fold cross validation whereas random sampling requires 0.036s to 8.076s to
train the model. Additionally, testing time required by 10-fold cross validation ranges from
0.0321s to 0.0691s which is better than existing machine learning based mobile malware detec-
tion solution, Mobile-Sandbox [76]. Likewise, the time taken to process testing classifier model
during random sampling is 0.018s to 3.90s. Moreover, Table 7 shows the size of each classifier
in order to measure the feasibility to deploy it to user device. We observe the same model size
in both 10-fold and random sample scenarios. However, the largest size for any model is
1.6MB which is of the simple logistic regression model. In contrast to MLP and Naive Bayes
model sizes in [77], our model size is reasonable enough to reside on user device.

Scalability
To date, the majority of proposed solutions can work either as on-device or off-device analysis
systems which result in scalability issues. However, we look the scalability of the SMARTbot

Table 6. Model Comparison between 10-fold and random sampling.

10-Fold Cross Validation Random Split Validation (66% Training, 33% Testing)

Accuracy Precision Recall F-Measure TPR FPR TNR FNR Accuracy Precision Recall F-Measure TPR FPR TNR FNR

Naive Bayes 90.76 0.87 0.87 0.87 0.87 0.07 0.93 0.13 90.20 0.86 0.86 0.86 0.86 0.08 0.92 0.14

SVM 95.58 1.00 0.88 0.93 0.88 0.00 1.00 0.12 94.23 1.00 0.84 0.91 0.84 0.00 1.00 0.16

MLP 97.10 0.94 0.99 0.96 0.99 0.04 0.96 0.01 97.41 0.95 0.98 0.96 0.98 0.03 0.97 0.02

simple logistic
regression

99.49 0.99 1.00 0.99 1.00 0.01 0.99 0.00 99.46 0.99 0.99 0.99 0.99 0.01 0.99 0.01

J48 98.14 0.98 0.97 0.97 0.97 0.01 0.99 0.03 97.84 0.97 0.97 0.97 0.97 0.02 0.98 0.03

RF 98.83 0.99 0.98 0.98 0.98 0.01 0.99 0.02 98.38 0.98 0.98 0.98 0.98 0.01 0.99 0.02

doi:10.1371/journal.pone.0150077.t006

Table 7. Time and Size Comparison.

10-Fold Cross Validation Random Sampling

TrainingTime
(seconds)

Testing Time
(seconds)

Model Building
Time(seconds)

Size
(KB)

Training Time
(seconds)

Testing Time
(seconds)

Model Building
Time (seconds)

Size
(KB)

Naive Bayes 3.5611 0.0691 0.02 8 0.941 0.095 0.02 8

SVM 1.9957 0.0544 8.87 479 6.973 3.906 8.85 479

MLP 3.0953 0.0321 10.54 25 7.21 0.296 10.7 25

simple logistic
regression

3.2538 0.0541 5.4 1598 8.076 0.018 5.36 1598

J48 2.3205 0.0613 0.09 23 0.036 0.026 0.18 23

RF 3.0645 0.0328 1.56 1359 0.99 0.06 1.61 1359

doi:10.1371/journal.pone.0150077.t007

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 28 / 35

framework from both perspectives: when this solution is deployed to large-scale market stores
as an offline analysis option and when embedding the classifier into user device for the runtime
analysis of installed applications. At present, we can deploy SMARTbot as an offline analysis
framework to large-scale market places (e.g Google Play) without much effort. We calculated
the time required to generate a mobile botnet classifier model. As a result, the total time
required to generate report links for the Drebin dataset (4891 malware binaries) is�20 hours
which include, the uploading time, loading time to the sandbox, execution time, report genera-
tion time and network communication overhead from cloud to the host machine. On the aver-
age, each application requires almost 20±5 minutes to completely execute and generate log
reports. Here, we need to highlight that, although this is an ideal elapsed time to process an
application in sandbox, yet it is not obvious in all cases. There are many factors that contribute
to the extension of processing time, e.g. system’s peak hour, temporary disruption of service,
network communication outage. In this study, the feature extraction time is approximately 15
minutes for the execution of Python parsers and collection of values against feature vector.
However, machine learning-based classifier only consumes a few seconds during the testing
phase to predict the class of an application.

The deployment of SMARTbot logic directly into smartphone devices requires the design
and development of an Android application to support our machine-learning classifier; such
an application will be part of our future work. Thus, we conclude that, our framework that
applies behavioral observation is feasible for hundreds or even thousands of applications.

Performance Comparison
In this subsection, we compare SMARTbot framework with existing related approaches to
highlight the significance of our work. Exiting approaches employ static, dynamic or hybrid
approaches with varying dataset sizes and focus on general malware detection; therefore, direct
comparison is not feasible. However, we can compare the classification results in terms of
machine learning techniques employed, accuracy and precision.

The hybrid behavioral model proposed by [78] employs an SVM classifier for training and
testing purposes and achieves 96.9% accuracy. For this model, a dataset of 3368 malicious
applications was used for classification. Another work selected for comparison is [79], which is
also based on static analysis. It uses Permission and API calls as the feature vector and evaluates
the results with various machine learning approaches such as SVM, Bagging and C4.5. For
comparison, we selected the best results obtained by the model using the SVM classifier and
achieved 96.69% accuracy. In addition, authors in [77] proposed an Android malware detec-
tion system using Bayesian algorithm with static feature set including permissions and API
calls. The authors conducted experiments on 1000 malware samples with various module con-
structions and achieved 98% accuracy for 15M-based classifier model. Another important
work that we considered for comparison is [21] which produces a set of 5560 malicious appli-
cations. It uses vast and diverse array of static features as a feature vector and perform classifi-
cation using SVM. This approach shows comparatively good results in terms of accuracy, (i.e.
98.78%).

On the other hand, our proposed framework SMARbot uses 4891 malware samples
obtained from [21] and employs various machine learning algorithms for classification. Unlike
the aforementioned approaches, SMARTbot uses dynamic analysis in order to detect botnet
behavioral patterns in mobile applications. Moreover, ANN’s backpropagation modeling is
used to train and label the botnet dataset. We also evaluated our model with 10-fold cross vali-
dation and random sampling and obtained better results from the 10-fold cross validation. As
a result, the simple logistic regression achieves 99.49% accuracy which is comparatively better

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 29 / 35

than previous approaches. Fig 28 shows the comparative analysis of SMARTbot and existing
approaches.

Case Study: Observation of Botnet Capable Suspicious Applications
In order to show the efficacy of SMARTbot, we conducted a detailed analysis of one of the
existing Android based mobile botnet application NioServ (a web-proxy bot) which was intro-
duced in May 2015 [80]. The application belongs to drive–by-download category and is not
flagged as suspicious by Andrubis with malicious score 0.3/10. Unlike Andrubis, SMARTbot
classified this applications as botnet.

We manually observed static and dynamic analysis properties and found several interesting
facts about this application. During network traffic analysis, the application attempted to con-
nect to remote hosts with 35 distinct IP addresses. Moreover, a TCP session with a C&C server
with IP 212.7.197.220 which is backlisted by [81] as spam server, was observed. In order to
communicate securely, the application established connections on port 443. Fig 29 shows the
number of DNS requests, background services, network read/write operations and opened net-
work connections.

Fig 28. Performance Comparison with existing approaches.

doi:10.1371/journal.pone.0150077.g028

Fig 29. Dynamic Analysis Results of NioServ.

doi:10.1371/journal.pone.0150077.g029

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 30 / 35

According to the static observations, the application has enabled access to INTERNET,
ACCESS_NETWORK_STATE and RECEIVE_BOOT_COMPLETED permissions. With,
these permissions, the bind method of Java ServerSocket class is called in order to communi-
cate outside by opening a socket. Moreover, the application listens for RECEIVE_BOOT_-
COMPLETED permission to start any background activity in order to trace the smartphone
location and to listen to a C&C server.

Overall, the decision of SMARTbot to mark this applications as botnet is based on the fol-
lowing factors: large number of network operations, including network read/write operations;
large number of DNS queries; IP address of the C&C server; unsuccessful DNS queries; and
numerous HTTPS-based opened connections. We conclude that using static analysis-based
malware detection systems solely is insufficient to establish correct decisions; for a thorough
investigation the behavioral and communication patterns of applications must be observed.

Limitations
Although SMARTbot can effectively identify botnet specific Android applications yet it has
few limitations. First the file size limit is 8MB which is inherited from Andrubis. However, we
cope with this limitation by devising our own mobile sandbox with rich UI support. In addition
to that, the service availability constraints of Andrubis are also present even when the service is
unavailable, disrupted or malfunctioning. Second, the use of sandboxing technique is another
limitation; various approaches [82] have been introduced by the researchers to determine if the
execution platform is a sandbox machine or a real device. For instance, Obad botnet tries to
evade execution on several sandboxes using anti-decompilation or anti-emulation approaches.
It does so by checking the value of Android.os.build.MODEL, if the value indicates the exis-
tence of emulator, the application stops execution immediately [7,83].

Lastly, dynamic analysis itself requires a comprehensive set of execution traces in order to
represent complete a program behavior. Although it is impractical to completely observe a
complex program behavior, yet several software programs have been introduced to extend
code coverage like Monkey Runner [30]. However, it is still argued [84,85] to effectively pro-
vide full behavior coverage with existing options.

Conclusion and Future Work
Smartphones have become an attractive substitute for desktop computers because of the rapid
development in compute intensive mobile phone technologies. The wide-scale deployment of
Internet technologies (4G) enable smartphone users to be always connected to the network.
Ultimately, these trends have opened the door for cybercriminals to expand their malevolent
motivations towards recent evolving platform. New vulnerabilities have evolved with the exten-
sion of smartphone usage to general-purpose computing and production environments. The
mobile botnet phenomenon is inherited from previous generation of PC-based botnets aiming
to gain illegitimate access to mobile devices to carryout various malicious activities. We pro-
pose SMARTbot, a novel framework to analyze and detect potential Android-based mobile
botnet applications through dynamic analysis augmented by machine learning techniques. The
framework is decomposed into three components; dynamic analysis component, feature min-
ing component and learning component. During dynamic analysis, applications are required
to be executed in a secure sandbox and the results are collected for further classification. In the
feature mining component the feature vector is extracted from the generated profiles of all
applications and stored in a repository for learning. Finally, in the learning component the
sample of a known botnet dataset are trained with the help of ANNmodel. In addition to that,
class labeling for the large scale Drebin dataset is performed using a backpropagation model.

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 31 / 35

Various machine learning classifiers are applied to determine the most suitable classification
algorithm to draw a clear line between botnet and other types of malicious applications.

As a result of this study, we conclude that: (a) mobile applications having C&C features
show certain regular communication patterns with respect to families they belong, i.e bots of a
certain family have common properties when coordinating with their C&C server. In addition
to that, continuous connections to the C&C servers often follow similar timing and behavioral
patterns. (b) Static analysis alone is not sufficient to detect these malicious binaries because of
code obfuscation techniques imposed by cybercriminals. (c) Dynamic analysis augmented with
machine learning is an obvious option to identify botnet behavior in Android applications
even with diverse feature vector space. (d) To date, mobile botnet dataset remains unavailable;
therefore this research could provide the foundation for future studies in the domain of botnet
anomaly detection in mobile environment.

In our future work, we plan to devise a hybrid on-device analysis system for the detection of
bot behavior using machine learning classifiers. For this purpose, we will attempt to design and
implement our own sandbox with rich UI capabilities providing deep code coverage which can
ultimately avoid all the deficiencies inherited from traditional dynamic analysis sandboxes.

Author Contributions
Conceived and designed the experiments: AK RS MKK. Performed the experiments: AK RS
MKK. Analyzed the data: AK RS MKK. Contributed reagents/materials/analysis tools: AK RS
MKK. Wrote the paper: AK RS MKK. Results Validation: AK RS MKK. Manuscript Revision:
RS MKK.

References
1. Strazzere T (2014) The new NotCompatible: Sophisticated and evasive threat harbors the potential to

compromise enterprise networks.

2. Schwartz MJ (2012) Zeus Botnet.

3. Mahaffey K (2011) Security Alert: DroidDreamMalware Found in Official Android Market.

4. F-Secure (2009) Threat DescriptionWorm: iPhoneOS/Ikee.B.

5. Mullaney C (2012) Android.Bmaster: A Million-Dollar Mobile Botnet.

6. Jiang X (2012) Security Alert: New TigerBot Malware Found in Alternative Android Markets.

7. Unuchek R (2013) Obad.a Trojan Now Being Distributed via Mobile Botnets.

8. Danchev D (2013) How cybercriminals create and operate Android-based botnets.

9. Kelly G (2014) Report: 97%Of Mobile Malware Is On Android. This Is The EasyWay You Stay Safe.

10. Perdisci R, Lanzi A, LeeW (2008) Classification of packed executables for accurate computer virus
detection. Pattern Recognition Letters 29: 1941–1946.

11. Wicherski G. pehash: A novel approach to fast malware clustering; 2009.

12. Karim ME, Walenstein A, Lakhotia A, Parida L (2005) Malware phylogeny generation using permuta-
tions of code. Journal in Computer Virology 1: 13–23.

13. Kolter JZ, Maloof MA (2006) Learning to detect and classify malicious executables in the wild. The Jour-
nal of Machine Learning Research 7: 2721–2744.

14. Dullien T, Rolles R (2005) Graph-based comparison of executable objects (english version). SSTIC 5:
1–3.

15. Flake H. Structural comparison of executable objects; 2004. pp. pages 161–173.

16. Bayer U, Comparetti PM, Hlauschek C, Kruegel C, Kirda E. Scalable, Behavior-Based Malware Clus-
tering; 2009. Citeseer. pp. 8–11.

17. Bailey M, Oberheide J, Andersen J, Mao ZM, Jahanian F, Nazario J. Automated classification and anal-
ysis of internet malware; 2007. Springer. pp. 178–197.

18. Rieck K, Trinius P, Willems C, Holz T (2009) Automatic analysis of malware behavior using machine
learning: TU, Professoren der Fak. IV.

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 32 / 35

19. Ahmad Karim RS, Syed Adeel Ali Shah (2015) DeDroid: A Mobile Botnet Detection Approach Based on
Static Analysis. The 7th International Symposium on UbiCom Frontiers—Innovative Research, Sys-
tems and Technologies. Beijing, China: IEEE.

20. Technology VUo (2012) Andrubis-analysis of android apks.

21. Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K. Drebin: Efficient and explainable detection of
android malware in your pocket; 2014.

22. Karim A (2016) SmartBot_Dataset.

23. Sookhak M, Gani A, Talebian H, Akhunzada A, Khan SU, Buyya R, et al. (2015) Remote Data Auditing
in Cloud Computing Environments: A Survey, Taxonomy, and Open Issues. ACM Computing Surveys
(CSUR) 47: 65.

24. SookhakM, Gani A, Khan MK, Buyya R (2015) Dynamic remote data auditing for securing big data stor-
age in cloud computing. Information Sciences.

25. EnckW, Gilbert P, Han S, Tendulkar V, Chun B- G, Cox LP, et al. (2014) TaintDroid: an information-
flow tracking system for realtime privacy monitoring on smartphones. ACM Transactions on Computer
Systems (TOCS) 32: 5.

26. Zheng C, Zhu S, Dai S, Gu G, Gong X, Han X, et al. Smartdroid: an automatic system for revealing ui-
based trigger conditions in android applications; 2012. ACM. pp. 93–104.

27. WuD-J, Mao C-H, Wei T-E, Lee H-M, Wu K-P. Droidmat: Android malware detection through manifest
and api calls tracing; 2012. IEEE. pp. 62–69.

28. Zhou Y, Wang Z, ZhouW, Jiang X. Hey, You, Get Off of My Market: Detecting Malicious Apps in Official
and Alternative Android Markets; 2012.

29. Zhang Y, Yang M, Xu B, Yang Z, Gu G, Ning P, et al. Vetting undesirable behaviors in android apps
with permission use analysis; 2013. ACM. pp. 611–622.

30. Developers A (2012) Monkeyrunner.

31. Desnos A, Lantz P (2011) Droidbox: An android application sandbox for dynamic analysis.

32. Sahs J, Khan L. A machine learning approach to android malware detection; 2012. IEEE. pp. 141–147.

33. Aafer Y, DuW, Yin H (2013) DroidAPIMiner: Mining API-level features for robust malware detection in
android. Security and Privacy in Communication Networks: Springer. pp. 86–103.

34. Chakradeo S, Reaves B, Traynor P, EnckW. Mast: triage for market-scale mobile malware analysis;
2013. ACM. pp. 13–24.

35. Wang X, Yang Y, Zeng Y (2015) Accurate mobile malware detection and classification in the cloud.
SpringerPlus 4: 1–23.

36. Lindorfer M, Neugschwandtner M, Platzer C (2014) MARVIN: Efficient and Comprehensive Mobile App
Classification Through Static and Dynamic Analysis.

37. Sookhak M, Talebian H, Ahmed E, Gani A, Khan MK (2014) A review on remote data auditing in single
cloud server: Taxonomy and open issues. Journal of Network and Computer Applications 43: 121–
141.

38. Sookhak M, Akhundzada A, Sookhak A, Eslaminejad M, Gani A, Khan MK, et al. (2015) Geographic
Wormhole Detection in Wireless Sensor Networks. PloS one 10.

39. Yan L-K, Yin H. DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for
Dynamic Android Malware Analysis; 2012. pp. 569–584.

40. Petsas T, Voyatzis G, Athanasopoulos E, Polychronakis M, Ioannidis S. Rage against the virtual
machine: hindering dynamic analysis of android malware; 2014. ACM. pp. 5.

41. NVISO (2014) APKScan.

42. Symantec (2012) Android.Fakenotify.

43. Leyden J (2014) Secluded HijackRAT: Monster mobile malware multitool from HELL: Web Report.

44. Symantec (2014) Android.Hippo.B.

45. F-Secure (2014) Threat Description: TROJAN: ANDROID/OPFAKE.

46. wyatt t (2011) Security Alert: Geinimi, Sophisticated New Android Trojan Found in Wild.

47. Svajcer V (2011) Plankton malware drifts into Android Market.

48. Lookout (2012) Security Alert: SpamSoldier.

49. Lookout (2011) Security Alert: NewMalware Found in Alternative Android Markets: DroidKungFu.

50. Dietrich CJ, Rossow C, Freiling FC, Bos H, van Steen M, Pohlmann N. On Botnets that use DNS for
Command and Control; 2011. IEEE. pp. 9–16.

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 33 / 35

51. Krmicek V (2011) Inspecting DNS Flow Traffic for Purposes of Botnet Detection. GEANT3 JRA2 T4
Internal Deliverable: 1–9.

52. Kang BBH (2011) DNS-Based Botnet Detection. Encyclopedia of Cryptography and Security:
Springer. pp. 362–363.

53. Strazzere T, Wyatt T (2011) Geinimi trojan technical teardown. Lookout Mobile Security.

54. Blagov M (2015) HTTP Flood: DDoS Attack Glossary.

55. AB SC (2015) Trojan list sorted on trojan port.

56. SpeedGuide (2015) Ports Database.

57. Svajcer V (2014) Sophos Mobile Security Threat Report. Launched at Mobile World Congress.

58. Python (2015) The ElementTree XML API.

59. Goyvaerts J (2015) Regular Expressions Tutorial: Learn How to Use and Get The Most out of Regular
Expressions.

60. Muttik I. Malware mining, Virus Bulletin International Conference, VB2011; 2011; Barcelona, Spain.

61. papagelis AJ (2013) Multi-Layer Perceptron.

62. Bhargava N, Sharma G, Bhargava R, Mathuria M (2013) Decision tree analysis on j48 algorithm for
data mining. Proceedings of International Journal of Advanced Research in Computer Science and
Software Engineering 3.

63. Quinlan JR. Bagging, boosting, and C4. 5; 1996. pp. 725–730.

64. Landwehr N, Hall M, Frank E (2005) Logistic model trees. Machine Learning 59: 161–205.

65. Pawlak Z (2002) Rough sets, decision algorithms and Bayes' theorem. European Journal of Opera-
tional Research 136: 181–189.

66. Frank E, Hall M, Holmes G, Kirkby R, Pfahringer B, Witten IH, et al. (2010) Weka-a machine learning
workbench for data mining. Data Mining and Knowledge Discovery Handbook: Springer. pp. 1269–
1277.

67. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) TheWEKA data mining soft-
ware: an update. ACM SIGKDD explorations newsletter 11: 10–18.

68. Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. Encyclopedia of database systems:
Springer. pp. 532–538.

69. Melville P, Saar-Tsechansky M, Provost F, Mooney R. Active feature-value acquisition for classifier
induction; 2004. IEEE. pp. 483–486.

70. McLachlan G, Do K- A, Ambroise C (2005) Analyzing microarray gene expression data: JohnWiley &
Sons.

71. Weichselbaum L, Neugschwandtner M, Lindorfer M, Fratantonio Y, van der Veen V, Platzer C (2014)
Andrubis: Android malware under the magnifying glass. Vienna University of Technology, Tech Rep
TRISECLAB-0414-001.

72. Wang X, Yu H (2005) How to break MD5 and other hash functions. Advances in Cryptology–EURO-
CRYPT 2005: Springer. pp. 19–35.

73. Syverson P. A taxonomy of replay attacks [cryptographic protocols]; 1994. IEEE. pp. 187–191.

74. StackExchange (2014) How weak is MD5 as a password hashing function?.

75. IngramM (2015) Mobile botnets are costing advertisers $1 billion in ad fraud, study shows.

76. Spreitzenbarth M, Freiling F, Echtler F, Schreck T, Hoffmann J. Mobile-sandbox: Having a deeper look
into android applications; 2013. ACM. pp. 1808–1815.

77. Yerima SY, Sezer S, McWilliams G (2014) Analysis of Bayesian classification-based approaches for
Android malware detection. IET Information Security 8: 25–36.

78. Chuang H-Y, Wang S-D. Machine Learning Based Hybrid Behavior Models for Android Malware Analy-
sis; 2015. IEEE. pp. 201–206.

79. Peiravian N, Zhu X. Machine learning for android malware detection using permission and api calls;
2013. IEEE. pp. 300–305.

80. Parkour M (2011) Contagio malware dump.

81. Networks B (2015) Spam Data.

82. Vidas T, Christin N. Evading android runtime analysis via sandbox detection; 2014. ACM. pp. 447–
458.

83. Unuchek R (2013) Obad.a Trojan Now Being Distributed via Mobile Botnets. Available: http://securelist.
com/blog/mobile/57453/obad-a-trojan-now-being-distributed-via-mobile-botnets/.

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 34 / 35

http://securelist.com/blog/mobile/57453/obad-a-trojan-now-being-distributed-via-mobile-botnets/
http://securelist.com/blog/mobile/57453/obad-a-trojan-now-being-distributed-via-mobile-botnets/

84. Hutchins M, Foster H, Goradia T, Ostrand T. Experiments of the effectiveness of dataflow-and control-
flow-based test adequacy criteria; 1994. IEEE Computer Society Press. pp. 191–200.

85. Inozemtseva L, Holmes R. Coverage is not strongly correlated with test suite effectiveness; 2014.
ACM. pp. 435–445.

A Behavioral Analysis Framework with Machine Learning to Identify Mobile Botnet Applications

PLOS ONE | DOI:10.1371/journal.pone.0150077 March 15, 2016 35 / 35

