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Abstract

The pleiotropic role of human secretin (hSCT) validates its potential use as a therapeutic
agent. Nevertheless, the structure of secretin in complex with its receptor is necessary to
develop a suitable therapeutic agent. Therefore, in an effort to design a three-dimensional
virtual homology model and identify a peptide agonist and/or antagonist for the human
secretin receptor (hSR), the significance of the primary sequence of secretin peptides in
allosteric binding and activation was elucidated using virtual docking, FRET competitive
binding and assessment of the cAMP response. Secretin analogs containing various N- or
C-terminal modifications were prepared based on previous findings of the role of these
domains in receptor binding and activation. These analogs exhibited very low or no binding
affinity in a virtual model, and were found to neither exhibit in vitro binding nor agonistic or
antagonistic properties. A parallel analysis of the analogs in the virtual model and in vitro
studies revealed instability of these peptide analogs to bind and activate the receptor.

Introduction

GPCRs are one of the largest receptor families [1]; these receptors share features in their molec-
ular structure and signaling mechanisms and are regulated by a wide range of ligands such as
hormones, peptides, neurotransmitters, chemokines, etc. GPCRs serve as the most important
link between extracellular conditions and intracellular responses and are involved in most
aspects of physiological processes [2]. Among GPCRs, the class B secretin receptor family has
been found to mediate a broad array of homeostatic functions hence, represents putative drug
target. Class B ligands such as calcitonin, glucagon and parathyroid hormone are currently
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used as therapeutic agents [3]. Secretin is a 27-residue linear peptide that is widely expressed
throughout the body [4]. Secretin receptors are present in central and peripheral tissues [5],
with an established role in the gastro-intestinal tract in which it regulates intraduodenal pH
[6], acid release, stomach motility [7] and insulin secretion [8]. Recently, the roles of secretin in
water balance [9], motor function [10], lipid homeostasis [11, 12], and appetite regulation [13]
have also been demonstrated. This integrated role in physiology makes secretin a potential tar-
get for the treatment of metabolic disorders. The lack of structural insights into the interaction
of hSR and secretin peptide remains the primary obstacle in the development of secretin ago-
nist/antagonist and using the natural ligand as a therapeutic agent has not been feasible because
of the short half-life of the peptide. Previously, most studies have investigated the physiological
role of secretin, without much knowledge about the structure of its receptor [14]. The struc-
tures of some class A [15, 16] (http://tools.gpcr.org/crystalstructure/table) and class C [17, 18]
GPCRs have been determined, and the entire structures of class B receptors [19, 20] have only
been recently elucidated. These structural studies have led to an understanding of the active
and inactive receptor conformations. Instead of distinct pharmacophores which are generally
seen in ligands, the class B GPCR receptor ligands have a distributed interaction interface with
its receptor [21]. It is also established that the extracellular C-terminal (Ct) region of the ligand
is necessary for initial binding to the receptor and is also responsible for the specificity and allo-
steric activity of the receptor. In contrast, the extracellular N-terminal (Nt) region of the ligand
is involved in secondary binding with the extracellular loop region and is responsible for down-
stream signaling [22-24]. Based on this information new molecules were designed in this study
with modifications in the Nt region, whereas secretin from various non-mammalian verte-
brates that contain variations in the Ct region were used as Ct-modified analogs to assess their
effect on the human secretin receptor (hSR). In the absence of an experimentally determined
structure for hSR, a homology-modeled 3D receptor structure was developed to provide addi-
tional details on the receptor-ligand interaction. These secretin analogs were studied in parallel
with virtual docking, in vitro binding and functional assays to investigate their interaction with
the hSR.

Experimental Methods
Materials

Human secretin, human glucagon, and secretin analogs 1-5 and 15-20 of greater than 95%
purity were purchased from GenScript, USA. The SNAP-tag vector (PLASCUST), Tag-lite™
labeling media (SSNPTBX), and Lumi4-Tb (SSNPTBD) were purchased from Cisbio, USA.
MEM media (61100-061), Versene (15040-066) and HBSS buffer (14025134) were purchased
from Gibco®™, Life Technologies. Primers were custom designed and purchased from Invitro-
gen. The HTRE-LANCE"™ cAMP assay kit (AD0262) was obtained from PerkinElmer. The
384-well black plates were purchased from (Greiner Bio-One, 788086). The MOE software was
licensed through Cloud Scientifics, China. Schrodinger software was licensed from Schrédinger
LLC.

Secretin peptide analogs

Different secretin peptide analogs were designed by using the primary amino acid of human
secretin mature peptide:
H,N-His-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-
Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val-COOH.
The following secretin peptide analogs were evaluated in this study:
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1. h[Pro*]SCT:
H,N-His-Pro-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-
Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

2. h[Ala'|SCT:
H,N-Ala-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-
Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

3. h[Leu']SCT:
HoN-Leu-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-
Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

4. h[(p-Cl,D-Phe*]SCT:
HZN—His—Ser—Asp—p—Cl,D—Phe4—Thr—Phe—Thr—Ser—Glu—Leu—Ser—Arg—
Leu-Arg-Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val-
COOH

5. h[(D-allyl,Gly*]SCT:
HoN-His-Ser-Asp-D-allyl,Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-
Leu-Arg-Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val-
COOH

6. hSCT(6_27)I
H,N-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-Glu-Gly-Ala-Arg-Leu-
Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

7. h[Cha*]SCT:
H,N-His-Ser-Asp-Cha-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-
Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

8. h[D-Asp’]SCT:
H,N-His-Ser-D-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-
Arg-Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

9. h[Tic'|SCT:
H,N-Tic-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-
Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

10. h[Cit']SCT:
HyN-Cit-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-
Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

11. h[pCO,H-Phe’]SCT:
H,N-His-Ser-pCO2HPhe-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-
Leu-Arg-Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val-
COOH

12. h[Orn']SCT:
H,N-Orn-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-
Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

13. h[Pro*|SCT:
H,N-His-Ser-Asp-Pro-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-
Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH
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14. h[Tyr4]SCT:
H,N-His-Ser-Asp-Tyr-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-
Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

15. Rat SCT
H,N-His-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Gln-
Asp-Ser-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val- COOH

16. Xenopus SCT
H,N-His-Val-Asp-Gly-Arg-Phe-Thr-Ser-Glu-Phe-Ser-Arg-Ala-Arg-
Gly-Ser-Ala-Ala-TIle-Arg-Lys-Ile-Ile-Asn-Ser—-Ala-Leu-Ala- COOH

17. Chicken SCT
H,N-His-Ser-Asp-Gly-Leu-Phe-Thr-Ser-Glu-Tyr-Ser-Lys-Met-Arg-
Gly-Asn-Ala-Gln-Val-Gln-Lys—-Phe-Ile-Gln-Asn-Leu-Met- COOH

18. Coelacanths SCT
H,N-His-Val-Asp-Gly-Leu-Phe-Thr-Ser-Glu-Leu-Ser-Lys-Leu-Arg-
Gly-Ser-Ala-Val-Ala-Arg-Ser-Phe-Thr-Asn-Ala-Val-Leu- COOH

19. Nt-SCT
H,N-His-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu- COOH

20. Ct-SCT
H,N-Arg-Glu-Gly-Ala-Arg-Leu-Gln-Arg-Leu-Leu-Gln-Gly-Leu-Val-
COOH

21. (19 + 20) (combinatorial treatment-both Nt and Ct analyzed as a cotreatment)

Chemicals and reagents

All Fmoc-amino-acid residues, O-benzotriazol-1-yl-N,N,N,N'-tetramethyluronium tetrafluoro-
borate (TBTU), and 1-hydroxybenzotriazole (HOBt) were purchased from PolyPeptide Labo-
ratories (Strasbourg, France), Novabiochem Merck Chemicals (Nottingham, UK) or Christof
Senn Laboratories (Dielsdorf, Switzerland). Preloaded 4-hydroxymethyl-phenoxymethyl-
copolystyrene-1%-divinylbenzene resin (Fmoc-Val-HMP) was obtained from Life Technolo-
gies (Villebon sur Yvette, France). N,N-Diisopropylethylamine (DIEA), piperidine, trifluoroa-
cetic acid (TFA), and triisopropylsilane (TIS) were obtained from Acros Organics (Geel,
Belgium). N-Methylpyrrolidone (NMP), dichloromethane (DCM) and other reagents were
purchased from Sigma-Aldrich (Saint-Quentin-Fallavier, France). Alexa Fluor™ 488 Cs malei-
mide thiol-selective dye was obtained from Life Technologies. Acetonitrile was purchased from
Fisher Scientific (llkirch, France). hSCT 4_»7), h[Tic']SCT, h[Cit']SCT, h[Orn']SCT,
h[D-Asp®]SCT, h[pCO,H-Phe’|SCT, h[Pro*]SCT, h[Tyr*]SCT and h[Gly*®, Cys*’]SCT were
synthesized as previously described [25]. Briefly, the hSCT analogs were synthesized
(0.1-mmol scale) by solid phase methodology on an Fmoc-Val-HMP or an Fmoc-Cys(Trt)-
HMP resin using a 433A Applied Biosystems peptide synthesizer (Applera-France, Courta-
boeuf, France) and the standard Fmoc manufacturer’s procedure. All Fmoc-amino-acids (1
mmol, 10 eq.) were coupled by in situ activation with TBTU/HOBt (1.25 mmol: 1.25 mmol,
12.5 eq.) and DIEA (2.5 mmol, 25 eq.) in NMP. Peptides were deprotected and cleaved from
the resin by adding 10 mL of TFA/TIS/H,0 (99.5:0.25:0.25, v/v/v) for 120 min at room temper-
ature. After filtration, crude peptides were precipitated by the addition of tert-butyl methyl
ether (TBME), centrifuged (4,500 rpm), washed twice with TBME, and lyophilized. The syn-
thetic peptides were purified by reversed-phase HPLC on a 2.2 x 25 cm Vydac 218TP1022 Cg
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column (Grace, Epernon, France) using a linear gradient (10-50% over 45 min) of acetonitrile/
TFA (99.9:0.1; v/v) at a flow rate of 10 mL/min. Analytical HPLC was performed using a 0.46 x
25 cm Vydac 218TP54 C,g column (Grace) and indicated that the purity of all peptides was
>99.1%. The purified peptides were characterized by MALDI-TOF mass spectrometry on a
Voyager DE PRO (Applera-France) in the reflector mode using a-cyano-4-hydroxycinnamic
acid as the matrix and peptides of known molecular mass for calibration. h[Gly*®, Cys**]SCT
(6.2 mg, 1.4 eq.) was dissolved in 10 mM phosphate buffer (8 mL, pH 7.4) at room temperature.
Alexa Fluor™ 488 C5 maleimide thiol-selective dye (1 mg, 1 eq.) was dissolved in 1 mL of water
and added dropwise to the h[Gly*®, Cys**]SCT solution. The reaction was monitored by
RP-HPLC until completion, and the reaction medium was lyophilized. The Cys*’-conjugate h
[Gly*®, Alexa-Cys*’]SCT was purified and characterized as previously described [25].

Homology modeling

The 3D model of hSR was prepared by modeling the Nt and the trans membrane (TM) region
separately. The Nt model was prepared using multiple templates like Nt region of the PACAP
receptor (PAC1) (PDB ID: 2JOD) [26] (Table 1), Nt region of the VPAC-2 receptor (PDB ID:
2X57) at 2.10 A resolution [27], the Nt region of the GLP-1 receptor (PDB ID: 3C5T) at 2.10 A
[28] etc. All the initial models were then evaluated by SAVES server (http://services.mbi.ucla.
edu/SAVES/) [29] and the model based on the template of Nt extracellular domain of human
pituitary adenylate cyclase 1 receptor (PDB ID: 3N94) (Figure A in S1 File) was found to be
the best structure [30] with sequence identity of 46.43 percent (Figure A in S1 File). The TM
backbone model was generated using the crystal structures of the glucagon receptor (PDB ID:
4L6R) at 3.30 A resolution [20] and corticotropin-releasing factor receptor 1 (PDB ID: 4K5Y)
at 2.98 A resolution [19] (Figure B in S1 File). The structure of the glucagon receptor (GCGR)
with sequence similarity of 49.63 percent was used as the primary template for the TM region.
The alignments were performed using the details available from Uniprot C [31] by fixing the
residues and regions according to sequence and structural similarity. The developed model was
validated for structural orientation and disulfide bonds. After validation, the Nt and TM were
fused at the over-hanged region (Figure C in S1 File) with the help of rigid docking by Pydock
[32] to produce 102 models which were later screened for correct orientation of EC domain
and TM region by structural validation, the tertiary structure of the receptor was compared
with other class B templates [24] reducing the suitable models to 28 and on further screening 5
models were observed to have the best ERRAT score (crystallographic errors) [33]. The best
model was selected based on the docking score between the receptor and ligands (hSCTF,
human vasoactive peptide (hVIP), human gastric inhibitory polypeptide (hGIP) and human
pituitary adenylate cyclase-activating polypeptide (hPACAP). The TM region was validated by

Table 1. Table showing percentage sequence similarity by pairwise alignment of the amino acid sequences with Nt and TM region of hSR.

Protein name PDB %sequence similarity of N-terminal %sequence similarity of TM
ID region. region

Pituitary adenylate cyclase-activating polypeptide type | receptor 2JOD 44.44

Vasoactive intestinal polypeptide receptor 2 2X57 33.00

Glucagon-like peptide 1 receptor 3C5T 27.19

Pituitary adenylate cyclase 1 Receptor 3N94 46.43

Soluble cytochrome b562 and Glucagon receptor chimera 4L6R - 51.91
Corticotropin-releasing factor receptor 1, T4-Lysozyme chimeric ~ 4K5Y - 35.63

construct

doi:10.1371/journal.pone.0149359.1001
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the help of ProQM which is the only model quality assessment algorithm for membrane pro-
tein [34]. The 3-D models of hGIP, hVIP and hPACAP were retrieved from the RCSB protein
data bank 20BU [35], 2RRH [36] and 2D2P (yet to be published), respectively. The homology
model of secretin and its analogs were also generated from solution NMR structures using
hPACAP (PDB ID: 2D2P) and, crystal structure of glucagon (PDB ID: 3I0L) [37]. The 3D
structures of analog number 5, 7, 9, 10 and 12 were not modeled due to unavailability of a tem-
plate with non-standard amino acids.

Virtual docking

The docking stimulation was performed using Schrodinger biological suite [38] and patch-
dock/firedock was used to estimate the docking score [39]. The refined and validated receptor
and ligand models were used for virtual docking. The receptor was analyzed for possible bind-
ing sites using Schrédinger biological suite for docking between hSCT and hSR models. Using
hSCT, hVIP as positive control and GIP and others as negative control, ligand model was first
docked with the five receptor models with the best ERRAT score in order to find the best dock-
ing site between hSCT and hSR EC domain [40]. The best model was used to calculate the
docking score with all the secretin analogs by patchdock/firedock. The peptide and the protein
were docked by patchdock and refinement was performed by firedock, the top 10 models after
firedock refinement were analyzed. The binding energy of the best-docked model (among the
top ten) at the correct binding site was used for affinity analysis. If the top ten structure with
the ligand at correct binding site were not available, structure with the highest delta G score
was used.

FRET binding assay

A non-radioactive binding assay was used to evaluate the binding affinity of the analogs [41].
SNAPtag-hSR-transfected CHO-KI cells expressed the hSR at the plasma membrane with a
SNAP-tag at the Nt region of the receptor. The cells were washed, and the SNAPtag-hSR was
labeled with 100 nM Lumi4Tb at 37°C for 1 h. The h[Gly*®, Alexa-Cys*’]SCT analog was used
as an acceptor. The labeled cells were detached with Versene and counted. In 384-well black
plates, 10,000 cells in 5 pL of labeling media, 5 uL of labeling media, 5 uL of labeled hSCT (final
concentration of 500 nM), and 5 pL of the peptide analogs (final concentration of 10 uM) were
added to each well. The microplate was centrifuged and incubated at 4-8°C for 1 h. Unlabeled
hSCT and hGLU were used as positive and negative controls, respectively. Peptide analogs that
exhibited binding at a concentration of 10 uM were evaluated for a dose response ranging from
107> M to 10™* M to determine the ICs, value. The nonspecific FRET signals were measured
with 100 pM unlabeled hSCT at respective concentrations of peptide analogs and was corrected
from the total binding. The absorbance was measured at 615 and 520 nm in a VICTOR™ X4
spectrofluorometer (PerkinElmer), and the FRET signals were analyzed.

Functional assays

Agonist-cAMP response. The cAMP responses in hSR-transfected CHO-K1 cells were
detected using the HTRF-LANCE®™ cAMP assay kit. After 48 h of transfection, the cells were
detached by nonenzymatic treatment using Versene. The cells were counted and processed
according to the manufacturer’s instructions to measure the cAMP response following cell
treatment with the secretin analogs. hSCT was used as a positive control. The TRF signals (340
nm excitation/665 nm emission) were detected using a VICTOR X4 spectrofluorometer (Perki-
nElmer), and the cAMP concentration was determined using a standard curve.
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Antagonist-cAMP response. The antagonistic properties of the peptide analogs were ana-
lyzed by coincubation of hSCT with increasing concentrations of the analogs, and the changes
in the cAMP responses were measured using the HTRF-LANCE"™ cAMP assay kit. The
detached cells were diluted in the stimulation buffer with Alexa Fluor™ 647-conjugated anti-
cAMP antibody, and 10,000 cells per well (10 pL) were seeded in 384-well microplates and
incubated with 5 uL of 5 nM hSCT plus 5 uL of the peptide analogs (10™*% to 107° M) for 30
min. hSCT was used as a positive control for agonist activity. Detection was subsequently per-
formed according to the manufacturer’s instructions.

Statistical analysis

All in vitro results were analyzed in quadruplicate, and the data are expressed as the

means + SEM. Significant differences were identified using Student’s t-test at p<0.05. The dose
response was analyzed using GraphPad Prism 5.0 software with a variable slope (four
parameters).

Results
Model building

The complete 3 dimensional model of hSR was created by in silico homology modeling
approach. As there is no direct template available for 3D modeling of full hSR, the Nt domain
was modeled with a multiple template approach separately from TM. First the Nt domain was
modeled with multiple templates and the best model was selected with the help of SAVES
(server analysis for model validation). The Ramachandran plot of the final model shows zero
residues in the outlier region by rampage [42] (Fig 1A). Verify 3D [43] results showed 81.18%
to have 3D-1D score > = 0.2. The TM region was then modeled using GCGR crystal structure
as the template. The template query alignment was performed without gaps in the helices and
gaps reduced to one in the loop region. These gaps were separately modeled using comparative
loop modeling (Fig 2). The structural geometry was validated with Ramachandran plot and
through confirmation of the beta sheet and helical conformation for the predicted backbone
[42, 44-46] (Fig 1B). The position of each outlier was analyzed and was found to be negligible
(Table 2). The model of the Nt and TM were fused by rigid body docking using Pydock [47]
(Fig 3). The best five models from a total of 102 were screened for structural validity. The ter-
tiary structure of the receptor was screened by comparison with other class B templates [24]

Pro-Pro Protrs. PP Protre.

Fig 1. Ramachandran plot structural validation by RAMPAGE of A) Nt sequence with zero residue in
disallowed region and B) TM region shows only five outlier residues. The detailed mapping of outliers
are explained in Table 2.

doi:10.1371/journal.pone.0149359.g001

PLOS ONE | DOI:10.1371/journal.pone.0149359 March 1,2016 7/19



D)
@ : PLOS | ONE SAR Studies of Secretin Analogs for the Human Secretin Receptor

<

AN

Fig 2. Comperitive loop modeling of the ECL region. The best fit loop with reduced outliers is chosen.

doi:10.1371/journal.pone.0149359.9002

and by considering the best ERRAT value. This models were screened by ProQM which is the
only model quality assessment algorithm for membrane protein (Fig 4). The binding site of
SCT on to the receptor was determined by Schrodinger protein-protein docking algorithm (Fig
3B). The docking site was confirmed using binding energy estimation by docking the receptor
with hVIP, hPACAP and hGIP (Table 3).
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Table 2. Ramachandran plot outliers.

S. No Residue (Outlier) Region

Fle1 269 Asn TM 4 helical region
2 367 Glu ECL6

3 291 Asn ECL4

4 361 Ser TM 6 helical region
5 367 Glu ECL3

Less than 2% were outliers; all the outliers were in insignificant positions when docking.

doi:10.1371/journal.pone.0149359.t002

Model verification by in vitro assay

The model was validated by verifying the docking score and by in vitro cAMP (Fig 5) and
FRET binding assays (Fig 6). The assay results were consistent with the docking results where
hSCT was used as a positive control. Peptides like hVIP, hPACAP were found to exhibit some
binding affinities in docking analyses could also activate hSR to produce cAMP, and their inter-
actions with hSR were also confirmed by the FRET assay. The binding energy of hSCT, hVIP
and hPACAP were -11.53, -9.51 and -6.31, respectively, while hGIP has a binding energy of
+10.63, clearly indicates its inability to interact with hSR.

Virtual docking and cAMP studies on hSCT analogs

Structures of hSCT analogs were prepared by homology modeling and were used for virtual
docking with hSR. Functional cAMP assays were performed in parallel to confirm the docking

»
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Fig 3. A)The final 3D model generated and refined using multiple templates. B) The model with docked hSCT (red) shows the binding site at the Nt of the
receptor.

doi:10.1371/journal.pone.0149359.9003
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full receptor model showing preferred quality value to be higher than 0.4 for TM region (after 120
amino acid residue).

doi:10.1371/journal.pone.0149359.9g004

result and to test the ability of any of these analogs acting as agonist or antagonist. The best
model was used to calculate the binding energy of these secretin analogs. All the analogs, with
the exception of analog 15 (rat secretin) that showed very high delta G, exhibited low binding
potential at the binding site (Table 4). The binding affinity of these SCT analogs were further
evaluated, and only rat SCT was found to exhibit binding affinity for hSR (Fig 7) with an IC5,
value of 0.40 + 0.35 nM, which is higher than that of hSCT (1.6 £ 1.1 nM). The virtual docking
and in vitro binding assay show positive correlation for class B ligands (Table 4). Through
cAMP assays, only rat SCT was identified as an agonist of hSR, whereas all other SCT analogs
exhibited neither agonistic nor antagonistic properties (Figure D in S1 File).

Discussion

The structural elucidation of membrane proteins, particularly GPCRs, is challenging. There-
fore, homology modeling is a tempting alternative to generate a virtual 3D model of these
receptors that can be used as a primary tool in virtual screening to understand the binding
affinity against a library of analogs. GPCRs possess a similar topology and activation mecha-
nism [48, 49]. In this study, we have used a multiple-template approach to generate a 3D
model of the hSR. Both the Nt and the TM regions have been individually modeled using
respective templates for the active state receptor conformations. The secondary structure of the
final Nt-TM fused model was studied/analyzed for structural validity. The tertiary structure of
the receptor was compared with other class B templates [24]. The structural geometry was
assessed using Ramachandran plot (Fig 3), all of the five outliers were found to lie in the non-
binding regions and the total outliers are below 2%. The model was further virtually confirmed
by docking with hSCT and class B ligands and experimentally confirmed using biological
assays. There has been an allosteric model proposed on receptor activation in class B GPCRs

Table 3. Virtual docking: Validation.

Peptide Total binding energy Binding affinity In vitro IC5q
hSCT -11.53 ++++ 1.630 + 3.55 nM
hVIP -9.51 +++ 3.082 + 1.06 uM

hPACAP -6.31 ++ -
hGIP +10.63 - -

Both hSCT and hVIP exhibit binding affinity in the virtual model and in the in vitro assay. In the in vitro
assay, hPACAP binds at only high concentrations, which indicates weak binding affinity in the virtual
docking.

doi:10.1371/journal.pone.0149359.t003
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Fig 5. cAMP assay for different peptides ligands to check the activation of the receptor were hSCT acts as a positive control.

doi:10.1371/journal.pone.0149359.9005

where the C terminal of the peptide hormone first interacts with the Nt domain of the receptor
while the N-terminal of the ligand subsequently interacts with the extracellular TM loops [50-
56]. It is also worth mentioning here that there is a different model for hSR activation. It was
found that minor modification at the N-terminal of the secretin peptide resulted in no direct
interaction of the ligand with the receptor TM loops, but binding of the ligand only with the Nt
of the secretin receptor was sufficient to activate the receptor [57]. This observation suggests
the presence of an agonist epitope hidden within the receptor Nt [58], and it was hypothesized
that the binding of natural ligands to the conserved disulfide-bonded in the N-terminal domain
of the receptor may lead to a conformational change in the N-terminal for receptor activation
[59]. In virtual docking, hSCT, hPACAP and hVIP were found to bind hSR with high binding
energy in respective order. In vitro experiments revealed that hPACAP and hVIP also bind to
hSR and activate downstream signaling, but only at high concentrations. These results confirm
the weak affinity of hPACAP and hVIP for hSR and support the specificity of our active recep-
tor model, hence the model may serve as a tool to identify agonists or antagonists by targeting
the active binding site. We have therefore used this hSR model for virtual docking of the pep-
tide analogs that we have synthesized. We found those analogs with modifications in either the
Nt or the Ct region exhibited very low or no binding affinity for the receptor. However, human
and rat SCT exhibited strong ligand interactions with good docking scores. Frog, chicken and
coelacanth SCT exhibited docking scores lower than the one observed for hSCT. To verify the
in silico data, all these analogs were studied by in vitro FRET-based competitive binding assay.
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Fig 6. FRET binding—dose response of the active analog 15. hSCT served as the positive control, and hGLU served as the negative control. Rat SCT

indicates analog 15.

doi:10.1371/journal.pone.0149359.9006

In this assay, FRET signals were detected only when the labeled Nt of the receptor and the Ct
of the labeled ligand were in close proximity. In this study, only human and rat SCT's could
bind to hSR (IC54 1.6 + 1.1 and 0.40 + 0.35 nM, respectively). Frog, chicken, coelacanth SCT
and all other SCT analogs did not exhibit binding affinity even at a high concentration (Fig 6).
As GPCRs are known to possess more than one binding site, we have also tested the agonistic
(Table 5) or antagonistic properties of these analogs by cAMP assays (Figure D in S1 File), but
none of these analogs exhibit activities excluding the possibility of allosteric binding for these
modified peptide analogs, which is consistent with the virtual docking data.

GPCRs possess a similar topology and activation mechanism [48, 49]. Receptor-ligand inter-
actions give rise to structural changes that result in multiple conformations, which is evident
from the active and the inactive states [60, 61]. Recent studies have shown both interesting and
complex processes of GPCR ligand responses, with different signaling outcomes upon activation
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Table 4. Comparison of virtual and in vitro results for the peptide analogs.

Analogs Total binding energy In vitro binding Agonistic response Antagonistic response
hSCT -11.53 Present Present Absent
Analog 1 +7465.64 Unstable Absent Absent
Analog 2 > +1387.81 Unstable Absent Absent
Analog 3 > +1387.81 Unstable Absent Absent
Analog 4 >+12.18 Unstable Absent Absent
Analog 5 - Unstable Absent Absent
Analog 6 +12.30 Unstable Absent Absent
Analog 7 - Unstable Absent Absent
Analog 8 +4.69 Unstable Absent Absent
Analog 9 - Unstable Absent Absent
Analog 10 - Unstable Absent Absent
Analog 11 >1387.81 Unstable Absent Absent
Analog 12 - Unstable Absent Absent
Analog 13 +1010.29 Unstable Absent Absent
Analog 14 >+10.24 Unstable Absent Absent
Analog 15 -10.21 Present Present Absent
Analog 16 -1.38 Absent Absent Absent
Analog 17 +14.45 Absent Absent Absent
Analog 18 +4.23 Absent Absent Absent
Analog 19 >+77.89 Unstable Absent Absent
Analog 20 >+3541.03 Unstable Absent Absent
Analog 21 Unstable Absent Absent

The analogs containing Nt and Ct modifications were screened for virtual interactions and exhibit affinity for the active receptor model, whereas in the in
vitro assay with the receptor in the resting state, the analogs fail to bind or activate the receptor. Model of analog 5, 7, 9, 10 and 12 were not modeled due
to unavailability of a template with non-standard amino acids.

doi:10.1371/journal.pone.0149359.t004
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Peptide analogs at 10uM

Fig 7. The binding efficiency of peptide analogs at 10 uM in the FRET competitive binding assay. High FRET signals indicate no binding, whereas low
FRET signals indicate binding. Peptide analog 15 exhibits significant binding affinity at 10 uM, in contrast to the remaining analogs. *, p < 0.0005.

doi:10.1371/journal.pone.0149359.9007
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Table 5. Pair wise sequence alignment of all analogs with hSCT.

hSCTIPOS683 H S D G T F T S E L S R L R E G A R L Q R L L Q G L V
1analog H P D G T F T S E L S8 R L R E G A R L Q R L L Q G L V
2analog A S D G T F T S E L S R L R E G A R L Q R L L Q G L V
3analog L s b G T F T S E L S R L R E G A R L Q R L L Q G L V
4analog H 8§ D F T F T S E L 8 R L R E G A R L Q R L L Q G L V
5analog H 8§ D G T F T S E L 8§ R L R E G A R L Q R L L Q G L V
6analog F T 8§ E L S R L R E G A R L Q R L L Q G L V
7analog H 8§ D ¢ T F T S E L S R L R E G A R L Q R L L Q G L V
8analog H p D G T F T S E L S R L R E G A R L Q R L L Q G L V
9analog T 8§ b G T F T S E L S R L R E G A R L Q R L L Q@ G L V
10analog c s b G T F T S E L S R L R E G A R L Q R L L Q G L V
11analog H S F G T F T S E L S R L R E G A R L Q R L L Q G L V
12analog O s b G T F T S E L S R L R E G A R L Q R L L Q G L V
13analog H §s D P T F T S E L S R L R E G A R L Q R L L Q G L V
14analog H 8§ DY T F T S E L S8 R L R E G A R L Q R L L Q G L V
15analog H S D G T F T S E L S R L Q@ D S A R L Q R L L Q G L V
16analog H v D G R F T S E F S R A R E GSA A | R K 1 I N S A L A
17analog H S D G L F T S E Y S K M R E GNA Q V Q@ V K F 1 Q N L M
18analog H S b G T F T 8 E L S R L R E GS AV A R S F T N A V L
19analog H 8§ b G T F T S E L S R L

20analog R E G A R L Q R L L Q G L V

Peptide sequence alignment of all the peptide analogs of hSCT with modification highlighted in yellow.

doi:10.1371/journal.pone.0149359.t005

[62]. The pharmacophores of hSCT are spread throughout the native ligand, as a result, the
binding between the receptor and the SCT analogs could not be established due to instability/
inefficiency. For class B GPCRes, it was hypothesized that the Ct region of the ligand is involved
in initial receptor binding, and the Nt region is involved in receptor activation [23]. In summary,
both in vitro and in silico studies indicate that small modifications in either the Ct or Nt of SCT
result in complete abolishment of their activity in activating the receptor. Analog 15 (rSCT) has
modification in the center of the peptide, and hence remains active. In analyzing the binding
energy score, the main deviation was in the repulsive van der waals forces, and these forces were
low in hSCT, rSCT, hVIP, hPACAP while all other peptide analogs have very high values

(Table 6). Van der waals force is the sum of the attractive and repulsive force between molecules
caused by fluctuating polarization of nearby particles [63]. The net total of van der waals forces
can be attractive or repulsive [64]. The repulsive van der waals force in the peptide analogs
(excluding rat secretin) were significantly elevated which is the main reason for the decrease in
their binding affinities. Analyses of the docked structures by ligPlot+v.1.4.5 [41] reveal changes
in the ligand-receptor interactions for all the analogs (Figure E in S1 File) due to changes in the
secondary structures arising from amino acid substitutions. It may be augmented that due to
the small size of the ligand, minor modification can result in dramatic changes to its structure,
resulting in loss of function. It was believed that the C-terminal of secretin is crucial to its initial
interaction with the receptor while the N-terminal for subsequent activation of the receptor. Nt
(activation region) modified analogs with the intact Ct should theoretically be able to interact
with the receptor and may function as antagonists, but none of these Nt-modified analogs could
bind or affect the cAMP response of hSR. In our study, modifications of either the N- or the C-
terminal resulted in a loss of function as well as loss of affinity for the receptor, shown though

PLOS ONE | DOI:10.1371/journal.pone.0149359 March 1,2016 14/19
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Table 6. Expanded solution table of the docking files.

Peptide glob avdw rvdw ACE inside aElec rElec laElec IrElec HB piS catpiS aliph
hSCT -11.53 -26.35 9.03 7.94 11.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
hVIP -9.51 -14.44 5.23 -1.80 15.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
hPACAP -6.31 -13.73 5.41 2.61 8.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
hGIP 10.63 -7.29 9.27 3.02 13.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Analoge 1 7465.64 -48.23 9461.27 -23.70 9.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Analoge 6 12.30 -5.59 1.32 8.49 8.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Analoge 8 4.69 -12.99 7.65 2.73 19.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Analoge 13 1010.29 -49.82 1367.15 -7.93 6.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Analoge 15 -10.21 -15.70 4.90 -0.79 15.27 0.00 0.00 0.00 0.00 0.00 -0.50 0.00 0.00
Analoge 16 -1.38 -14.11 414 6.24 9.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Analoge 17 14.45 -9.12 4.91 7.43 17.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Solution table of the hSR model docked files with respective ligands at the binding site

glob—Gilobal Energy, the binding energy of the solution

aVdW, rVdW—softened attractive and repulsive van der Waals energy
ACE—atomic contact energy (ACE)

inside—insideness measure

aElec,rElec—attractive and repulsive short-range Coulomb electrostatics
laElec, IrElec—attractive and repulsive long-range Coulomb electrostatics
HB—hydrogen and disulfide bonds

piS—PI-PI stacking

catpiS—cation-PI stacking

aliph—aliphatic interactions

doi:10.1371/journal.pone.0149359.t006

cAMP and FRET studies as well as in virtual docking. Consistently, we have shown that both
termini of the peptide play important roles in binding with hSR.

Supporting Information

S1 File. Fig A of S1. Primary sequence alignment of HSR. Depicts the primary sequence
alignment of HSR fasta sequence with Class B N-terminal templates PACAP N-terminal (PDB
2JOD), VIPR N-terminal (PDB 2X57) and GLPR-1 N-terminal (PDB 3C5T). The NT con-
straints were preserved and aligned for HSR NT modeling. Fig B of S1. The primary sequence
is alignment hSR. The primary sequence is aligned and highlighted in seven different colors
depicting the TM1 to TM?7. Fig C of S1. Template alignment for the fused model of hSR.
Template alignment for the fused model of hSR. The highlighted regions in pink color, is the
NT model to replace the region highlighted in blue color, are the NT overhang region of the
TM model. The fused model sequence would be as shown in the consensus. Fig D of S1. Ago-
nistic and antagonistic response of the analogs. 1A-21A shows the agonistic response of the
analogs at various doses and 1B -21B shows the antagonistic response of the same analogs in
the presence of 5 nM secretin. Fig E of S1. Docking model with different peptides. The bind-
ing between the receptor model and different ligands including hSCT and hGIP as positive and
negative control respectively. Analog 1, 8 and 13 is used as a representation of single amino
acid substitution. Analog 6 19 and 20 as representation as middle, N terminal and C terminal
subunits. Analog 15 (rat secretin) is shown as representation of amino acid substitution at cen-
ter which also was capable of activating the receptor.

(DOCX)
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