
RESEARCH ARTICLE

Reactivation of Latent HIV-1 Expression by
Engineered TALE Transcription Factors
Pedro Perdigão1,2,3,4, Thomas Gaj2,3,4¤, Mariana Santa-Marta1*,
Carlos F. Barbas, III2,3,4†, Joao Goncalves1*

1 Research Institute for Medicines (iMed ULisboa), Faculdadede Farmácia, Universidade de Lisboa, Lisboa,
Portugal, 2 The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California,
United States of America, 3 Departments of Chemistry, The Scripps Research Institute, La Jolla, California,
United States of America, 4 Department of Cell and Molecular Biology, The Scripps Research Institute, La
Jolla, California, United States of America

†Deceased.
¤ Current address: Department of Chemical and Biomolecular Engineering, University of California,
Berkeley, CA, United States of America
*msantamarta@ff.ulisboa.pt (MS-M); jgoncalv@ff.ulisboa.pt (JG)

Abstract
The presence of replication-competent HIV-1 –which resides mainly in resting CD4+ T

cells–is a major hurdle to its eradication. While pharmacological approaches have been

useful for inducing the expression of this latent population of virus, they have been unable

to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been asso-

ciated with adverse effects, underscoring the need for alternative approaches capable of

reactivating viral expression. Here we show that engineered transcriptional modulators

based on customizable transcription activator-like effector (TALE) proteins can induce gene

expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE

transcription factors can synergistically reactivate latent viral expression in cell line models

of HIV-1 latency. We further show that complementing TALE transcription factors with Vori-

nostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Col-

lectively, these findings demonstrate that TALE transcription factors are a potentially

effective alternative to current pharmacological routes for reactivating latent virus and that

combining synthetic transcriptional activators with histone deacetylase inhibitors could lead

to the development of improved therapies for latent HIV-1 infection.

Introduction
Over the past two decades, numerous advances in the treatment of HIV/AIDS have signifi-
cantly increased the lifespan–and quality of life–of individuals infected with HIV type 1 (HIV-
1). Highly active antiretroviral therapy (HAART), in particular, has emerged as a powerful
treatment option, capable of decreasing plasma viral loads to below the limit of detection of
many clinical assays [1–3]. Yet despite its effectiveness, HAART does not cure patients of HIV-
1 infection, due to the existence of residual latent and replication-competent virus hidden in
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cellular reservoirs [4–8]. This population of cells, which consists mainly in resting memory
CD4+ T cells, harbors integrated proviral DNA that re-emerges shortly after discontinuation
of HAART. HIV-1 latency is typically established when activated CD4+ T cells become infected
with the virus and revert back to a resting memory state [8]. These cells are thus non-
permissive for viral gene expression and refractory to many treatments, including HAART.
Although the mechanisms behind latency are complex [8,9], they likely involve: (i) the absence
of key host transcription factors that drive transcriptional initiation [10,11] or elongation
[12,13] in resting CD4+ T cells; (ii) low levels of the trans-activator of transcription (Tat) regu-
latory protein [14]; (iii) proviral integration into condensed chromatin regions [15,16] or
expressed regions that become silenced by promoter occlusion [17–20]; and (iv) the induction
of epigenetic modifications that can inhibit viral gene expression, including DNAmethylation
[21,22] and histone deacetylation [23].

Because the presence of latent HIV-1 represents an enormous barrier toward its eradication,
numerous strategies have been developed to purge it from its cellular reservoirs. Chief among
these has been activation of latently infected T cells via treatment with cytokines [24] or mono-
clonal antibodies [25], as well as NF-κB stimulation via protein kinase C agonists [26,27]. His-
tone deacetylase (HDAC) inhibitors, such as valproic acid [28] and Vorinostat [29], have also
proven capable of inducing viral gene expression by disrupting recruitment of HDAC proteins to
the HIV long terminal repeat (LTR) promoter [30,31]. These approaches, however, have been
unable to eradicate virus from all latent pools and have even been associated with adverse effects,
including severe immune reactions [32–35]. As a result, new strategies capable of inducing viral
gene expression are needed to enable the development of next-generation HIV-1 therapeutics.

The emergence of customizable DNA-binding platforms, including engineered zinc-finger
[36] and transcription activator-like effector (TALE) [37] proteins, as well as CRISPR-Cas9
[38], has provided investigators with a set of tools capable of sequence-specific DNA recogni-
tion [39]. TALE proteins, in particular, have now been utilized to create a broad range of tools
capable of gene modification and regulation, including transcriptional activators [40,41] and
repressors [42], nucleases [40,43,44], site-specific recombinases [45] and epigenetic effectors
[46–48]. The DNA binding domain of a TALE protein consists of a series of repeat domains,
each ~34 amino acid residues in length, that coordinate to recognize a single base pair (bp) via
two adjacent amino acid residues, termed repeat variable diresidues (RVDs) [49,50]. A variety
of approaches have now been developed that enable rapid construction of custom TALE arrays
capable of recognizing nearly any contiguous sequence [51,52]. As a result, TALEs have
achieved widespread use throughout biotechnology, with the potential to impact future devel-
opments in human gene therapy.

Numerous studies have also demonstrated the utility of genome engineering for combating
HIV/AIDs. Specifically, zinc-finger based transcriptional repressors [53–56], in addition to
RNA interference [57–59], have proven effective at inhibiting HIV replication. Targeted nucle-
ases have also demonstrated the capacity to excise integrated proviral DNA from infected cells
[60–62] and confer HIV resistance to cells by inducing knockout of the primary co-receptors
for HIV infection [44,63–65]. Targeted gene regulation technologies may also prove effective at
reversing HIV-1 latency. Specifically, due to their versatility and ability to stimulate robust lev-
els of gene expression in a highly specific manner [66], TALE transcription factors [40] could
be used to stimulate viral gene expression within latent HIV-1 reservoirs, providing new means
for enabling “shock and kill” therapy. Here we demonstrate that TALE transcription factors
can be engineered to recognize the HIV-1 LTR promoter and induce viral gene expression in
cell line models of HIV-1 latency. We also show that complementing TALE transcription fac-
tors with HDAC inhibitors can further enhance TALE-induced activation of latent HIV-1
expression. These findings indicate that TALE transcription factors are potentially effective
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tools for reactivating latent virus and could contribute to the development of next-generation
HIV-1 therapies.

Materials and Methods

Plasmid construction
The HIV-1 pNL4-3 plasmid [67] was obtained from the NIH AIDS Research and Reference
Reagent Program. pTat expression plasmid was kindly provided by Dr. Maryanne Simurda
(State University of New York, Buffalo). TALEs were generated as previously described [51,68]
using the Golden Gate TALEN and TAL Effector Kit 2.0 (Addgene ID: 1000000024) [52]. TALE
arrays were cloned into the BsmBI restriction site of pcDNANT-T-VP64 [69] to generate
pTLT-1 through 10. The pTALE-TF reporter vectors were constructed through PCR by ampli-
fying the luciferase gene from pGL3-Basic (Promega, Madison, WI, USA) using the primers 5’
TALE-Luc-TLT1 through 10, which contained four direct repeats of each TALE binding site
and 3’ Luc-Rev. PCR products were digested and cloned into the XhoI and SphI restriction sites
of pGL3-Basic to generate pGL3-TLT-1 through 10. The HIV-1 LTR reporter plasmid was con-
structed by PCR amplifying the U3-R region of the LTR promoter from pNL4-3 using the prim-
ers 5’ LTR-Fwd and 3’ LTR-Rev. PCR product was digested and cloned into the XhoI and SphI
restriction sites of pGL3-Basic to generate pGL3-LTR. Correct construction of each plasmid was
verified by sequence analysis (S1 Table). Primer sequences are provided in S2 Table.

Cell culture
Human embryonic kidney 293T (HEK293T) (American Type Culture Collection; ATCC) cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Life Technologies, Carlsbad,
CA, USA) supplemented with 10% (v/v) fetal bovine serum (FBS; Gibco, Carlsbad, CA, USA),
2 mM L-glutamine and 1% (v/v) antibiotic-antimycotic (Anti-Anti; Gibco, Carlsbad, CA,
USA). J-Lat clones (NIH AIDS Reagents) were cultured in RPMI-1640 medium (Life Technol-
ogies, Carlsbad, CA, USA) supplemented with 10% (v/v) FBS, 2 mM L-glutamine and 1% (v/v)
Anti-Anti. Cells were maintained at 37°C in a humidified atmosphere of 5% CO2.

Luciferase assays
Luciferase assays were performed as previously described [68]. Briefly, HEK293T cells were
seeded onto 96-well plates at a density of 4 x 104 cells per well. At 16–24 h after seeding, cells
were transfected with 200 ng of pTLT-1 through pTLT-10, 5 ng of pGL3-TLT-1 through
pGL3-TLT -10 and 1 ng of pRL-CMV (Promega, Madison, WI, USA) using Lipofectamine
2000 (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. At
48 h after transfection, cells were washed once with Dulbecco’s PBS (DPBS; Life Technologies,
Carlsbad, CA, USA) and lysed with Passive Lysis Buffer (Promega, Madison, WI, USA). Lucif-
erase expression was measured with the Dual-Luciferase Reporter Assay System (Promega,
Madison, WI, USA) using a Veritas Microplate Luminometer (Turner Biosystems, Sunnyvale,
CA, USA) according to the manufacturer’s instructions. Normalized luciferase activity was
determined by dividing firefly luciferase activity by Renilla luciferase activity.

Western blots
HEK293T cells were seeded onto a 6-well plate at a density of 5 x 104 cells per well. At 16–24 h
after seeding, cells were transfected with 5 μg of pTLT-1 through pTLT-10 or pcDNA back-
bone vector by the calcium phosphate method [70]. At 48 h after transfection, cells were har-
vested and lysed with RIPA buffer (25 mM Tris-HCl, 150 mMNaCl, 1% NP-40, 1% sodium
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deoxycholate and 0.1% SDS, pH 7.6) supplemented with EDTA-free Protease Inhibitor Cock-
tail Tablets (Roche, Basel, Switzerland). The Bio-Rad Protein Assay Kit (Bio-Rad, Hercules,
CA, USA) was used to determine protein concentration according to the manufacturer’s
instructions. TALE transcription factor expression was analyzed by 4–12% SDS-PAGE
(National Diagnostics, Atlanta, GA, USA). Samples were transferred onto a 0.2 μm nitrocellu-
lose membrane as described [71] and detected with Immobilon Western Chemiluminescent
HRP substrate (Millipore, Billerica, MA, USA) and Amersham HyperfilmECL (GE Healthcare,
Little Chalfont, UK) chemiluminescence film. TALE transcription factors were detected by
horseradish peroxidase-conjugated anti-HA monoclonal antibody (Roche, Basel, Switzerland).
β-actin was used as an internal control and detected using a mouse anti-β-actin monoclonal
antibody (Sigma, St. Louis, MO, USA) and horseradish peroxidase-conjugated goat anti-mouse
IgG antibody (Bio-Rad, Hercules, CA, USA) (kindly provided by Dr. Cecília Rodrigues).

HIV-1 reactivation
J-Lat cells were seeded onto a 10 cm dish at a density of 1 x 105 cells per mL. At 48 h after seed-
ing, 2 x 105 cells per transfection were centrifuged at 100 x g for 10 min at room temperature
and resuspended in Nucleofector Solution SE (Lonza, Basel, Switzerland) with 2 μg of pTLT-1
through pTLT-10 or pTat. Cells were transferred to 16-well Nucleocuvette Strips (Lonza, Basel,
Switzerland) and electroporated by a 4D-Nucleofector System (Lonza, Basel, Switzerland) using
the program CL-120, according to the manufacturer’s instructions. J-Lat cells were either left
untreated or incubated with 10 ng/μL of TNF-α (R&D Systems, Minneapolis, MN, Canada). At
48 h after transfection, cells were washed twice with DPBS (Life Technologies, Carlsbad, CA,
USA) and GFP expression was evaluated by flow cytometry (BD LSR II Flow Cytometer System;
BD Biosciences, Franklin Lakes, NJ, USA). For each sample, 10,000 live events were collected,
and data was analyzed using FlowJo (Tree Star, Inc., San Carlos, CA, USA).

HDAC inhibitor treatments
J-Lat cells were seeded onto a 10 cm dish at a density of 2 x 105 cells per mL. At 48 h after seed-
ing, 1 x 106 cells per transfection were centrifuged at 100 x g for 10 min at room temperature
and resuspended in Nucleofector Solution V (Lonza, Basel, Switzerland) with 4 μg of pTLT-5
through pTLT-8. Cells were transferred to a Nucleocuvette (Lonza, Basel, Switzerland) and
electroporated with an Amaxa Nucleofector II Device (Lonza, Basel, Switzerland) using the
program X-001 according to the manufacturer’s instructions. At 24 h after transfection, J-Lat
cells were treated with DMSO 0.1% or 330 nM, 660 nM or 1 μM of SAHA (NIH AIDS
Reagents) [72] for 24 h. After treatment, cells were washed twice with DPBS and GFP expres-
sion was evaluated by flow cytometry analysis (BD LSR II Flow Cytometer System; BD Biosci-
ences, Franklin Lakes, NJ, USA). For each sample, 10,000 live events were collected, and data
was analyzed using FlowJo (Tree Star, Inc., San Carlos, CA, USA).

Statistical analysis
Statistical analyses for all experiments were performed from three independent experimental
replicates (n = 3) unless otherwise indicated. Two-tailed Student’s t-test was used for paired
and unpaired samples (Prism Software 5.0, GraphPad Software).

Results

Designing TALE transcription factors to target the HIV-1 promoter
We sought to reverse HIV-1 latency by inducing viral gene expression using engineered TALE
transcription factors. We constructed ten TALE proteins designed to recognize distinct 16-bp
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sites within the HIV-1 LTR, the region of the virus that serves as its promoter (Fig 1A). TALE
binding sites were constrained only by the presence of a 5’ thymidine (T0) nucleotide [69]. We
fused each synthetic TALE array to VP64 [73], a tetrameric repeat of the herpes simplex virus
VP16 transactivation domain, to generate synthetic transcriptional activators. VP64 is a widely
used transactivation domain [47,74–79] capable of recruiting host cellular transcription factors

Fig 1. TALE transcription factors (TALE-TFs) designed to target the HIV-1 LTR promoter. (A) Schematic representation of the TALE transcription
activator (TLT) binding sites within the HIV-1 long terminal repeat (LTR) promoter relative to the transcriptional start site (TSS) and main endogenous
transcription factor binding sites. (B) (Left)Cartoon illustrating the structure of a TALE-TF, adapted from [109]. TALE repeats are colored cyan and purple,
DNA shown as grey sticks. (Right) Schematic representation of the TLT expression construct used in this study. CMV indicates the cytomegalovirus
promoter, TALE repeats are shown as individual bars (16 repeats total), VP64 denotes the tetrameric repeat of the herpes simplex virus VP16 transactivation
domain, NLS stands for the nuclear localization signal derived from the simian virus (SV40) and HA indicates the hemagglutinin A tag. (C) Schematic
representation of the luciferase reporter system containing four direct repeats of the TALE target sites for each TALE activator. Each TALE target site is
shown. (D) (Top) Fold-activation of luciferase expression after co-transfection of TALE-TFs with luciferase reporter plasmid into HEK293T cells. Luciferase
expression was normalized to cells transfected with reporter plasmid only. Renilla luciferase expression was used to normalize for transfection efficiency and
cell number. Error bars indicate standard deviation of one experiment with three transfection replicates (n = 3; *p < 0.05; **p < 0.01; ***p < 0.001; t-test
sample vs control (4x TALE binding site vector only)). (Bottom)Western blot of lysate from HEK293T cells transfected with TALE-TFs. Samples were taken
48 h after transfection and probed with horseradish peroxidase-conjugated anti-HA and anti-β-actin (loading control) antibodies. Empty indicates lysate from
HEK293T cells transfected with empty pcDNA vector only.

doi:10.1371/journal.pone.0150037.g001
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to targeted genomic loci [80,81], but does not activate gene expression alone [73]. Each TALE
transcription factor contained a C-terminal hemagglutinin (HA) tag and an internal nuclear
localization signal (NLS) sequence between the DNA binding and transactivation domains (Fig
1A). The amino acid sequence of each protein is presented in S1 Table.

In order to determine whether each TALE could recognize its intended target site and
induce gene expression, we adapted a previously described transient reporter assay [68] that
correlates TALE-induced gene activation with increased luciferase expression. We inserted
four direct repeats of each LTR binding site upstream of a luciferase reporter gene and co-
transfected human embryonic kidney (HEK) 293T cells with reporter plasmid and expression
vectors for each TALE activator (Fig 1C and 1D). This strategy was undertaken in order to
increase reporter gene expression and more accurately evaluate TALE activity. Eight of the ten
TALE activators (all but TLT4 and TLT8) induced a>800-fold increase in luciferase expres-
sion, with TLT1 (~3,400-fold), TLT3 (~2,900-fold), TLT7 (~2,500-fold) and TLT9
(~2,200-fold) inducing the highest levels of activation (p< 0.001) (Fig 1D). TLT4 and TLT8
achieved similarly high levels of absolute luciferase activity, but induced a modest ~100-fold
increase in activation over mock-transfected cells. Even in the absence of a TALE activator,
transfection of the TLT4 and TLT8 reporter plasmids led to a significant increase in luciferase
expression (p< 0.001) (data not shown). Not surprisingly, however, the binding sites for TLT4
and TLT8 overlap with those recognized by the endogenous transcription factors C/EBP and
NF-κB [82] (Fig 1A), respectively, indicating that native proteins could have been contributing
to reporter gene activation. Compared to reporter plasmid only though, increased luciferase
expression was evident after co-transfection with the specific TALE activator, indicating that
TALEs have the potential to outcompete endogenous transcription factors for LTR binding
sites.

Western blot analysis of HEK293T lysates also revealed that each TALE activator was
expressed (Fig 1D). Low levels of a non-specific band (~70 KDa), however, were detected in
several samples, possibly due to translation of a second open-reading frame present within the
TALE mRNA transcript or recombination within the TALE DNA-binding domain, a phenom-
enon that can occur within a highly repetitive motif [83].

TALE transcription factors activate gene expression from the HIV LTR
We next set out to test the ability of each TALE activator to stimulate transcription from the
full-length U3 and R regions of the HIV-1 LTR using an episomal reporter assay. The U3-R
regions of the LTR, in particular, contain the core promoter, enhancer and modulatory region,
and regulate viral expression. Notably, unlike the transient reporter assay described above,
which asked whether each TALE protein could bind its intended DNA target, this analysis
aimed to evaluate the ability of each TALE activator to stimulate transcription from the full-
length HIV-1 promoter.

HEK293T cells were co-transfected with TALE activator and a reporter vector that con-
tained the sequence between -455 and +96 from the LTR transcriptional start site (TSS)
upstream of a luciferase reporter gene (Fig 2). We separately co-transfected an expression vec-
tor encoding the HIV-1 Tat protein as a positive control. Multiple activators, including TLT4,
5, 6, 7 and 8, induced a 7.5- to 14-fold increase in luciferase activity (p< 0.01), while Tat
yielded only a ~7-fold increase in activation (Fig 2), likely because it stimulates transcriptional
elongation more efficiently than initiation [84].

Previous reports have demonstrated that co-delivery of combinations of TALE transcription
factors can lead to a synergistic increase in gene expression via cooperative effects that could
mimic those associated with natural transcriptional processes [77,78]. The most potent TALE
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activators, TLT5, 6, 7 and 8, were designed to recognize a small region of the LTR between -170
and -100 bp from the TSS (Fig 1A). Indeed, sequence analysis of different strains of HIV-1 sub-
type B (i.e. the most predominant subtype across Europe, America, Australia and Japan)
revealed that the binding sites for these TALEs are generally well conserved (S3 Table). We
thus co-transfected HEK293T cells with LTR reporter plasmid and different combinations of
TALE activators to test whether these proteins could be used in tandem to further enhance
gene expression. Increased gene activation was observed for each set tested, most notably with
a ~70-fold increase in luciferase expression after co-transfection with TLT5, 6, 7 and 8 (hereaf-
ter referred to as TLT5-8) (p< 0.001) (Fig 2). Overall, these data demonstrate that TALE tran-
scription factors designed to target the U3 and R regions of the HIV LTR promoter can induce
efficient gene activation.

Reactivation of latent HIV-1 by TALE transcription factors
We next asked whether TALE transcription factors could reactivate viral expression in a cell
line model of HIV-1 latency. To explore this, we used the Jurkat-derived J-Lat lymphocytic cell
lines, which harbor a full-length integrated HIV-1 proviral genome containing a GFP gene that
serves as a reporter for viral gene expression (HIV1-ΔEnv-GFP) (Fig 3A). J-Lat cells poorly
express the integrated proviruses under normal conditions, but viral gene expression can be
efficiently induced by stimulation using tumor necrosis factor (TNF)-α [16]. Since each J-Lat
clone is derived from a unique HIV-1 integration event, they display differential levels of gene
and/or chromatin repression, as demonstrated by their distinct gene activation thresholds after
TNF-α stimulation [85].

We nucleofected J-Lat 10.6 cells, which display a low viral gene activation threshold, with
expression vectors encoding TALE transcription factors or Tat and evaluated HIV-1 expres-
sion by measuring the percentage of GFP-positive cells by flow cytometry (Fig 3A). As
expected, cells treated with TNF-α or transfected with Tat showed robust reactivation, with
upwards of 55% and 75% of cells producing GFP, respectively. Among all individual TALE

Fig 2. TALE-TF-mediated gene activation from the HIV-1 LTR promoter. (Top) Schematic representation
of the luciferase reporter system used to evaluate TALE-TF activity from the HIV-1 LTR promoter. The U3
and R regions of the HIV LTR were placed upstream of the luciferase reporter. (Bottom) Fold-activation of
luciferase expression in HEK293T cells co-transfected with reporter plasmid and TALE-TF or Tat expression
vectors. Luciferase expression was normalized to cells transfected with reporter plasmid only. Error bars
indicate standard deviation of one experiment with three transfection replicates (n = 3; *p < 0.05; **p < 0.01;
***p < 0.001; t-test sample vs. control (TLTNT)).

doi:10.1371/journal.pone.0150037.g002
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transcription factors tested, TLT5 and 6 (~40% GFP-positive cells each) and TLT7 and
8 (~30% GFP-positive cells each) yielded the highest levels of expression, with cells transfected
with TLT5-8 also showing upwards of 50% GFP-positive cells (p< 0.05) (Fig 3A). Nucleofec-
tion of an empty vector (pcDNA) resulted in minor (~5%) reactivation, indicating that stress
from the nucleofection process can also contribute to reactivation (Fig 3A).

The relative potencies of the TALE activators in J-Lat 10.6 cells correlated with their ability
to stimulate transcription in the reporter assay used in Fig 2. Analysis of mean fluorescence
intensity (MFI) in transfected J-Lat 10.6 cells further indicated that each TALE activator
induced approximately a 10 to 15-fold increase in viral gene expression (S1A Fig). Interest-
ingly, in contrast to the episomal studies presented in Fig 2, TLT5-8 yielded a similar number
of GFP positive cells as the combinations TLT6-7 and TLT5-7 (Fig 3A). One possible explana-
tion for this is that measuring the number of GFP positive J-Lat 10.6 cells may not necessarily
afford the amount of sensitivity needed to distinguish between the potencies of specific combi-
nations of activators. Indeed, analysis of MFI in J-Lat 10.6 cells revealed that TLT5-8 induced
higher amounts of viral gene expression (~20-fold compared to the negative control) than
TLT7 or the combinations TLT6-7 and TLT5-7 (~14-fold compared to the negative control)
(S1B Fig).

Fig 3. Reactivation of latent HIV-1 expression by TALE-TFs in multiple cell line models of HIV-1
latency. (A) (Top) Schematic representation of the HIV-1 proviral genome present in J-Lat cells. Full-length
HIV-1 was derived from the molecular clone pNL4-3-ΔEnv-GFP and expresses a GFP gene from the LTR
promoter. Structural viral genes are shown in black, auxiliary genes are shown in grey. The nef and env
genes were inactivated to force a single infection cycle. (Bottom) Percentage of GFP positive J-Lat 10.6 cells
after nucleofection with TALE-TF and Tat expression plasmids, or treatment with TNF-α (10 ng/μL). GFP
positive cells were measured by flow cytometry 48 h after nucleofection. “J-Lat” indicates non-transfected
J-Lat 10.6 cells. “Mock” indicates cells transfected with an empty pcDNA backbone. Error bars indicate
standard deviation of three independent experiments (n = 3). (B) Percentage of GFP positive J-Lat 6.3, 8.4
and 9.2 cells after nucleofection with TLT5-8 and Tat expression plasmids, or treatment with TNF-α (10 ng/
μL). GFP positive cells were measured by flow cytometry 48 h after nucleofection. “J-Lat” indicates non-
nucleofected cells. Error bars indicate standard deviation (n = 3; *p < 0.05; **p < 0.01; ***p < 0.001; t-test
sample vs control (J-Lat)).

doi:10.1371/journal.pone.0150037.g003
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To test the versatility of the TALE transcription factors, we next evaluated their ability to
induce HIV-1 transcription in the J-Lat clones 6.3, 8.4 and 9.2, which each possess a higher
gene activation threshold than J-Lat 10.6 cells [16]. Sequence mapping of these clones previ-
ously revealed that the HIV-1 provirus is integrated into actively transcribed genes, unfavor-
able to HIV transcription [18,86]. We observed significant reactivation in each cell line tested
after co-transfection with TLT5-8 (p< 0.05) but at rates much lower than by TNF-α stimula-
tion (Fig 3B), indicating that the level of repression within latently-infected cells can influence
the ability of TALEs to mediate activation.

Combining TALE transcription factors with an HDAC inhibitor enhances
latent HIV activation
We next explored the possibility of enhancing HIV-1 reactivation by combining TALE tran-
scription factors with a histone deacetylase (HDAC) inhibitor. Because HIV-1 proviral integra-
tion in J-Lat clones favors heterochromatic regions, especially those near alphoid DNA repeat
elements [16], we hypothesized that chromatin remodeling by HDAC inhibition could
enhance TALE binding to the HIV-1 LTR, thereby increasing viral gene expression. Indeed,
previous reports have indicated that the LTR promoter is typically hypoacetylated and that
treatment with HDAC inhibitors can lead to the recruitment of the transcriptional machinery
to the HIV-1 promoter [23], as well as activation of the positive transcription elongation factor
b (P-TEFb), which can stimulate viral transcriptional elongation [87]. Moreover, multiple stud-
ies have shown that combining HDAC inhibitors with other compounds also capable of revers-
ing HIV latency can synergistically increase viral reactivation across a variety of repression
states [88–91].

We transfected J-Lat 10.6 and 6.3 cells, which each display distinct activation thresholds,
with TLT5-8 and treated each population with 0.33, 0.66 or 1.0 μM of Vorinostat (i.e., suberoy-
lanilide hydroxamic acid or SAHA), an HDAC inhibitor used for the treatment of malignant
cancers but also capable of inducing expression of latent HIV-1 [29–31,92,93]. An initial screen
led us to identify this specific range of SAHA concentrations (i.e. those that stimulate minimal
amounts of HIV-1 transcription and induce low cell death) (S2 Fig). SAHA, in particular, is an
FDA-approved inhibitor of Class I HDAC isotypes that has been shown to induce viral tran-
scription in latent CD4+ T cells from HIV-infected patients [30,31] (though it was unable to
increase HIV-1 production [30]). Compared to cells transfected with TLT5-8 only, we
observed a significant increase (p< 0.05) in HIV-1 expression upon co-treatment with 1 μM
SAHA (Fig 4). Specifically, reactivation was evident in up 65% and 15% of J-Lat 10.6 and 6.3
cells, respectively, corresponding to a 1.5- and 2-fold increase in HIV-1 transcription (Fig 4).
We also observed increased levels of HIV-1 transcription in J-Lat 8.4 and 9.2 cells co-treated
with SAHA and TLT5-8, but these values were neither neither significant nor dose-dependent
(data now shown). Analysis of MFI in treated J-Lat 10.6 cells also revealed a significant and
dose-dependent increase in viral gene expression after co-treatment with TLT5-8 and SAHA
(S3 Fig). Collectively, these results demonstrate that complementing TALE transcription fac-
tors with HDAC inhibitors can lead to enhanced reactivation of latent HIV-1 expression.

Discussion
HIV-1 latency is a substantial obstacle facing its eradication. Many approaches have been
developed to indirectly activate HIV-1 from persistent cellular reservoirs, typically by altering
the transcriptional landscape surrounding the integrated provirus [24–31]. While promising,
these strategies have been unable to completely purge all virus from the reservoir and, in some
cases, have even been associated with adverse effects, including immune reactions [32–35].
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While targeted nucleases and recombinases have the capacity to excise integrated proviral
DNA from infected cells [60–62,94], these tools also have the potential to induce unwanted
non-specific DNA breaks, and thus carry a substantial risk of genotoxicity [39]. Conversely,
synthetic transcription factors, which can be designed to induce transcription from the native
viral promoter, represent a potentially safe and effective genetic alternative for reactivating
latent virus in cells.

Here, we designed ten TALE proteins that spanned nearly the entire length of the HIV-1
LTR promoter in order to create activators capable of stimulating HIV-1 transcription. We
identified four proteins (TLT5, TLT6, TLT7 and TLT8) that induced viral gene expression in
cell line models of HIV latency. Interestingly, we observed that the effectiveness of individual
TALEs correlated with their proximity to the TSS, as they targeted a conserved segment of the
HIV LTR modulatory region, located upstream of the NF-κB and Sp1 cis-regulatory sites,
and nearby regulatory elements that contribute to viral transcriptional initiation [82,95].
This data indicate that cooperation between endogenous transcription factors and engineered
TALE activators may be an important factor for efficient reactivation of viral gene expression.
These TALEs might thus promote transcription in a manner that mimics the natural activity
of enhancer-like regulatory proteins, potentially serving as “molecular switches” for
reactivation.

We showed that co-transfection of combinations of TALE transcription factors can further
increase gene expression, indicating that strategies for mimicking the natural complexity of
gene regulation [77,78] are also effective for inducing viral gene expression. Specifically, co-

Fig 4. Enhanced reactivation of latent HIV-1 expression by combining TALE-TFs with a histone deacetylase inhibitor. Percentage of GFP-positive
J-Lat 10.6 and 6.3 cells after nucleofection with TLT5-8 expression plasmids and treatment with increasing concentrations of SAHA or DMSO (0.1%) for 24 h.
GFP-positive cells were measured by flow cytometry 48 h after nucleofection. Error bars indicate standard error of the mean of three independent
experiments (n = 3; *p < 0.05; **p < 0.01; t-test).

doi:10.1371/journal.pone.0150037.g004
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transfection of J-Lat 10.6 cells with TLT5-8 led to similar amounts of HIV-1 expression as
those previously reported for compounds such as phytohemagglutinin (PHA), phorbolmyris-
tate acetate (PMA) and prostratin [96]. Moreover, the specificity of our TALE activators could
be improved in the future by incorporating recently described chemical- [68,97] or light-
inducible [47,79] features that enable spatial and temporal control of HIV-1 expression.

Two reports initially demonstrated that engineered zinc-finger and TALE transcription fac-
tors can induce latent HIV expression, albeit with relatively modest efficiencies [98,99]. More
recently, several other studies have shown that TALE [100] and CRISPR-Cas9 [101–103] acti-
vators can induce robust activation of latent viral expression. Our data correlates with these
most recent reports and further indicates the potential of artificial transcription factor technol-
ogy for eliminating the latent reservoir.

Although the TALE activators used in our study induced efficient HIV-1 expression in J-Lat
10.6 cells, reduced levels of viral gene expression were observed in J-Lat clones containing
more repressive transcriptional backgrounds. Specifically, integration of the HIV-1 provirus
into condensed regions of heterochromatin can negatively affect viral gene expression by hin-
dering DNA accessibility to key host transcription factors [8,9]. Because histone deacetylases
(HDACs) play a central role in maintaining HIV latency by promoting compact chromatin
structures around integrated proviral DNA [8], we hypothesized that treating cells with HDAC
inhibitors could increase binding site accessibility and further enhance HIV-1 reactivation. We
found that combining TALE transcription factors with SAHA led to a significant increase in
viral gene expression in J-Lat 6.3 and 10.6 cells comparable to those previously described for
other latency-reversing compounds, including PHA and Bryostatin [96]. This indicates the
broad utility of this concept for HIV-1 reactivation, and supports further investigation into the
effects of combining HDAC inhibition with TALE-mediated activation in primary cell models
of HIV latency [96]. Combining synthetic transcription factors and HDAC inhibition with
HAART or nuclease-induced knockout of HIV co-receptors CCR5 and CXCR4 may also prove
effective for combating HIV infection.

While TALE transcription factors have the capacity to activate latent HIV-1 transcription,
several barriers must be overcome in order for this technology to be implemented for therapeu-
tic purposes. In particular, due to their highly repetitive nature, lentiviral vector-mediated
delivery of TALEs into cells has proven challenging [39,104,105]. Methods for overcoming this
limitation are rapidly emerging, including those based on adenoviral [106,107], mRNA [108]
and protein-based delivery systems [109,110]. Additionally, recent work has indicated that
TALE nucleases could be introduced into cells as mRNA using lentivirus particles containing
inactivated reverse transcriptase [111]. However, it remains unknown whether such systems
can support in vivo delivery to latent resting CD4+ T cells. Although our current study indi-
cates that a specific combination of four TALE activators is optimal for inducing HIV-1 tran-
scriptional activation, current evidence demonstrate that the potency of these activators can be
further enhanced to promote single TALE systems [112].

In summary, we demonstrate that TALE transcription factors are effective tools for activat-
ing latent HIV expression and their use, alone or in combination with HDAC inhibitors, could
pave the way for improved HIV therapies.

Supporting Information
S1 Fig. Analysis of GFP mean fluorescence intensity in J-Lat 10.6 cells nucleofected with
TALE-TFs.Mean fluorescence intensity (MFI) of GFP expression in J-Lat 10.6 cells after
nucleofection with a (A) single TALE activator (TLT5, TLT6, TLT7, and TLT8) or (B) a combi-
nation of TALE activators (TLT7, TLT6-7, TLT5-7, and TLT5-8). MFI was measured by flow
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cytometry 48 h after nucleofection. “J-Lat” indicates non-transfected J-Lat 10.6 cells. Histo-
grams are representative of a single experiment from three independent replicates.
(TIF)

S2 Fig. Cell viability of J-Lat 10.6 cells treated with SAHA. Cell viability and viral gene
expression profiles of J-Lat 10.6 cells treated with increasing concentrations of SAHA or
DMSO after 24 only. Cell viability was measured as percentage of viable cells as determined by
forward and side scatter (FSS/SCC) gating during flow cytometry. Viral gene expression was
determined by measuring the percentage of GFP positive cells by flow cytometry.
(TIF)

S3 Fig. SAHA increases mean fluorescence intensity in J-Lat cells nucleofected with combi-
nations of TALE transcription factors.Mean fluorescence intensity (MFI) of GFP expressio-
nin J-Lat 10.6 cells nucleofected with TALE-TF and co-treated with SAHA.J-Lat 10.6 cells were
nucleofected with TLT5-8 expression plasmids and treated with increasing concentrations of
SAHA or DMSO only for 24 h. MFI was measured by flow cytometry 48 h after nucleofection.
Histograms are representative of a single experiment from three independent replicates.
(TIF)

S1 Table. TALE proteins sequences used in this study. TALE N-terminal domain is colored
orange. TALE DNA-binding domain is colored blue. RVD residues are shown in red. Nuclear
localization signal (NLS) sequenceis highlighted grey. VP64 domain is colored green. HA tag is
colored purple.
(DOCX)

S2 Table. Primer sequences for the construction of the luciferase reporter plasmids used in
this study. TALE binding sites are underlined. Restriction sites are in bold.
(DOCX)

S3 Table. Sequence conservation of the TALE transcription factor binding sites across
HIV-1 subtype B strains. Data based on 2014 edition of the HIV Sequence Database (http://
hiv-web.lanl.gov). Dashes indicate sequence identity between subtype strains. Dots indicate
gaps in the HIV genome sequence.
(DOCX)
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