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Abstract
Influenza viruses are a global health concern because of the permanent threat of novel

emerging strains potentially capable of causing pandemics. Viral ribonucleoproteins

(vRNPs) containing genomic RNA segments, nucleoprotein oligomers, and the viral poly-

merase, play a central role in the viral replication cycle. Our knowledge about critical events

such as vRNP assembly and interactions with other viral and cellular proteins is poor and

could be substantially improved by time lapse imaging of the infected cells. However, such

studies are limited by the difficulty to achieve live-cell compatible labeling of active vRNPs.

Previously we designed the first unimpaired recombinant influenzaWSN-PB2-GFP11 virus

allowing fluorescent labeling of the PB2 subunit of the viral polymerase (Avilov et al., J.Virol.
2012). Here, we simultaneously labeled the viral PB2 protein using the above-mentioned

strategy, and virus-encoded progeny RNPs through spontaneous incorporation of tran-

siently expressed NP-mCherry fusion proteins during RNP assembly in live infected cells.

This dual labeling enabled us to visualize progeny vRNPs throughout the infection cycle

and to characterize independently the mobility, oligomerization status and interactions of

vRNP components in the nuclei of live infected cells.

Introduction
Influenza viruses are a global health concern because of the permanent threat of the emergence
of novel strains potentially capable of causing pandemics [1, 2]. Moreover, seasonal influenza-
related complications cause 250,000–500,000 deaths per year and considerable societal and
economic cost. Thus, there is a need for a deeper understanding of the molecular mechanisms
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underlying the virus life cycle, which may lead to new therapeutic options to counter this
unpredictable virus.

Influenza viruses are enveloped viruses with a genome consisting of 8 negative-sense single-
stranded RNA segments. Each segment is a viral ribonucleoprotein (vRNP) complex composed
of a pseudo-circular single strand RNA coated with multiple NP molecules; the heterotrimeric
RNA-dependent RNA polymerase (composed of the PA, PB1 and PB2 subunits) is bound to
the RNA duplex formed by the conserved complementary termini of the genomic RNA. Recent
electron microscopy studies provided high resolution structures of native or recombinant
influenza vRNPs [3, 4]. Replication and transcription of the viral genome occur in the nuclei of
infected cells, being catalysed by the viral polymerase which uses vRNPs as templates [5, 6].
Thus correct assembly of the vRNPs is essential for the virus life cycle. NP oligomerization and
NP-RNA interactions have been characterized in vitro, e.g. [7–10] and in cellulo [11–13]. It was
reported that the NP residue D88 is involved in RNP activity and interaction with the PB2
polymerase subunit [14]. The interferon-inducible protein Mx1, which is well known to inhibit
influenza virus replication, was found to interfere with the NP-PB2 interaction [15]. Whether
the interaction between NP and PB2 is determinant for the host range of influenza A viruses is
controversial [16–20]. The polymerase and NP have been shown to interact with many cellular
proteins. An essential physical and functional interaction of the viral polymerase with the large
fragment of the cellular RNA-dependent RNA polymerase II was described [21, 22]. A signifi-
cant fraction of vRNPs is associated with the chromatin [23] and vRNP components interact
with chromatin-associated factors such as PARP-1 [24] and HMGB1 [25]. Chromatin target-
ing of vRNPs in the same regions as Crm1 and Rcc1 could facilitate their export from the nuclei
through the Crm1-dependent pathway [26]. There are many evidence that the Rab11 GTPase
is involved in vRNP trafficking. It has been proposed that Rab11 mediates the docking of
vRNPs to recycling endosomes which carry vRNPs towards the sites of viral assembly and bud-
ding at the plasma membrane (e.g., [27–29]). Despite these recent progress in the study of
influenza vRNP assembly and trafficking, our knowledge on how these processes occur in live
cell remains incomplete.

Direct observations of viral components in live infected cells by advanced fluorescence
microscopy techniques can bring significant new insights into this field. To follow-up the time-
dependent changes in composition and localization of viral proteins and vRNPs, as well as
modifications of the cellular context which occur during the course of infection, we designed a
recombinant influenza virus encoding a PB2 subunit that can be fluorescently labeled with a
derivative of the GFP (Green Fluorescent Protein). To circumvent the fact that a virus express-
ing a PB2 subunit fused to the full length GFP could not be rescued, we adapted the split-
GFP strategy [30, 31] to the virus. “Split-GFP”means that only a small fragment of the GFP
(GFP11) is fused to a protein of interest, while the remaining part of the GFP (GFP1-10) is sup-
plied independently within the cell and complements spontaneously with the GFP11 tag, yield-
ing a GFP-like fluorophore called GFPcomp. We developed a recombinant A/WSN/33 (H1N1)
influenza A virus encoding the PB2 subunit of the polymerase fused to the GFP11 tag,
further referred to as WSN-PB2-GFP11 [32, 33] (S1 Fig). PB2-GFPcomp was shown to be incor-
porated into the progeny vRNPs which were efficiently packaged into infectious virions. The
WSN-PB2-GFP11 virus enabled us to visualize influenza polymerase in live cells throughout
the infection cycle [32, 33]. More recently, Lakdawala et al. used an influenza virus encoding a
PA polymerase subunit tagged with the full length GFP to track vRNPs in the cytoplasm of live
cells [34].

However, labeling of the viral polymerase is not optimal to study certain steps of the influ-
enza virus life cycle. For instance, it is not suitable for tracking the progeny vRNPs in the
nuclei, because a subpopulation of free polymerases is likely present in that compartment.
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Fluorescent labeling of vRNPs themselves is needed, preferably in combination with labeling of
the polymerase. Transfection of a fluorescently labeled specific antibody was used to character-
ize instantaneous movements of vRNPs in the cytoplasm of infected cells with short observa-
tion time periods [28]. However, in order to observe vRNPs both in the cytoplasm and in the
nucleus over extended periods of time and to avoid problems inherent to live-cell immunos-
taining, labeling of vRNPs through a genetically encoded tag is needed. As vRNPs reconstituted
in a transient expression system with fluorescently-tagged NPs show no detectable transcrip-
tion/replication activity (N. Naffakh, unpublished), possibly due to a defect in NP oligomeriza-
tion and/or NP-RNA interaction, we reasoned that vRNPs containing only a few labeled NP
molecules would be more likely to retain their activity. Here we combined labeling of the viral
polymerase PB2 subunit through GFP1-10/GFP11 complementation, and labeling of vRNPs
through spontaneous incorporation of transiently expressed NP-mCherry proteins (Fig 1). The
latter did not require any additional genetic modification of the WSN-PB2-GFP11 virus and
did not perturb viral replication. The labeling approach allowed us to characterize indepen-
dently and simultaneously the mobility and oligomerization status of the NP and viral PB2
protein as well as their interactions in the nuclei of live infected cells, using fluorescence corre-
lation spectroscopy (FCS) and Forster Resonance Energy Transfer (FRET) techniques.

Materials and Methods

Cells, Viruses and Plasmids
pCMV-GFP1-10 and pCMV-GFP11 plasmids were purchased from Sandia Biotech (USA).
MBD-GFP11 (maltose binding domain-GFP11) and mCherry-GFP11 constructs were
described before [33, 35–37]. In the Cherry-GFP11 construct, the mCherry and GFP11 tag are
connected by a 17-amino acid linker. The untagged recombinant influenza A/WSN/33 (further
referred to as WSN-wt) and WSN-PB2-GFP11 viruses were produced by reverse genetics and
amplified on MDCK cells as described in [33]. The A549-GFP1-10 cell line stably expressing
the GFP1-10 fragment was obtained upon lentiviral transduction, as described in [33]. HEK-
293T, Vero and A549-GFP1-10 cells were grown in complete Dulbecco's modified Eagle's
medium (DMEM) without phenol red, supplemented with 10% fetal bovine serum (FBS), glu-
tamine, sodium pyruvate, penicillin and streptomycin.

Infection and Virus Growth Assay
For imaging experiments sub-confluent HEK-293T, A549-GFP1-10 or Vero cells were plated
on LabTekII chambered cover glasses (Nunc), 8-well Ibidi μ-Slides (Ibidi GmbH, Germany), or
on glass coverslips (for immunofluorescence and PLA assays, see below), and transfected with
the appropriate plasmid(s) using the Fugene-HD or Fugene 6 transfection reagents (Roche). At
24 or 48 hours post-transfection (hpt), the cells were incubated for 1 h at 37°C with the WSN-
wt or the WSN-PB2-GFP11 virus at a multiplicity of infection (MOI) of 3–5 PFU/cell (plaque
forming units per cell) in DMEM, or mock-infected. After virus adsorption, the inoculum was
replaced by the complete DMEMmedium described above.

Knock-down of Rab11 was achieved by transfecting commercial validated siRNAs directed
to the human Rab11A and Rab11B proteins or scrambled non-target siRNAs as a negative con-
trol (Life technologies) into adherent A549 cells on LabTekII chambered cover glasses. Three
days after transfection, the cells were infected at a high MOI, as described above.

For virus growth assays, confluent monolayers of HEK-293T cells plated in 96-well plates
were transfected with 200 ng of the indicated plasmids and infected at 24 hpt with the WSN-wt
virus at a MOI of 0.001 PFU/cell. Following 1 h of adsorption at 35°C, cells were incubated in
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Fig 1. Principle of the labeling of influenza vRNPs with transiently expressed NP-mCherry proteins. Image is not to scale. Neither the real
stoechiometry nor the spatial organization of a vRNP is represented. For clarity, only a single NP-mCherry incorporated into an RNP complex is shown,
although incorporation of multiple NP-mCherry molecules per RNPmight also occur.

doi:10.1371/journal.pone.0149986.g001
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DMEM supplemented with 2% FBS for 48 hours. The supernatants were harvested and titrated
by a plaque assay on MDCK cells as described previously [38].

Fluorescence Microscopy
For live cell fluorescence microscopy, the cells were plated on LabTekII chambered cover
glasses (Nunc, USA) or on 8-well Ibidi μ-Slides (Ibidi, Germany) and kept at 37°C in 5% CO2

atmosphere during image acquisition. Images except time-lapse series were acquired on confo-
cal laser scanning microscopes: SP2 AOBS (acousto-optic beam splitter) (Leica Microsystems,
Germany) and LSM780 (Carl Zeiss, Germany), both with 63x 1.4 N.A. oil immersion objec-
tives. Time-lapse series were acquired on Andor Revolution Nipkow spinning disk microscope
equipped with DV885 EMCCD camera (Andor Technologies, USA) and CSU22 confocal scan
head (Yokogawa, Japan), with a 63x water immersion objective. On the scanning confocal
microscopes, excitation and emission were set at 488 and 500–550 nm for GFP and FITC (fluo-
rescein isothiocyanate), 405 and 420–470 nm for DAPI (4',6-diamidino-2-phenylindole), 561
and 590–670 nm for mCherry, 633 nm and 643–742 nm for AlexaFluor647. On the Nipkow
disk microscope, standard dichroic and filter combinations for GFP and RFP (red fluorescent
protein) fluorescence were used to acquire GFPcomp (the fluorophore formed by complementa-
tion of non-fluorescent GFP1-10 and GFP11 fragments) and mCherry signals with excitation
by 488 nm and 561 nm lasers, respectively. In all multicolor imaging, signals were acquired
sequentially. Co-localization analysis was performed with ImageJ 1.44c program (http://rsb.
info.nih.gov/ij/); Pearson correlation coefficient was calculated; occurrence of false co-localiza-
tion was excluded by calculating Pearson coefficient for “scrambled” images according to the
Costes method using the Co-localization Test plug-in of ImageJ. Images were corrected for pos-
sible cross-talk between the channels; for presentation purpose, brightness and contrast of raw
images were adjusted.

Indirect Immunofluorescence Assay
Infected or mock-infected HEK-293T, A549 or Vero cells were fixed with PBS-4% paraformal-
dehyde (PFA) for 20 min, permeabilised with PBS-0.1% Triton X100 for 10 min, treated with
3% normal rabbit serum for 60 min, and then incubated with the anti-influenza virus NP
monoclonal antibody, clone 3/1 [27], further referred as “anti-NP antibody 3/1” (a kind gift of
Prof. Robert G. Webster, St. Jude Children’s Research Hospital, Memphis, TN, USA) diluted 1:
200. Subsequently, cells were incubated with AlexaFluor647-coupled or FITC-coupled anti-
mouse secondary antibody diluted 1: 500 (Molecular Probes and Santa-Cruz Biotechnology)
and stained with DAPI.

Proximity Ligation Assay (PLA)
HEK-293T cells cultured on poly-lysine coated glass coverslips in 6-well plates were transfected
with 400ng of the NP-mCherry or mCherry-NLS (nuclear localization signal) plasmid using
the Fugene6 reagent (Roche), next day infected with the WSN-wt virus or mock-infected, fixed
and stained with a mixture of the mouse anti-NP antibody 3/1 diluted 1: 100, and the rabbit
Living Colors1 DsRed Polyclonal Antibody (which recognizes mCherry as well, Clontech, Cat.
#632496) diluted 1: 100, as described above. Further, to detect in situ if the epitopes are within
40 nm proximity [39], cells were subjected to proximity ligation assay with DuoLink II fluores-
cence kit (Sigma) according to the manufacturer’s protocol. Anti-mouse PLA probe MINUS,
anti-rabbit PLA probe PLUS and Detection Reagents Far Red were used. PLA signal, mCherry
fluorescence and DAPI signals were acquired with excitation at 633 nm, 561 nm, and 405 nm,
respectively, and standard emission wavelength ranges for far red, red and blue color channels.
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Experimental infected samples were compared to the samples with omitted primary antibodies
and with mock-infected samples. Stacks of optical slices were acquired on laser scanning confo-
cal microscope. For quantification, the PLA “spots” were automatically detected in the 3D
image stacks and counted with Measurements module of Imaris 8.1.2 software (Bitplane,
Switzerland).

FCS
Fluorescence correlation spectroscopy (FCS) measurements were performed with Confocor 3
system built on Zeiss AxioObserver Z1 inverted microscope equipped with 40x 1.3NA water
immersion objective and avalanche photodiode detectors (Carl Zeiss, Germany), as described
in detail before [40]. 488 nm and 561 nm diode lasers were used to excite GFP and mCherry
fluorescence; the emission was separated with standard sets of filter cubes. The fluorescence
fluctuation data were hardware-correlated, and the correlation curves were subsequently fitted
with Zen software (Zeiss) to the single-component or two-component translational diffusion
models.

FLIM-FRET
Fluorescence lifetime imaging (FLIM) using two-photon excitation and time-correlated single
photon counting was performed on Zeiss LSM 510 NLOMETA FLIM system (Carl Zeiss, Ger-
many) equipped with a Tsunami Ti:Sapphire pulsed laser (Spectra Physics, USA) and on Zeiss
LSM 710 NLO system equipped with a Cameleon, Vision II Ti:Sapphire pulsed laser, both with
40x oil immersion objectives. The two-photon excitation pulses at repetition rate of 80 MHz
were tuned to 950 nm. The emission of GFPcomp was collected at 505–550 nm. The single pho-
ton events were detected with a single photon counting photomultiplier H7422 (Hamamatsu,
Japan) (LSM 510 NLOMETA FLIM) or GaAsP-APD hybride “photon counting” detector
(LSM 710 NLO), and recorded on a SPC830 analyzer (Becker&Hickl, Germany); time-resolved
fluorescence data were handled and analyzed by SPCImage software (Becker&Hickl, Ger-
many). Fluorescence intensity decays were deconvolved with the measured instrument
response function and analysed as a monoexponential:

IðtÞ ¼ I0expð�t=tÞ

where I(t) is the fluorescence intensity at time t. FRET efficiency (E) was calculated as
E = 1−τDA/τD (1), where τDA and τD—mean fluorescent lifetime in the presence and in the
absence of the acceptor, respectively [41]. Mean lifetime measured in negative control sam-
ples (co-expressed non-interacting MBD-GFPcomp and mCherry) was used as τD.

Results

Transiently Expressed NP-mCherry Co-Localizes with vRNPs in
Influenza Virus-Infected Cells
We sought to label influenza vRNPs in infected cells by incorporation of “heterologous”NP-
mCherry fusion proteins during their assembly (Fig 1), in order to characterize their localiza-
tion, mobility and molecular interactions in live cells during infection. HEK-293T cells were
transfected with a plasmid encoding NP-mCherry. The day following transfection, cells were
mock-infected or infected with the WSN-wt virus at a high MOI, fixed, and immunostained
with the anti-NP antibody 3/1 reported to specifically recognize vRNPs in an infectious context
[27] (see below). In mock-infected cells, NP-mCherry auto-fluorescence was mostly nuclear
and only a weak signal was visible in the cytoplasm without any punctuate pattern (Fig 2, top
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left panel), in agreement with the commonly observed pattern of individually expressed NP
(e.g. [42]). The NP immunostaining signal in mock-infected cells was very low in both the
nucleus and the cytoplasm (Fig 2), indicating that the anti-NP antibody 3/1 does not recognize
the NP-mCherry protein when expressed alone. In infected cells, NP-mCherry appeared not
only in the nuclei, but also as puncta in the cytoplasm, with a high degree of co-localization
with the NP immunostaining (Fig 2, bottom panels), as confirmed by co-localization analysis:
the Pearson coefficient was 0.68±0.20 for the nuclei and 0.56±0.15 for the cytoplasm at 6–7
hours post-infection. This suggests that at least a sub-population of NP-mCherry is incorpo-
rated into vRNPs, as neither free NP nor cRNPs accumulate in cytoplasmic puncta-like entities
thought to be associated to recycling endosomes [27–29].

To obtain another hint about the specificity of the anti-NP antibody 3/1 for vRNPs [27], we
observed its staining pattern in infected cells upon knock-down of the Rab11 protein (S2 Fig).
Rab11 is known to contribute to the trafficking of influenza vRNPs towards the plasma mem-
brane. In control cells, NP staining showed the typical punctuate pattern commonly observed
for NP at late times post-infection. Upon Rab11 knock-down the cytoplasmic NP staining
became diffuse. Interestingly, this NP immunostaining pattern was very similar to that
observed in cells expressing a dominant negative mutant of Rab11 (Fig 4A in [28]). This
dependence of the staining pattern on Rab11 suggests that the anti-NP antibody 3/1 indeed

Fig 2. Colocalization of transiently expressed NP-mCherry with vRNPs in infected A549 cells.Mock-
infected cells (top panels) or cells infected with the WSN-wt influenza virus (bottom panels) are shown. Cells
were fixed at 6 hpi and stained with the anti-NPmonoclonal antibody clone 3/1. Scale bar: 10 μm.
Pseudocolors: red, mCherry; green, NP; blue, nuclei staining (DAPI).

doi:10.1371/journal.pone.0149986.g002
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recognizes mostly vRNPs, because neither cRNPs nor free NP are subject to Rab11-dependent
vesicular trafficking.

PLA Assay Indicates Proximity between mCherry and vRNPs in
Influenza Virus Infected Cells Transiently Expressing NP-mCherry
Although the localization pattern of NP-mCherry and its co-localization with NP-positive
puncta in the cytoplasm of immunostained infected cells suggest that NP-mCherry is incorpo-
rated into vRNPs, they do not prove it. To detect close interactions between NP-mCherry and
vRNPs and to gain information on the sub-cellular localization of the complexes, we performed
proximity ligation assay (PLA). In PLA, a signal is generated only when two oligonucleotide-
labeled secondary antibodies (“PLA probe PLUS” and “PLA probe MINUS”) are bound in
proximity (<40 nm). As a result of ligation which yields a closed DNA circle, followed by roll-
ing-circle amplification by a DNA-dependent DNA polymerase and hybridization of the
amplification product with fluorescently labeled oligonucleotides, each pair of PLA probes is
visualized as a single fluorescent spot. Then, the number of complexes is estimated by counting
these fluorescent spots [39].

Here, WSN-infected HEK-293T cells were incubated with a mixture of the mouse anti-NP
3/1 antibody and the rabbit antibody against mCherry (details in Materials and Methods) and
next incubated with a mixture of the “mouse PLA probe MINUS” and “rabbit PLA probe
PLUS”. In the nuclei of infected cells fixed at 4 hpi, 147±106 spots/cell were observed (repre-
sentative image on Fig 3, left column). In the mock-infected cells transfected with NP-
mCherry, PLA signal was substantially weaker and much less PLA spots were detected by the
software (14±10 spots/cell) (Fig 3, middle column). In the second control, i.e. cells transfected
with an mCherry-NLS construct instead of NP-mCherry and infected with the WSN-wt virus
(Fig 3, right column), the mCherry-NLS signal had the same intensity as the NP-mCherry sig-
nal (Fig 3, left column) but zero to 2 PLA spots per cell were detected. Overall, taken together
with the fact that in our transfection and immunostaining conditions the anti-NP antibody 3/1
does not bind significantly to transiently expressed NP-mCherry and recognizes mostly vRNPs
(Fig 2 and S2 Fig), the PLA assay showed that in the nuclei of infected cells, at least some pro-
portion of the transiently expressed NP-mCherry and the virus-encoded RNPs are in close
proximity (< 40 nm). Some NP-mCherry molecules are thus likely incorporated into vRNPs.

NP-mCherry Re-Localizes from the Nucleus to the Plasma Membrane
during the Course of Infection Simultaneously with PB2-GFPcomp

To characterize the localization of transiently expressed NP-mCherry and virus-encoded PB2
throughout the infection cycle, the mCherry and GFPcomp signals were continuously acquired
over extended periods of time in individual Vero cells after infection with the WSN-PB2-
GFP11 virus (Fig 4 and S1 Movie). Early after infection, NP-mCherry and PB2-GFPcomp were
detectable only in the nucleus (Fig 4, left column). At 6.5 and 8 hpi, NP-mCherry appeared in
the cytoplasm (Fig 4, middle columns). At later time points it accumulated at the plasma mem-
brane, in agreement with known accumulation of progeny vRNPs at the sites of virion assem-
bly [43], and showed strong co-localization with PB2-GFPcomp at the plasma membrane (Fig 4,
right column and S1 Movie). This behavior of NP-mCherry during the course of infection was
very distinct from its steady-state nuclear accumulation in the nuclei in non-infected cells
(data not shown). The most likely explanation is that NP-mCherry is incorporated into prog-
eny vRNPs and that mCherry-labeled vRNPs move towards the plasma membrane. Thus, our
time-lapse observations are in agreement with the immunofluorescence co-localisation and
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PLA data described above (Figs 2, 3 and S2), and indicate an incorporation of NP-mCherry
into progeny vRNPs.

NP-mCherry Does Not Interfere with Influenza Virus Multi-Cycle
Replication
Fluorescent protein tags are large and may disrupt normal functions of the labeled entities.
Thus we evaluated whether transiently expressed NP-mCherry protein could interfere with the

Fig 3. Detection of proximity between NP-mCherry and vRNPs in infected cells by proximity ligation
assay. The anti-NPmonoclonal antibody 3/1 and a rabbit antibody recognizing mCherry were used. Maximal
intensity projections of the z-stacks acquired with a laser scanning confocal microscope are shown. Scale
bar: 10 μm. Pseudocolors: white, PLA signal; red, mCherry; blue, nuclei staining (DAPI).

doi:10.1371/journal.pone.0149986.g003
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normal process of viral replication. HEK-293T cells were transiently transfected with NP-
mCherry, the mutant NP_R416A-mCherry, an mCherry protein fused to a nuclear localization
signal (mCherry-NLS) or a control empty plasmid. The NP_R416A mutant, in which the
domain exchange loop (residues 402–421) cannot interact with another NP protomer, remains
monomeric and has a significantly lower affinity to RNA [44, 45]. It was included in our
experiments to investigate whether NP-PB2 interactions could occur independently of NP olig-
omerization and NP binding to RNA (see below). Transfected cells were infected 24 h later
with the WSN-wt virus at a low MOI of 0.001 PFU/cell. NP-mCherry and NP_R416A-
mCherry were expressed in more than 95% of the cells at the time of infection, as assessed by
fluorescence microscopy (S3 Fig). Supernatants were harvested at 48 hours post-infection and
titrated by plaque assay on MDCK cells. Viral titers were in the same range in the presence or
in the absence of NP-mCherry and NP_R416A-mCherry constructs (Table 1). Thus, tran-
siently expressed NP-mCherry and NP_R416A-mCherry do not inhibit multi-cycle replication
of influenza virus in HEK-293T cells.

Fig 4. Live Vero cells transfected with GFP1-10 and NP-mCherry and infected with the
WSN-PB2-GFP11 virus. Selected frames from S1Movie at the indicated times post-infection are shown.
Pseudocolors: green, PB2-GFPcomp; red, NP-mCherry. Scale bar, 10 μm. Time-lapse series of single optical
slices were acquired with a Nipkow spinning disk microscope.

doi:10.1371/journal.pone.0149986.g004
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Fluorescence Correlation Spectroscopy Study of PB2-GFPcomp and NP-
mCherry- Containing Species in the Nuclei of Live Infected Cells
Fluorescence correlation spectroscopy (FCS) is a well-established technique enabling to probe
mobility, concentration and oligomerization of fluorescently labeled species. It is based on a
sophisticated analysis of fluorescence signal fluctuations in a small (femtoliter range) detection
volume [46, 47]. FCS is usually performed on a confocal microscope setup and is compatible
with live cell samples. For instance, FCS allows to determine the translational diffusion time,
which corresponds to the inflection point on the sigmoidal graph of the fluorescent signal auto-
correlation function versus time (indicated by an arrow in Fig 5A). FCS also provides an inten-
sity-independent estimate on the number of labeled particles in the FCS detection volume.
From this, one can estimate brightness/particle ratio, which serves as a measure of the oligo-
merization status of the labeled species.

Here, to obtain information on the mobility and the oligomerization status of NP- and
PB2-containing species in the nuclei of infected cells, we acquired FCS data on HEK-293T cells
transiently expressing GFP1-10. Two types of samples were characterized: 1) infected cells con-
taining virus-encoded PB2-GFP11 and transiently expressing NP-mCherry, in which presum-
ably most PB2 molecules were labeled by GFPcomp, a small proportion of NP was labeled with
mCherry, and all other components expressed by the virus were unlabeled; 2) mock-infected
cells transiently expressing NP-mCherry and PB2-GFP11, mostly converted in PB2-GFPcomp,
in the absence of any other viral protein or RNA. To obtain a negative control containing non-
interacting and non-oligomerizing green and red fluorescent species, HEK-293T cells were co-
transfected with mCherry, GFP1-10 and MBD-GFP11 (Maltose-Binding-Domain fused to
GFP11). To exclude non-specific effects of infection on the FCS results (e.g., due to a putative
change in microviscosity), negative control samples were infected at a high MOI with the
untagged WSN-wt virus. No difference with the non-infected negative control was observed
(data not shown). Fitting of FCS autocorrelation curves for both mCherry and MBD-GFPcomp

species in the negative control yielded a single translational diffusion time of 0.2–0.4 ms (Fig
5A and Table 2, sample #1), in line with the values commonly observed for monomeric non-
interacting proteins in a cell [12, 47, 48]. When PB2-GFPcomp and NP-mCherry were co-
expressed, good fitting of autocorrelation curves required a model with two translational diffu-
sion times, in non-infected cells (Table 2, sample #2) as well as in infected cells (Fig 5B and
Table 2, sample #3). This indicated the presence of at least two species possessing distinct
mobilities. The shorter, sub-millisecond diffusion time was close to the value observed for the
negative control (Table 2, sample #1), and thus represented subpopulations of PB2-GFPcomp

and NP-mCherry which neither formed large oligomers nor interacted with any “slow” cellular
or viral partners such as RNA. The longer diffusion time, in the range of 5–15 ms, obviously
represented much slower moving species. In general, these “slow” species might occur due
either to oligomerization or to interaction with immobile or slowly moving structures.

Table 1. Effect of transient expression of NP-mCherry constructs on the production of infectious viral
particles.

Transfected construct Virus titer (PFU/ml)

NP-mCherry 4.0×104

NP_R416A-mCherry 2.0×104

NP 3.2×104

mCherry-NLS 3.0×104

Empty vector 4.5×104

doi:10.1371/journal.pone.0149986.t001
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Translational diffusion time of a particle is proportional to the cubic root of its hydrodynamic
radius (and to molecular mass in the first approximation), therefore a 10-fold increase of diffu-
sion time would correspond to a 1000-fold increase of molecular mass. However, molecular
brightness did neither increase drastically for PB2-GFPcomp nor for NP-mCherry fluorophore

Fig 5. Fluorescence correlation spectroscopy data for GFPcomp-labeled species (green) andmCherry-
labeled species (red). The experimental autocorrelation data, fitted curves (in black), and residuals, are
shown for an individual representative HEK-293T cell. A. Control cell transiently expressing MBD-GFPcomp

and mCherry and infected with theWSN-wt virus; single-component translational diffusion model. Arrow
points to the inflection point of the autocorrelation curve. B. Cell transfected with GFP1-10 and NP-mCherry
and infected with the WSN-PB2-GFP11 virus. Two-component translational diffusion model.

doi:10.1371/journal.pone.0149986.g005
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(Table 2), which indicates that no large-scale homo-oligomerization occurred. Therefore, the
PB2-GFPcomp and NP-mCherry-containing species with longer diffusion time are associated
with slowly moving or motionless structures which might belong to the chromatin environ-
ment [23, 26].

The infected cells differed from the mock-infected cells as the fractions of “slow” species of
NP-mCherry in the nucleus represented about 50% and 30%, respectively; moreover, the corre-
sponding effective diffusion time increased to 15 ms, as compared to 7 ms in the absence of
infection (Table 2, sample #3 compared to sample #2). Therefore, besides the subpopulation of
NP interacting with cellular components observed in non-infected cells, additional slowly dif-
fusing species occurred in the infected cells. A likely explanation is that they represent vRNPs
containing at least one NP-mCherry molecule, as detected in our co-localization and PLA
assays described above. This hypothesis is strengthened by the fact that, in contrast to the wild-
type NP-mCherry, the NP-mCherry_R416A oligomerization-impaired mutant showed the
same FCS parameters in infected and non-infected cells (Table 2, sample #4).

For PB2-GFPcomp, the fraction of the “slow” species remained roughly the same in non-
infected and infected cells (about 30%), but the translational diffusion time of the “slow” spe-
cies was twice longer in infected cells compared to non-infected cells expressing PB2-GFPcomp

(11 ms and 5 ms respectively) (Table 2, sample #3 compared to sample #2). Therefore, in the
context of infection, a subpopulation of PB2-GFPcomp was incorporated into a species which
diffuses much slower than the PB2-GFPcomp-containing complexes in the absence of infection.
The RNP-bound PB2-GFPcomp likely constitute a fraction of “slow” species in the infected
cells, considering the data reported here (Fig 4 and S1 Movie) and our previous results [32]
showing that after initial accumulation in the nuclei, PB2-GFPcomp is exported to the cytoplasm
in a CRM1-dependent manner, accumulates in recycling endosome and is finally concentrated
at the plasma membrane [32, 33]. However, we cannot exclude that hetero-trimeric viral poly-
merase also contribute to the “slow” diffusing time observed for PB2-GFPcomp, as we previously
observed slowly diffusing species in uninfected cells transiently co-expressing PB2 and the
two other subunits of the polymerase, PB1 and PA [40]. The remaining fraction of 70% of
PB2-GFPcomp in the infected cells might correspond to PB2-GFPcomp molecules that undergo
rapid binding/dissociation to vRNPs, or might represent an excess of PB2-GFPcomp molecules
unbound to vRNPs. In line with the latter hypothesis, we systematically observed a substantial
amount of PB2-GFPcomp in the nucleus at late times post-infection (8–11 hpi), when vRNPs
were largely exported out from the nucleus (S1 Movie).

PB2-GFPcomp−NP-mCherry Interactions in the Nuclei of Live Infected
Cells
Although PLA signal indicates proximity (<40 nm) between the two antigens [39], it does not
necessary prove a direct interaction. To investigate whether direct interactions of PB2 with NP
and/or vRNP occur in live infected cells, we used FRET microscopy, which is one of few well-
established techniques for the visualization of molecular interactions in living cells. FRET phe-
nomenon is non-radiative transfer of the energy of an excited fluorophore (the donor) to
another fluorophore (the acceptor), and enables one to detect the fluorescently labeled mole-
cules separated by less than 5–10 nm. Considering sizes of fluorescent protein tags and typical
globular proteins, the fluorophores can be brought to such proximity by direct interactions
between the tagged proteins (or between tags themselves). Furthermore, FRET may only occur
during the “life” of a fluorophore in excited state, which is few nanoseconds for GFP; therefore,
“false-positive” FRET due to accidental collisions between non-interacting fluorescent protein
donor and acceptor is very unlikely. Fluorescence lifetime microscopy (FLIM) detects FRET as
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a decrease of the donor fluorescence lifetime in the presence of the acceptor. In contrast to fluo-
rescence intensity, the fluorescence lifetime does not depend on label concentration and sample
geometry, which makes lifetime measurement the most reliable way to detect FRET.

In our FLIM-FRET measurements, GFPcomp was the donor and mCherry was the acceptor
(Fig 6A). The mCherry-GFPcomp fusion protein, in which the donor and the acceptor are hold
in proximity by a 17-amino acid linker, was used as a positive control; however, a “100% FRET
efficiency” was not expected for the latter construct since the distance and orientation of the
two fluorophores might not be optimal for FRET. Co-expressed non-interacting constructs
MBD-GFPcomp and mCherry served as the FRET negative control, as the level of expression of
mCherry in these samples was higher than or similar to the level of expression of NP-mCherry
in experimental samples. We observed that the fluorescence lifetime of GFPcomp in the negative
control samples does not depend on the presence of the acceptor (compare the mCherry-posi-
tive and mCherry-negative cells on Fig 6B, upper panel), indicating that accidental collisions
between labeled molecules do not affect FLIM-FRET readout.

In the nucleus of infected cells at 5–7 hpi, the observed FRET efficiency was similar to the
value for the positive control (Fig 6B and Table 3, sample #2 compared to sample #1), indicat-
ing the presence of species in which PB2-GFPcomp and NP-mCherry are in close proximity.
These species could correspond to PB2-GFPcomp associated with isolated NP-mCherry or with
NP-mCherry-containing vRNPs. However, a decrease of PB2-GFPcomp fluorescence lifetime
indicating substantial FRET was also observed i) when PB2-GFPcomp and NP-mCherry were
co-expressed in non-infected cells (Table 3, sample #4), and ii) when PB2-GFPcomp was co-
expressed with the non-oligomerizing NP_R416A-mCherry mutant, in infected cells as well as
in non-infected cells (Fig 6B and Table 3, samples #3 and #5). These data are strongly in favor
of direct interactions between PB2-GFPcomp and free NP-mCherry taking place in the context
of infected cells.

Discussion
To independently visualize the PB2 influenza polymerase subunit and vRNPs in the infected
cells, here we combined labeling of PB2 with split-GFP by using the recombinant WSN-PB2-
GFP11 virus [33] and labeling of virus-encoded RNPs by spontaneous incorporation of tran-
siently expressed NP-mCherry fusion protein. The latter enabled us to bypass the problem of
attenuation of recombinant influenza virus when fluorescent protein tags are fused to the NP.
We show that NP-mCherry was incorporated into vRNPs and did not perturb viral replication.
An alternative strategy to label vRNPs in live cells, i.e. transfection of a fluorescently labeled
monoclonal antibody, was used by others to characterize quantitatively the intra-cytoplasmic
movements of vRNPs containing particles [28]. However, this labeling strategy has fundamen-
tal limitations including possible off-target antibody binding and restricted penetration of
labeled antibody to certain subcellular compartments. While our manuscript was in prepara-
tion the use of a GFP-NP construct to study cytoplasmic trafficking of vRNPs was reported
[49]. Here, unlike in the above-mentioned work, the viral NP and PB2 proteins were simulta-
neously labeled, the incorporation of the labeled species into vRNPs was carefully assessed
(Figs 3 and 4), and the mobility and interactions of the NP and PB2 proteins were characterized
in the nuclei of infected cells rather than in the cytoplasm.

In our experiments, NP-mCherry-containing species, i.e. free NP-mCherry, NP-mCherry
bound to cellular structure(s) or viral proteins, and NP-mCherry incorporated into either
free vRNPs or vRNPs interacting with cellular structures, may exist in various proportions.
The same stands true for PB2-GFPcomp-containing species. Despite of this potential
diversity, we could determine the translational diffusion times of two NP-mCherry- and
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two PB2-GFPcomp-containing species in infected cells: one showing the same mobility as the
monomeric non interacting mCherry and MBD-GFP controls, respectively, and a “slow”
one. Comparison of the diffusion times and proportions corresponding to the “slow species”
in uninfected versus infected cells on one hand, and in infected cells expressing NP-mCherry
versus NP_R416A-mCherry on the other hand, indicates that “slow species” of NP-mCherry
and PB2comp can appear in a non-infectious context and independently of the capacity of NP
to oligomerize, but they show a decrease in mobility in infected cells compared to uninfected
cells. Thus, our data strongly suggest that not only vRNPs or hetero-trimeric polymerases,
but also isolated NP and PB2 proteins can associate to cellular structures [40]. Interestingly,
our data also indicate that a significant proportion of NP-mCherry and PB2comp (about 50%
and 70%, respectively) remains in a “free-like” state in the nuclei of infected cells. A pool of
RNP-free NP and PB2 proteins in the nucleus of infected cells could possibly have a second-
ary function distinct from transcription/replication of the viral genome.

Fig 6. FLIM-FRETmicroscopy in live HEK-293T cells. A. The principle of FLIM-FRET assay with GFPcomp and mCherry as the FRET donor and acceptor,
respectively, is schematically drawn; a representative fluorescence decay dataset fitted curve (in red) and residuals for a single pixel within the nucleus of a
cell infected with the WSN-PB2-GFP11 virus are shown. B. Fluorescence intensity (left and middle panels) and mean GFPcomp fluorescence lifetime (right
panels) images of the infected and/or transfected cells. Graphs to the right of the micrographs show the distributions of mean GFPcomp fluorescence lifetime
values (occurrence of pixels with a given mean lifetime) in the nuclei pointed by yellow arrowheads in GFPcomp intensity images (middle right panels).
Sketches on the far right show the “observable”, fluorescently labeled species for each sample; virus ideographs indicate viral infection, either with WSN-wt
(in positive and negative controls) or with WSN-PB2-GFP11 (in other infected samples).

doi:10.1371/journal.pone.0149986.g006
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The combination of two labeling approaches enabled us to detect, by FLIM-FRET, a direct
interaction between NP and PB2 in the nucleus of live cells; this interaction, to our knowledge,
had only been characterized by biochemical techniques so far [16, 18, 50, 51]. The PB2-NP
interaction is of significant interest as the question whether it could substantially affect the
range of permissive hosts for a given viral strain remains controversial. There are conflicting
reports about whether or not one of the most important mutations responsible for the adapta-
tion of avian influenza viruses strains to human, PB2-E627K, stabilizes the vRNP and contrib-
utes to enhanced polymerase activity by facilitating the interaction between PB2 and NP [16–
20]. Non-invasive and reliable methods to detect the PB2-NP interaction in live infected cells,
such as the combination of NP and PB2 labeling described in the present paper, should help
addressing this question. In addition, this method could be adapted to the detection of other
protein-protein interactions that occur during infection.

Our FRET data indicate that direct interactions between RNP-free PB2-GFPcomp and RNP-
free NP-mCherry can occur in the context of an infected cell. Taken together with our FCS
data, they suggest that RNP-free NP-PB2 interactions could occur in the nucleus of infected
cells. Such interactions could be required for other functions than the NP-polymerase interac-
tion taking place in the context of a vRNP. Three NP residues (R204, W207 and R208) were
shown to be required for the NP-polymerase interaction; they are located in a loop at the top of
the head domain of NP without any overlap with the NP sequences needed for RNA binding
and oligomerization, and are required for viral RNA synthesis [52]. The RNP-free PB2-NP
interactions revealed by our FRET data could involve other residues. Combined with mutagen-
esis and reverse genetics, the simultaneous labeling of NP and PB2 should be of great use for
systematic live cell-based studies of these RNP-free NP-PB2 interactions in the context of
human and avian host cells.

Multicolor single molecule fluorescence in situ hybridization (smFISH) analysis has recently
been used to document where and when vRNPs corresponding to different segments associate
with each other [34, 53]. Intermediate assemblies of vRNPs were detected in the cytoplasm,
away from virion assembly sites at the plasma membrane, but it remains unclear whether
vRNPs are exported from the nucleus individually or as intermediate assemblies. Molecular
brightness data from our FCS experiments did not reveal a significant population of complexes
containing multiple PB2 proteins in the nucleus, suggesting that multi-vRNP complexes are
absent from the nucleus, or are present at a very low level compared to single vRNPs and free

Table 3. FRET efficiency between PB2-GFPcomp and NP-mCherry in the nuclei of HEK-293T cells.

Sample # Experimental conditionsa FRET efficiencyb

1 mCherry-GFP11 (positive control) 0.140±0.032**

2 NP-mCherry + WSN-PB2-GFP11 virus 0.130±0.071**

3 NP_R416A-mCherry + WSN-PB2-GFP11 virus 0.110±0.069**

4 NP-mCherry + PB2-GFP11 0.064±0.047**

5 NP_R416-mCherry + PB2-GFP11 0.100±0.070***

aGFP1-10 was transiently expressed in all samples, in addition to the plasmids mentioned in the first

column; significant difference with negative control:

** P<0.01;

*** P<0.05
bFRET efficiency was calculated on the basis of GFPcomp fluorescence mean lifetime values, using the

mean lifetime of the negative control as τD, as described in Materials and Methods (Equation 1). 19 to 22

cells per condition were used, from at least two independent transfection-infection experiments.

doi:10.1371/journal.pone.0149986.t003
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PB2 proteins. The labeling approach reported here could also be applied to the tracking of
vRNPs in the cytoplasm. It could in principle be adapted to correlative microscopy, which
enables one to analyze the same sample by photonic imaging and by electron microscopy
(EM), thus combining temporal resolution and molecular specificity with nanometer scale
structural information.

In conclusion, application of photonic imaging based on carefully designed labeling, in
combination with other techniques, would improve understanding of influenza virus life cycle
in the cell. More broadly, our study illustrates the potential of photonic imaging based on care-
fully designed labeling for virology studies, and provides an example of the characterization of
time-post-infection dependent localisation, mobility and interactions of viral proteins and
their complexes in nearly-native conditions in live infected cell.

Supporting Information
S1 Fig. Principle of fluorescent tagging of influenza virus PB2 protein using the GFP1-10 –
GFP11 complementation system.
(TIF)

S2 Fig. Effect of Rab11 knock-down on NP immunostaining pattern in A549 cells infected
with the WSN influenza virus, as visualized at 19 hpi by immunostaining with the mouse
NP 3/1 antibody. Single confocal slices are shown. Scale bar: 10 μm. Yellow boxes highlights
the areas for which higher magnification images are shown.
(TIF)

S3 Fig. Control of transfection efficiency for evaluation of the effect of NP-mCherry and
NP_R416A-mCherry on influenza virus replication. Live HEK-293T cells were transfected
with indicated mCherry-containing or control constructs and imaged by fluorescence micros-
copy at indicated times. The cells were infected with the WSN-wt virus at low MOI at 24
hours post-transfection and the supernatants collected at 72 hpi were titrated by plaque assay
(Table 1). A wide-field microscope was used with standard filters for red fluorescence. Scale
bar: 100 μm.
(TIF)

S1 Movie. A Vero cell transfected with GFP1-10 and infected with the WSN-PB2-GFP11
virus was observed at various times post-infection, as indicated. Green: PB2-GFPcomp; red,
NP-mCherry. Individual color channels and merged images. Time post-infection is indicated.
Scale bar: 10 μm; single optical slices; signals in the two color channels were acquired sequen-
tially on a Nipkow spinning disk microscope.
(AVI)
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