
RESEARCH ARTICLE

Predicting Essential Metabolic Genome
Content of Niche-Specific Enterobacterial
Human Pathogens during Simulation of Host
Environments
Tong Ding1☯, Kyle A. Case1☯, Morrine A. Omolo1☯, Holly A. Reiland1☯, Zachary P. Metz1☯,
Xinyu Diao1☯, David J. Baumler1,2,3*

1 Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, Minnesota,
United States of America, 2 Microbial and Plant Genomics Institute, University of Minnesota-Twin Cities,
St. Paul, Minnesota, United States of America, 3 Biotechnology Institute, University of Minnesota-Twin
Cities, St. Paul, Minnesota, United States of America

☯ These authors contributed equally to this work.
* dbaumler@umn.edu

Abstract
Microorganisms have evolved to occupy certain environmental niches, and the metabolic

genes essential for growth in these locations are retained in the genomes. Many microor-

ganisms inhabit niches located in the human body, sometimes causing disease, and may

retain genes essential for growth in locations such as the bloodstream and urinary tract, or

growth during intracellular invasion of the hosts’macrophage cells. Strains of Escherichia
coli (E. coli) and Salmonella spp. are thought to have evolved over 100 million years from a

common ancestor, and now cause disease in specific niches within humans. Here we have

used a genome scale metabolic model representing the pangenome of E. coli which con-

tains all metabolic reactions encoded by genes from 16 E. coli genomes, and have simu-

lated environmental conditions found in the human bloodstream, urinary tract, and

macrophage to determine essential metabolic genes needed for growth in each location.

We compared the predicted essential genes for three E. coli strains and one Salmonella
strain that cause disease in each host environment, and determined that essential gene

retention could be accurately predicted using this approach. This project demonstrated that

simulating human body environments such as the bloodstream can successfully lead to

accurate computational predictions of essential/important genes.

Introduction
Computational modeling has been widely used as an efficient approach in microbiology, which
introduces mathematical components including variables, parameters, and equations in net-
work constructions to reflect the behavior of organisms. Numerous types of networks have
been constructed including signaling, regulatory, and metabolic pathways for organisms
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ranging from microorganisms, such as E. coli, to multi-cellular eukaryotic organisms. By con-
structing genome-scale metabolic models (GEMs), the nature of an organism can be explored
through computational analysis of its genome content. The E. coli K-12 strain MG1655 has
had extensive computational metabolic networks generated for it so far, and its existing models
are quite advanced that contain>2,000 reactions,>1,000 genes, and>1,000 metabolites [1–
6]. These genome-scale models have been used for many studies that have guided the engineer-
ing of strains for increasing valuable end-products, promoting enzyme discovery, providing
insight into the genome evolution of other enterobacteria [7,8], and leading to a new under-
standing of the connectivity, or coupling, of all the metabolic reactions and corresponding
genes within the cell.

Currently, numerous E. colimetabolic networks have been constructed for commensal,
enterohemorrhagic, and extra intestinal pathogenic strains [1,4]. Unlike studies using E. coli
metabolic models, a Salmonella Typhimurium LT2 metabolic model was used to examine met-
abolic reactions and the corresponding essential genes that are necessary for cell viability dur-
ing the infection process under simulated conditions inside the host [9]. The evolutionary
process that leads to genome changes is based on the theory of natural selection, which states
that in a given environmental niche, there is constant pressure to retain genes that are impor-
tant for growth and survival in that particular condition. When the availability of nutrients in a
host-cell environment can be used to further define the mathematical constraints for the meta-
bolic model mimicking host-cell nutrient environment, a technique termed flux balance analy-
sis (FBA) was used that identified 417 reactions used by S. typhimurium LT2 during human
infection [9].

To systematically explore genes predicted as essential and important for cell growth in a
given environment, we used an approach that focused on three main components: 1) generat-
ing a metabolic network and corresponding metabolic model representing the metabolic capa-
bilities of the E. coli pangenome which contains the union of all genes that encode metabolic
reactions from 16 genomes of E. coli, 2) using flux balance analysis to systematically test growth
predictions in three simulated host environments of all single gene mutants, and 3) comparing
the essential/important gene predictions (i.e. those that promote growth and would likely have
been retained over time) with sequenced enterobacterial genomes to determine if these genes
were retained or lost in modern day strains.

In this work, we have developed new methods using constraint-based optimization and
metabolic model construction to identify genes important for growth/survival in environments
simulating three locations within the human body and have compared the predictions with
actual evolutionary outcomes of sequenced genomes of enterobacterial pathogens, such as
extraintestinal E. coli, that cause human disease in locations other than the intestinal tract.
Extraintestinal E. coli infections may result in serious illness and even death, and globally 130–
175 million cases of urinary tract infections are caused by Extraintestinal E. coli [10]. The uri-
nary tract is also the most common route for E. coli causing bloodstream infections, which
cause more than 40,000 deaths from septicemia each year worldwide [10]. Therefore, an under-
standing of the genes that are essential for the growth of these pathogens to survive in certain
human body niches is of great interest to aid efforts on developing new control strategies and
therapeutics.

Computational modeling allows us to conduct experiments of disease-causing bacteria
where actual testing in humans is not an option. These are the three main objectives that were
investigated: i) Can different locations in the human body be modeled using constraint-based
linear programming? ii) Are there different predictions of essential/important genes for growth
in simulated conditions representing three human body locations? iii) Do these gene predic-
tions correlate with the genome content of modern-day enterobacterial pathogens that actually
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cause disease in each of the three locations? Overall, this study illustrated that mathematical
constraints can be used with metabolic models to simulate the nutrient conditions the patho-
gen encounters during the infection process, and the genes predicted using FBA with the meta-
bolic model simulating conditions during infection correlate with transcriptional gene-
expression data obtained for conditions representing host-pathogen interactions. The central
hypothesis is that the essential and important genes for bacterial growth in certain environ-
ments should be mostly remained over time in the genome of strains that cause disease in the
corresponding human body locations, whereas the loss of those essential and important genes
should not cause dire consequence for strains that invade different human locations.

Results and Discussion

Computational simulation of different niches in the human body
For the three simulated conditions, analytical data were used to add constraints that dictate
metabolite availabilities respectively under three simulated conditions, the human macrophage
cell [9], the bloodstream [11], and the urinary tract [12]. During the macrophage invasion, the
pathogens can be engulfed and chained inside the pathogen-containing vacuoles that may
restrict nutrients for cell growth. There is very little information on the nutrient compositions
of those vacuoles under different macrophage activation states. Considering the pathogens
may achieve nutrients from cytoplasm by modifying the membrane of vacuoles, existing litera-
ture values on the nutrient composition of the macrophage cytoplasm can be used to mimic
the environment inside a macrophage for pathogen growth.

For the three simulated niches examined in human body, there were 15 available metabo-
lites used as constraints shared in common for all three host niches, whereas 51 metabolites
varied depending on the environment, indicating that differences in human body locations
lead to different metabolite compositions available to the microrganisms (Table 1).

Predictions of essential/important genes for cell growth in three
simulated human body locations
When FBA analysis for single reaction deletions and their corresponding genes was conducted in
the three simulated environments, the results varied in the total number of predicted essential
and important reactions and associated genes for each condition (Table 2). Following each gene
deletion, if the rate of biomass production was calculated as a value of zero (no growth predic-
tion) or a reduction of>1% of the wild type biomass production, the genes were considered to
be essential or important, respectively. There were 38 reactions predicted to be commonly essen-
tial for all three simulated human body locations, as the absence of them led to no cellular growth
(Fig 1). Besides, 38 reactions were predicted as essential that were not shared in common for
those conditions (Fig 1). There was only one reaction predicted to be important that resulted in a
decrease of predicted biomass for all three simulated host locations, whereas 121 reactions were
predicted as important that led to a predicted biomass reduction in one or two simulated condi-
tions (S1 Data). For all of these essential and important reactions the genes correspond to, the
reactions were identified to report the number of essential or important genes’ lost (S2 Data).

Comparison of essential/important gene predictions based on the
genomes of real disease-causing enterobacterial pathogens in each of
the three host niches
Once the essential and important genes were identified, they were compared with the
sequenced genomes of enterobacterial pathogens that invade the macrophage cell, infect the
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Table 1. Nutrients used to simulate three host environmental conditions.

Metabolites Macrophage Blood Urine

2-Oxoglutarate - + -

Acetoacetate - + -

Adenine - - +

Adenosine - + -

Allantoin + + +

Arabinose + - -

Butyrate - + +

Carnitine + - -

Citrate - + +

Cytosine + - -

Deoxycytidine + - -

Ethanolamine + - +

Formate - - +

Fructose + - -

Fucose + - -

Fumarate - + -

Galactarate + - -

Galactonate + - -

Glucarate + - -

Gluconate + - -

Glucosamine - + -

Glucose + + +

Glucuronate + + +

Guanine - - +

Hypoxanthine + - -

Inosine + - -

D-lactate - + +

L-lactate - + +

L-Malate - + -

D-Malate - + -

Maltose + - -

Mannitol + - -

Mannose + - -

Melibiose + - -

Myo-Inositol - + +

N-Acetyl-D-glucosamine + - -

N-Acetylneuraminate + - -

Nicotinate - + -

Pantothenate + - -

Propane-1,2-diol + - -

Putrescine + - -

Pyruvate - + +

Rhamnose + - -

Ribose + - -

Sorbitol + - -

Spermidine + - -

Succinate - + -

(Continued)
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bloodstream, or cause disease in the urinary tract. Three genomes (E. coliUTI89, E. coli 53638,
and Salmonella LT2) were used for essential and important gene comparison, and the genome
of E. coli O157:H7 was used as a control because of the pathogen’s capability to cause disease in
the human intestine. E. coli UTI89 is able to infect the urinary tract or the bloodstream in
human body, causing disease outside the intestinal track. Both E. coli 53638 and Salmonella
LT2 can cause disease by invasion of a host cell (Table 3).

The central hypothesis is that the pathogens that actually cause disease in a given host loca-
tion should have lost the fewest number of essential and important genes predicted for that
conditions simulated in silico (macrophage, bloodstream, or urinary tract). In contrast, the
pathogenic E. coli O157:H7 that causes disease in the intestinal tract would most likely have
lost the most number of essential and important genes predicted for each of the three host
niches. The host niche condition was not simulated for the control in this project. As shown in
Table 4, when compared to the genomes of these organisms, the number of lost essential and
important genes in each strain varied. When the numbers of both lost predicted essential and
important genes out of the total number are summarized (Table 5), it is clear that some of the
predictions match the real evolutionary outcomes of the genome content of these organisms,
whereas the simulation of the urinary tract did not match the evolutionary outcomes of these
strains, and this discrepancy is addressed in the conclusions section.

Conclusions
This study investigated in silicometabolic modeling and prediction of genes required for
growth and survival in three human body locations. Based on the numerous differences of
metabolites present in three different human body niches, this study illustrates that multiple
environmental niches in a human can be simulated to study microbial metabolism by using
constraint-based linear programming and computational model. Simulation of these three
conditions led to different predictions of essential and important genes/reactions, which match
the real evolutionary outcomes when compared to the control genome of the intestinal patho-
gen enterohemorrhagic E. coli O157:H7 strain EDL933, a strain that causes disease in the intes-
tine and was predicted to have lost the most of the essential or important genes in the three
other host niches. In the case of intracellular invasion, although the strain isolated from a

Table 1. (Continued)

Metabolites Macrophage Blood Urine

Taurine - - +

Thiamin + + -

Uracil + - -

Uridine + - -

Present / Not Present = + / -

doi:10.1371/journal.pone.0149423.t001

Table 2. Total number of reactions and corresponding genes predicted as essential and important for growth in three simulated human body
locations.

Host niche Essential reactions Important reactions Essential genes Important genes

Macrophage 195 146 290 146

Bloodstream 193 65 288 182

Urinary tract 203 52 304 151

doi:10.1371/journal.pone.0149423.t002
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Fig 1. Essential reactions predicted for three simulated host environmental conditions. There are 38 reactions predicted to be commonly essential for
all three simulated human body locations, whereas 38 essential reactions predicted that are differed for simulations of the human bloodstream, urinary tract,
and macrophage.

doi:10.1371/journal.pone.0149423.g001

Table 3. E. coli and Salmonella genomes used in this study.

Host niche Enterobacterial human pathogenic strains Genome of strain that causes disease

Bloodstream Extraintestinal pathogenic E. coli E. coli UTI89

Macrophage Salmonella spp., Enteroinvasive E. coli E. coli 53628, Salmonella LT2

Urinary tract Urinary tract pathogenic E. coli E. coli UTI89

Intestinal tract (control) Enterohemorrhagic E. coli E. coli EDL933

doi:10.1371/journal.pone.0149423.t003
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urinary tract infection has the fewest essential/important genes lost, the two genomes of strains
that actually cause disease through this route had very similar low numbers of lost essential/
important genes. In the case of the simulations for the human bloodstream and urinary tract,
E. coli UTI89 is the strain that actually causes disease in these locations, and had the least
amount of necessary/important genes lost, which agreed with the evolutionary outcome. This
project demonstrated that human body environments such as the bloodstream can successfully
lead to accurate predictions of essential/important genes using optimization and constraint-
based metabolic techniques. The discrepancies from the predictions for the urinary tract may
indicate that more information is required for additional constraints to more accurately simu-
late this environment, or that the E. coli strains that have been characterized as causing disease
in only one niche in the human body may also be capable of causing disease in numerous loca-
tions in the human body. Overall, this project was a success and lays a foundation towards
future work to model metabolism of pathogenic microbes in different locations inside a human
host. Since the actual infection study of these organisms in human is not a possibility, com-
puter modeling of related disease processes becomes an emerging approach and field that is
likely to grow immensely. By addressing these research ideas revealed by this project using
optimization and constraint-based linear programming, the field of microbial system biology
can be furthered to efficiently examine genome evolution.

Materials and Methods

Pangenome Metabolic Network Reconstruction
The metabolic model representing the E. coli pangenome (iEco1712_pan) used in this work
was previously reconstructed based on the gene to protein to reaction (GPR) information of 16
E. coli genomes obtained from the ASAP database [1]. Draft and complete genomes have been
continually updated using new publicly accessible genomes in the ASAP database since its
inception [13]. There currently are 39 genomes among more than 150 enterobacteria genomes
in the ASAP database that belong to E. coli, of which 16 are completely finished and were used

Table 4. Total number of predicted essential and important genes lost out of total predicted for each strain.

Host Niche Genes Lost/Total Predicted E. coli 53638 E. coli UTI89 Salmonella LT2 E. coli O157:H7

Macrophage essential genes 2/290 4/290 3/290 13/290

Macrophage important genes 20/366 17/366 22/366 58/366

Bloodstream essential genes 2/288 1/288 3/288 12/288

Bloodstream important genes 14/182 12/182 18/182 26/182

Urinary tract essential genes 2/304 6/304 4/304 12/304

Urinary tract important genes 9/151 11/151 15/151 19/151

doi:10.1371/journal.pone.0149423.t004

Table 5. Total number of predicted essential and important genes lost out of total predicted for each strain.

Host niche E. coli 53638 E. coli UTI89 Salmonella LT2 E. coli EDL933 (control)

Macrophage 22/656c 21/656c 25/656c 71/656a

Bloodstream 16/470a 13/470a 21/470a 38/470a

Urinary tract 11/455b 17/455b 19/455b 31/455a

aEvolutionary outcome agrees with in silico predictions for genome content
bEvolutionary outcome disagrees with in silico predictions for genome content
cEvolutionary outcome is within standard deviation with in silico predictions for genome content

doi:10.1371/journal.pone.0149423.t005
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in the construction of the metabolic model of E. coli pangenome (iEco1712_pan) [1]. The
reconstructed network contains metabolic enzymes present in a union of 76,080 Open Reading
Frames (ORFs) that map 17,647 Clusters of Orthologous Groups (COGs), with each ORF
being assigned to an COG in the ASAP database, and all of the information for model composi-
tion, GPR associations for the E. coli pangenome (iEco1712_pan) reconstruction used in this
work are available as supplemental information along with the sbml file for the iEco1712_pan
GEM [1].

Flux Balance Analysis
Flux balance analysis (FBA) has been commonly applied for mathematical analysis of GEMs,
which can predict reactions-related fluxes in a metabolic network [14]. By constraining fluxes
with steady-state mass balances, reaction directionality, and metabolite availability, a range of
possible flux values can be generated in FBA. An objective function then can be used to identify
flux distributions that maximize (or minimize) the objective function with those constraints.
Biomass production, a commonly used objective function for FBA performance and for a
proxy of growth, was adapted in this study [15]. FBA was conducted using the software pack-
age GAMS in this study, in which the E. coli pangenome metabolic network is described as a
stoichiometric matrix (Si,j) with rows (iЄI) representing the metabolites and columns (jЄJ)
indicating reactions that correspond to genes (gЄG). In a steady-state, the mass balance equa-
tion can be described as below, with v being the flux vector. Additional constraints are showed
as lower and upper limits for the values of fluxes through reactions in a network.

Max Vbiomass

s:t: Sij●v ¼ 0

vj;lb < vj < vj;up

ð1Þ

The matrix built for E. coli pangenome GEM contains 1,726 metabolites (I) and 2,324
reactions (J) that associate with 1,712 genes (G). Three different niches located in the human
body (macrophage, blood, and urinary tract) were simulated to set constraints for FBA in
this study, with possible metabolite compositions being identified through literature review
that determined analytical compositions of nutrients present in each bodily location. The
simulated condition for macrophage contains 32 metabolites, the bloodstream environment
contains 19 metabolites, while there are 14 metabolites that belong to the urinary tract niche
(Table 1).

Gene Essentiality
Unlike virulence factor genes [16], essential genes are those required to maintain critical cellu-
lar functions under specific environments, while important genes are not irreplaceable but still
necessary for robust bacterial growth under those conditions. To determine the essentiality of
genes expressed under different environmental pressures (macrophage cell, bloodstream, and
urine tract), genes were removed one-by-one in networks and the resulting changes in biomass
production rate can be estimated to reveal the impact of gene loss (a proxy for fitness). Follow-
ing each gene deletion, if the calculated value of biomass production rate was zero, meaning no
predicted intracellular growth, the gene would be considered essential. Important genes were
predicated based on>1% reduction of the wild type biomass production rate. A graphic
description on identifying essential genes and corresponding metabolic reactions using GEMs
constructing and computational predictions is showed in Fig 2.
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Supporting Information
S1 Data. Reactions predicted as important for all three simulated environmental condi-
tions and that differed during simulation of the human bloodstream, urinary tract, and
macrophage.
(XLSX)

S2 Data. Reactions corresponding to essential gene predictions for the E. coli pangenome
GEM. This file contains three tables, the first contains all predicted essential reactions during
simulation of human macrophage, the second contains all human bloodstream predicted
essential reactions, and the third contains predicted essential reactions during simulation of
the human urinary tract.
(XLSX)
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Fig 2. Essential gene identification using GEMs predictions under simulated environment. The GEM constructed upon pangenome incorporated from
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metabolic reactions under multiple human body niches.
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