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Abstract
Spatially continuous predictions of seabed hardness are important baseline environmental

information for sustainable management of Australia’s marine jurisdiction. Seabed hard-

ness is often inferred from multibeam backscatter data with unknown accuracy and can be

inferred from underwater video footage at limited locations. In this study, we classified the

seabed into four classes based on two new seabed hardness classification schemes (i.e.,

hard90 and hard70). We developed optimal predictive models to predict seabed hardness

using random forest (RF) based on the point data of hardness classes and spatially continu-

ous multibeam data. Five feature selection (FS) methods that are variable importance (VI),

averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regular-

ized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated,

important and unimportant predictors on the accuracy of RF predictive models were exam-

ined. Finally, spatial predictions generated using the most accurate models were visually

examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective sea-

bed hardness classification schemes; 2) seabed hardness of four classes can be predicted

with a high degree of accuracy; 3) the typical approach used to pre-select predictive vari-

ables by excluding highly correlated variables needs to be re-examined; 4) the identification

of the important and unimportant predictors provides useful guidelines for further improving

predictive models; 5) FS methods select the most accurate predictive model(s) instead of

the most parsimonious ones, and AVI and Boruta are recommended for future studies; and

6) RF is an effective modelling method with high predictive accuracy for multi-level categori-

cal data and can be applied to ‘small p and large n’ problems in environmental sciences.

Additionally, automated computational programs for AVI need to be developed to increase

its computational efficiency and caution should be taken when applying filter FS methods in

selecting predictive models.
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Introduction
Seabed substrate data is important baseline environmental information for supporting the sus-
tainable management of Australia’s marine jurisdiction. Seabed substrate is an important factor
controlling the spatial distribution of benthic marine communities as it influences the colonisa-
tion and formation of ecological communities and the abundance of benthic organisms [1–6].
Seabed hardness is an important character of seabed substrate as it may influence the nature of
attachment of an organism to the seabed [6]. Hard substrates provide environments that gener-
ally support sessile suspension feeders, while soft (unconsolidated) substrates generally support
discrete motile invertebrates [5]. Hence, a spatially continuous measurement of seabed hard-
ness would be a significant aid in predicting the spatial distribution of benthic marine commu-
nities and thus to marine ecosystem management. Moreover, it can also be used for the
sustainable exploitation of marine resources and planning infrastructure (e.g. selection of pipe-
line routes).

Despite its importance, seabed hardness data is often difficult to acquire [7]. It can be
directly measured at (often widely-dispersed) discrete locations, inferred from underwater
video footage at discrete locations over small areas [8], or inferred from multibeam backscatter
data [9–11]. However, there are disadvantages associated with these methods. For example, the
direct measurements are only available at point locations, and the inferred data are either only
available at discrete locations over small areas or their accuracy is unknown and may be
affected by many factors [7, 12]. Therefore, predictive modelling provides an alternative
approach to generate spatially continuous data of seabed hardness [7], where seabed hardness
was classified into two classes (i.e. hard/soft binary data) according to the approach by Stein
et al. [8] that is however difficult to use for certain substratum compositions. Moreover, all
mixed classes were classified into hard class [7], so the relevant information of the mixed clas-
ses is missing for the management of associated habitats. However, no study has been con-
ducted on predicting seabed hardness based on four classes data yet.

Predictive variables are essential to making predictions of seabed hardness. Physical proper-
ties derived from multibeam backscatter and bathymetry have proven to be useful predictors
for predicting seabed hardness [7, 12]. Multibeam data collection can result in hardness and
roughness maps which differentiate between different substrate types of the seabed [13]. At
regional and continental scales, seabed sediments are often strongly correlated to bathymetry
[14, 15]. At these scales, bathymetry and its derived properties are informative predictors of
seabed substrate types. Moreover, recent technological advancements in sonar equipment have
significantly increased the amount of biophysical data for making spatially continuous predic-
tions of seabed hardness.

To predict seabed hardness, one of the most important decisions to make is to identify the
best modelling technique that can generate a surface to truthfully represent seabed hardness.
Random forest (RF) developed by Ho [16, 17] and Breiman [18, 19] has proven to have high
predictive accuracy (PA) in data mining and many other disciplines [20–24]. It outperformed a
number of statistical modelling techniques for spatial prediction using continuous data in the
marine environmental sciences [14, 25, 26]. Hence, it was applied to predicting the spatial dis-
tribution of seabed hardness based on two classes and again achieved high PA [7]. In a recent
study, seabed substrate types were predicted based on four textural classes derived from relative
proportions of sediment grain size and their ratio [27]; and RF was again found to be one of
the most accurate methods. However, its predictions were for grain size ranging from mud to
gravel, which falls into the soft class according to Li et al. [7]. In addition, a Self-Organising
Map and a hierarchical clustering method were jointly applied to angular backscatter response
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curves and produced seabed hardness classification with multiple classes, but its accuracy was
less than RF and the results were not spatially continuous [12].

Model selection is essential for identifying an optimal predictive model and various methods
have been developed [28–30]. However, it is often argued that model selection is less important
for RF, because: 1) RF is insensitive to un-important variables, as it selects the most important
variable at each node split [23]; 2) it is of high predictive performance even when most predic-
tive variables are noisy [21]; and 3) its PA depends only on the number of strong features and
not on the number of noisy variables if sample sizes are large (500 to 1000) [31]. It was found
that excluding the correlated variables may improve the PA [25, 32, 33]. In contrast, it was
observed that including some correlated variables could improve the PA [7, 15, 34, 35], sug-
gesting that correlated variables may be able to compensate for the small number of predictors
generally found in the environmental sciences. These contradictory findings demonstrate that
model selection is necessary for identifying an optimal predictive model for RF.

A model selection procedure for RF was developed previously by Li et al. [7] and it selects
the predictors based on the variable importance produced from RF [36]. This is a stepwise pro-
cedure using both forward and backward selection to add or eliminate predictors, which is sim-
ilar to what has been proposed in recent studies [37, 38], but uses PA to determine the
selection of each predictive variable. In the environmental sciences, predictive variables are
often correlated, which may affect the observed variable importance for the predictors when
using RF. To deal with this, an R package ‘extendedForest’ [39] was developed to compensate
for the shortcomings in the existing RF package by Liaw and Wiener [36]. Furthermore, two R
functions, Boruta [40] and RRF (i.e. regularized RF) [41], were developed to automatically
search for the important predictors for RF. All these studies provide fundamental tools for
selecting the important predictors in this study.

In this study, we aim to select the most accurate model to predict the spatial distribution of
seabed hardness based on four classes of seabed hardness. To achieve this, we: 1) introduced
two new classification schemes for seabed video classification; 2) tested the effects of various
predictor sets on the accuracy of RF predictive models based on video classifications and sea-
bed biophysical variables; and 3) examined the influence of five feature selection (FS) methods
on the most accurate predictive model identified. Finally, the most accurate models were used
to predict the spatial distribution of seabed hardness and the predictions were visually exam-
ined and compared with the predictions of hardness in two classes [7].

Methods

Study region
The study region is located in the eastern Joseph Bonaparte Gulf, northern Australian marine
margin (Fig 1A). Four areas (A—D) in the region were used in this study (Fig 1B), which were
surveyed in 2009 [42] and 2010 [43] under the permissions of Geoscience Australia and Depart-
ment of the Environment, Water Heritage and the Arts. In these surveys, high-resolution multi-
beam bathymetry and backscatter data and co-located underwater video transects were acquired
across the four areas (Fig 1B). The areas comprise a spatially complex suite of geomorphic fea-
tures including shallow flat-topped banks, terraces, ridges, deep valleys and plains (Fig 1C).

Schemes for deriving seabed hardness from underwater video
observations

Estimation of substratum composition. The seabed and associated epibenthos (Fig 1B)
were recorded along underwater video transects using a forward-facing towed-video system.
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The video footage was analysed based on a 15-second window for each transect to classify sub-
stratum composition [44]. The substratum composition was visually estimated to 5% precision
[45] in terms of seven size-class categories of rock, boulders, cobble, rubble, gravel, sand and
mud as defined by [46]. While this method is subjective and may not be as precise as the regu-
larly used point-count method, previous studies have proven it to be highly comparable and
less time-consuming [45]. The definitions and representative images of these categories are
provided in S1 File.

We grouped substratum composition into two categories: soft and hard materials. Anything
larger than gravel (i.e. rubble, cobbles, boulders and bedrock) was classified as ‘hard’material,
while mud, sand and gravel were classified as ‘soft’material according to Stein et al. [8]. For a
given location, the sum of total hard and total soft cover (i.e. the percentage of ‘hard’ and ‘soft’
materials) was always 100%. Additionally, the presence of epibenthic communities provides
additional information to correctly classify substratum. For instance, biota/benthic organisms
(i.e. sessile organisms like sponges, hard corals and octocorals) that require hard substratum
for growth [1, 3, 4, 47, 48] were found in amongst soft substratum according to the video data
alone.

Seabed hardness classification. Seabed substratum is usually classified based on the video
footage according to the approach by Stein et al. [8]. However for certain substratum composi-
tions, it is difficult to apply. For example, for a substratum composition with 40% sand, 45%
pebble and 15% gravel, it is impossible to apply this approach. Therefore, to overcome such
issues we developed two new systems by modifying Stein et al.’s approach as below.

On the basis of Stein et al. [8], we developed a new system to classify the seabed substrate
into four categories: hard, hard-soft, soft-hard and soft. If a substratum consisted of>70%
hard material, it was classed as ‘hard’. If it consisted of�70% and>50% hard material, it was
classed as ‘hard-soft’. If it consisted of<50% and�30% hard material, it was classed as ‘soft-
hard’. And if it consisted of<30% hard material, it was classed as ‘soft’. This classification sys-
tem is hereinafter referred to as ‘hard70’ in this study. This system would produce similar
results as Stein et al. [8], but could avoid some issues associated with the concepts of primary
and secondary substrate in Stein et al. [8] as discussed above.

Fig 1. a) Location of the study region in the eastern Joseph Bonaparte Gulf, northern Australian marine margin overlaid with bathymetry; b) location of the
four study areas (A, B, C, and D) in the study region and seabed hardness types (hard, hard-soft, soft-hard and soft) based on hard90 overlaid with
bathymetry at video transect; and c) the geomorphic features of the four study areas.

doi:10.1371/journal.pone.0149089.g001
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Our initial assessment showed that our samples were mostly classified as ‘soft’, while a small
number of samples were ‘hard’, leaving a limited number of samples for the mixed classes
when hard70 was employed. Hence, another new classification system is proposed in this
study. If a substratum consisted of�90% hard material, it was classed as ‘hard’. If it consisted
of<90% and>50% hard material, it was classed as ‘hard-soft’. If it consisted of<50% and
>10% hard material, it was classed as ‘soft-hard’. And if it consisted of� 10% hard material, it
was classed as ‘soft’. This system is hereinafter referred to as ‘hard90’.

In these two classification systems, a substrate consisting of 50% ‘hard’ and 50% ‘soft’mate-
rials was assumed to be non-existent. If it indeed exists in reality, we would need to re-examine
the video images and decide which one has greater cover or assign a fifth class to the system(s).
However, this is not the case in this study. In total, 140 samples of seabed hardness were con-
sidered in this study. Of the 140 samples, 9 and 6 samples were recorded as hard, 11 and 14
hard-soft, 6 and 9 soft-hard and 114 and 111 soft based on hard70 and hard90 systems respec-
tively. The resultant datasets were used to predict seabed hardness, with hardness classes based
on hard90 presented in Fig 1B.

Predictive variables
Following a preliminary analysis based on data availability and the relationships with seabed
hardness as discussed above and in previous studies [7, 9–12], 41 predictive variables (i.e. fea-
tures) were initially selected for this study. They are:

1. Easting,

2. Northing,

3. Bathymetry (bathy): a measure of depth of bodies of water,

4. Local Moran I of bathymetry(bathy.moran): a measure of local spatial autocorrelation
in bathymetry,

5. Planar curvature (planar.curv): a curvature of the surface perpendicular to the slope
direction (second derivative of bathymetry),

6. Profile curvature (profile.curv): a curvature of the surface in the direction of slope (sec-
ond derivative of bathymetry),

7. Topographic relief (relief): a measure of difference between the highest and the lowest
points (variance) in the surrounding cells,

8. Seabed slope (slope): slope gradient (first derivative of bathymetry),

9. Surface area (surface): the ratio of the “true” surface area and its “planar” surface area,

10. Topographic position index (tpi): a measure of difference between a cell elevation and
the average of the elevation values in the surrounding cells,

11–37. Backscatter (bs10 to bs36): a diffused reflection of acoustic energy due to scattering
process back to the direction from which it's been generated, measured as the ratio of
the acoustic energy sent to a seabed to that returned from the seabed, normalised to
incidence angles between 10° and 36°,

38. Homogeneity of backscatter (homogeneity): a measure of closeness of the distribution
of elements in the Gray-Level Co-occurrence Matrix (GLCM) to the GLCM diagonal,
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39. Variance of backscatter (variance): a measure of the dispersion of the values around
the mean within the GLCM,

40. Local Moran I of backscatter (bs.moran): a measure of local spatial autocorrelation in
backscatter, and

41. Prock: the probability of hard substrate.

The first two variables are the coordinates of sample locations. The next eight variables are
bathymetry and its derived variables. The remaining 31 variables are backscatter and its derived
variables. Acquisition and processing of multibeam bathymetry, backscatter and their derived
variables, and prock have been detailed in previous studies [12] and in relevant online metadata
[49–61]. All these variables were available at each grid cell to a 10 m resolution in the four
study areas for generating the spatial predictions of seabed hardness and are freely available
[49–61]. These 41 variables were also available at 140 sample locations for developing models
to predict seabed hardness. The dataset for developing predictive models in this paper is pro-
vided as S2 File, where the study areas and hardness are factors and all the variables are
numerical.

Selecting predictors based on correlation analysis
There were strong correlations among some predictive variables based on Spearman’s rank
correlation that was used due to non-linear relationships between some variables. We removed
21 backscatter (bs) variables that were perfectly correlated with other variables or with a ρ =
0.99, which is usually called a correlation-based filter FS method [28, 62]. The selection was
also according to their relation with the total hard (i.e., whether they displayed a better rela-
tionship with total hard) and their correlation coefficients with other bs variables. The bs25
should have been removed according to the above selection criteria, but was retained because it
was used in a previous study [7]. The Pearson’s correlation (r) was also derived for the remain-
ing bs variables. The correlations of the remaining 20 variables (Table 1) and seabed hardness
(i.e., hard total, the percentage cover of hard materials) were presented in Table 2.

Seabed hardness (total hard) was strongly correlated with prock, bathy, and bs and its
derived variables; while it was weakly correlated with northing, planar.curv, profile.curv, slope
and variance (Table 2). The relationships among the 20 variables were further illustrated in S1
Fig. High prock values were typically associated with “hard” substrate (S1 Fig). In contrast, low
prock values were associated with “soft” substrate. While a similar pattern was observed for
backscatter, bathymetry showed an opposite pattern with a negative correlation (Table 2).

Table 1. Predictive variables and their corresponding number.

No. Predictive variable No. Predictive variable

1 easting 11 tpi

2 northing 12 bs13

3 prock 13 bs21

4 bathy 14 bs25

5 bathy.moran 15 bs27

6 planar.curv 16 bs32

7 profile.curv 17 bs35

8 relief 18 homogeneity

9 slope 19 variance

10 surface 20 bs.moran

doi:10.1371/journal.pone.0149089.t001
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These relationships were typically non-linear. These variables could potentially be good predic-
tors of seabed hardness.

Application of RF
Random forest, as briefly described in [7], is an ensemble machine learning method that com-
bines many individual regression or classification trees in the following way: from the original
sample, many bootstrap samples and portions of predictive variables are drawn, and an
unpruned regression or classification tree is fit to each bootstrap sample using the sampled var-
iables. From the complete forest, the status of the response variable is usually predicted either
as an average of the predictions of all trees for regression or as the class with the majority vote
for classification [18, 63].

The R function, randomForest by Liaw andWiener [36], was employed to develop a model
to predict the spatial distribution of seabed hardness. The default values ofmtry, ntree and
nodesize are often good options [21, 36] that were also observed in marine environmental sci-
ences [7, 15], so the default values were used for these parameters.

Feature selection
The model selection was based on a procedure developed for RF in previous studies [7, 34, 64],
which involved two steps. One step was to select predictors to form a model that is often
termed as feature selection, and the other was to estimate the predictive accuracy of the model
formed that is addressed in the next section. To select predictive variables, we adopted the
same principle used in rfcv, a cross-validation function in the randomForest package [36], that
is, identifying and removing the least important variables based on the importance of predic-
tive variables.

Five FS methods were used to select predictors in this study based on all 140 samples. These
methods are: 1) the variable importance (VI), 2) averaged variable importance (AVI), 3)
knowledge informed AVI (KIAVI), 4) Boruta and 5) RRF. The first method (i.e., VI) was based
on the procedure in a previous study [7] as detailed below and was applied to hard90 data with
20 variables. For this FS method, we initially used all 20 variables to establish the full model.
We then reduced the full model by gradually removing the least important variable(s) from the
previous model based on the variable importance measure by RF (see Fig A in S3 File), which
resulted in 22 models (see Table 3). Two exceptions to this are that: 1) for model 18 and 19,
since bs25 and bs27 are equally important, we excluded them from model 17 respectively; and
2) for model 22, we included it because prock was the most important predictor in a previous
study [7]. After reaching the model with minimum number of predictors (i.e. only one predic-
tor remained), we then identified the important predictor(s) based on the PA of the models
developed. The important predictor(s) were defined as follows: if their exclusion reduced the
PA of the subsequent model, they were determined to be important (i.e. variance, surface and
relief). We also identified the unimportant predictor(s) (i.e. bs27) that increased the PA when
they were excluded. We then repeated above procedure by adding these important predictors
and removing the unimportant predictor to the most accurate model so far (i.e., model14) to
develop predictive models until no further improvement in the PA could be achieved.

We then applied the second model selection method (i.e., AVI). Due to the randomness
associated with the importance of predictive variables generated by RF algorithm, the least
important variable(s) may change with individual iterations; meanwhile, correlated variables
may also affect the order of the least important variable(s); so an R package ‘extendedForest’
[39] was used and repeated 100 times to generate the average values of variable importance
(Fig B in S3 File) that were used to select the predictors. This approach was applied to hard90
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Table 3. A brief summary of RFmodelling process for hard90 data using various FSmethods and pre-
dictive variables. 1) models 1–25 based on the VI using 20 variables; 2) models 26–29 based on the AVI
using 20 variables; 3) models 30–31 based on KIAVI using 20 variables; 4) models 32–43 based on the AVI
using 41 variables; and 5) models 44–45 based on the Boruta and model 46 based on the RRF using 41 vari-
ables. Model.fit is the predictive accuracy (ccr) of training samples by each RF model developed. The corre-
sponding predictor for each number is listed in Table 1.

Model Modelling.process Predictors No.
predictors

Model.
fit

1 All 20 predictive variables All 20 variables 20 100

2 model 1:—planar.curv 1–5,7–20 19 100

3 model 2:—surface 1–5, 7–9, 11–20 18 100

4 model 3:—slope 1–5, 7–8, 11–20 17 100

5 model 4:—relief 1–5, 7, 11–20 16 100

6 model 5:—bathy.moran 1–4, 7, 11–20 15 100

7 model 6:—profile.curv 1–4, 11–20 14 100

8 model 7:—bs.moran 1–4, 11–19 13 100

9 model 8:—bathy 1–3, 11–19 12 100

10 model 9:—homogeneity 1–3, 11–17, 19 11 100

11 model 10:—variance 1–3, 11–17 10 100

12 model 11:—northing 1, 3, 11–17 9 100

13 model 12:—tpi 1, 3, 12–17 8 100

14 model 13:—bs13 1, 3, 13–17 7 100

15 model 14:—bs21 1, 3, 14–17 6 100

16 model 15:—easting 3, 14–17 5 100

17 model 16:—bs32 3, 14–15, 17 4 100

18 model 17:—bs27 3, 14, 17 3 96.43

19 model 17:—bs25 3, 15, 17 3 96.43

20 model 18:—bs25 3, 17 2 96.43

21 model 20:—prock 17 1 100

22 model 20:—bs35 3 1 91.43

23 model 14: + variance 1, 3, 13–17, 19 8 100

24 model 23: + surface 1, 3, 10, 13–17, 19 9 100

25 model 24: + relief 1, 3, 8, 10, 13–17, 19 10 100

26 Six most important
predictors

1, 10, 16–19 6 100

27 model 26: + prock and
bs27

1, 3, 10, 15–19 8 100

28 model 27: + planar.curv 1, 3, 6, 10, 15–19 9 100

29 model 27:—prock 1, 10, 15–19 7 100

30 Combine model 24 and
27

1, 3, 10, 13–19 10 100

31 model 30:—bs21 1, 3, 10, 14–19 9 100

32 The 13 predictors most
important

1, 10, 18, 19, bs28-bs36 13 100

33 model 32: + bs10 1, 10, 18, 19, bs10, bs28-bs36 14 100

34 model 33: + planar.curv 1, 6, 10, 18, 19, bs10, bs28-bs36 15 100

35 model 34: + northing 1, 2, 6, 10, 18, 19, bs10, bs28-bs36 16 100

36 model 35: + prock, bs.
moran, bs27

1–3, 6, 10, 18–20, bs10, 15, bs28-bs36 19 100

37 model 36:—bs27 1–3, 6, 10, 18–20, bs10, bs28-bs36 18 100

38 model 37:—bs.moran 1–3, 6, 10, 18, 19, bs10, bs28-bs36 17 100

39 model 37:—prock 1, 2, 6, 10, 19–20, bs10, bs28-bs36 17 100

(Continued)
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using 20 variables, which led to four models (i.e. models 26 to 29; see Table 3). We initially
selected the most importance predictors when the level was 4 or 6 according to Fig B in S3 File,
then added the next important predictor(s) until no further improvement in PA was gained.
We then removed the least important predictor from the most accurate model to determine if
further improvement was possible.

We also used KIAVI (i.e. applied AVI to a combined model that was based on two most
accurate models identified via VI and AVI using 20 predictive variables) to see if we could fur-
ther improve the accuracy. Since AVI can deal with correlated variables, we also applied this
approach to the whole dataset (i.e. using 41 variables) (Fig C in S3 File) by adopting the ratio-
nale for adding and removing predictor(s) as stated above.

We also applied AVI to hard70 data using 20 and 41 variables. We also applied AVI to a
combined model based on the most accurate model identified for hard90 and the most accurate
model based on AVI approach using 20 variables for hard70 to see if we could further improve
the PA, which is also a kind of KIAVI and hereinafter referred to as the ‘KIAVI’.

We then used Boruta [40] to search for the important predictors for hard90 and hard70
data using all 41 variables because it is an all-relevant FS algorithm. For hard90 data, the default
value (i.e., 100) was used for the maximal number of importance source runs in the final
round. To resolve predictive variables left as ‘Tentative’, we increased the number of impor-
tance source runs to 2000 and 5000 respectively, but they selected the same variables. For
hard70 data, we used the default value as well as the values of 2000 and 5000 for the maximal
number of importance source runs. The selected variables were then used in the randomForest
function.

Lastly, we used RRF [41] to search the important predictors for hard90 and hard70 data
using 41 variables because it is also an all-relevant FS algorithm. This is hereinafter referred to
as RRF approach in this study. The selected variables were then used in the randomForest
function.

Model validation
To identify the most accurate predictive model, we need to know the PA of each model formed
from the above FS methods. To achieve this, we used rf.cv that validates one model with fixed
predictive variables for all iterations for a given number of predictive variables [7]. This func-
tion allows variations in datasets generated by cross-validation and ensures the model select
relevant predictors from a list of the fixed predictive variables. Given that the response variable
is categorical, the correct classification rate (ccr) [65] and kappa [66] were used to measure the
accuracy of the predictive model and were calculated using the built-in functions in rf.cv.

Table 3. (Continued)

Model Modelling.process Predictors No.
predictors

Model.
fit

40 model 35:—planar.curv 1, 2, 10, 18, 19, bs10, bs28-bs36 15 100

41 model 40:—northing 1, 10, 18–19, bs10, bs28-bs36 14 100

42 model 41:—bs34 1, 2, 10, 17–19, bs10, bs28-bs33, bs36 14 100

43 All 41 predictors All 41 predictors 41 100

44 30 predictors 1–3, 7, 11, 20, bs12, bs14:bs36 30 100

45 model 44: +bs13 1–3, 7, 11, 20, bs12:bs36 31 100

46 31 predictors 1–3, 5, 7–11, 18–20, bs15, bs17-bs18,
bs20-bs25, bs27-bs36

31 100

doi:10.1371/journal.pone.0149089.t003
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To assess the predictive ability of each model, we used 10-fold cross-validation [67]. To deal
with the random error associated with each 10-fold cross validation [7, 34, 64], the cross valida-
tion procedure was repeated 100 times. The choice of this iteration number was based on find-
ings in previous studies [7, 34] and that the dynamics of the predictive accuracies with
iterations of relevant models in this study suggested that averaged accuracies stabilised after
20–80 iterations. The final results were based on the average of 100 iterations of the cross
validation.

Model comparison and spatial predictions
Since the data of ccr and kappa were not normally distributed based on the Shapiro-Wilk nor-
mality test, with heterogeneous variance based on Fligner-Killeen test of homogeneity of vari-
ances, or both, Mann-Whitney tests were used to compare the PA in terms of ccr and kappa
between the most accurate models for both hard90 and hard70 data.

Finally, the most accurate predictive models for hard90 and hard70 data were used to pre-
dict seabed hardness at each 10m grid cell in the study areas. A portion of area A (A1) that
comprises a variety of seabed geomorphic features was selected to illustrate and compare the
predictions.

All relevant computing work was implemented in R 2.15.2 [68]. Relevant maps were then
produced using ArcGIS (ESRI1 ArcMap TM 10.0) [69].

Results

Predictive model for hard90 data
Model selection using VI for 20 predictive variables (VI & filter). In total, 25 models

were developed based on the model selection approach using variable importance of 20 vari-
ables (models 1–25 in Table 3, Fig 2A). Correct classification rates gradually increased from
model 1 and reached a maximum mean (i.e. 87.64%) for model 14, except that the PA of mod-
els 3, 5 and 11 slightly decreased after the removal of surface, relief and variance respectively. It
then began to decrease from model 15 onwards with an abrupt increase for model 18 due to
the exclusion of bs27, and reached the lowest value for model 22 that contained only one pre-
dictor. After adding variance and surface to model 14, the PA was further improved and
reached the highest mean value of 88.53% for model 24 (Fig 2A, Table 3). Kappa displayed a
similar pattern as ccr and reached the highest mean value of 0.6449 for model 24, with the

Fig 2. Correct classification rate (%) and kappa (mean: black line; minimum andmaximum: dash red lines) of 43 RFmodels with different predictor
sets based on the averages over 100 iterations of 10-fold cross validation for seabed hardness based on hard90 data; and the model with the
maximummean ccr andmean kappa (circle). a) models 1–25 based on the VI using 20 predictive variables; b) models 26–29 based on the AVI and
models 30–31 based on KIAVI using 20 variables; c) models 32–43 based on the AVI using 41 variables.

doi:10.1371/journal.pone.0149089.g002
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exception of that the lowest value was attained for model 21 that again contained only one pre-
dictor. It showed that bs35 was the most important predictor based on ccr while prock was the
most important predictor based on kappa. Overall, model 24 was more accurate than other
models in terms of both of ccr and kappa. This model contained nine predictors (Fig 2A,
Table 3). In addition, most models perfectly predicted the training samples. Removing bs27
from model 24 did not improve the accuracy, so it was not presented in the results.

Model selection using AVI and KIAVI for 20 predictive variables (AVI & filter and
KIAVI & filter). On the basis of the AVI using 20 variables, further four models were devel-
oped (models 26–29 in Table 3, Fig 2B). Correct classification rates reached the highest mean
value of 88.51% for model 27 after the inclusion of bs27 and prock. It then started to decrease
after adding planar.curv (i.e. model 28) and excluding prock (i.e. model 29). It showed that
adding or excluding a further variable reduced the PA of model 27. Kappa displayed an identi-
cal pattern to ccr and reached the highest mean value of 0.6304 for model 27. Combing the two
best performing models identified so far (i.e. models 24 and 27) resulted in two further models
(models 30 and 31 in Table 3) that did not improve the PA in comparison with model 27.
Overall, model 27, containing eight predictors, was more accurate than other models in terms
both of ccr and kappa (Fig 2B, Table 3).

Model selection using AVI for 41 predictive variables. On the basis of the AVI using 41
variables, a further 12 model were developed (models 32–43 in Table 3, Fig 2C). The PA
increased after adding bs10, planar.curv and northing, which resulted in a highly accurate
model (i.e. model 35). After adding the next three most important predictors, the PA
decreased. Further tuning to model 36 by removing the next less important predictor(s)
resulted in models 37 to 39. The PA of all these models was less than that of model 35. Further
tuning to model 35 by removing the least important predictor (i.e. planar curv) resulted in the
most accurate model 40 (with a mane ccr of 89.78%). Model 43, which used all 41 variables,
was much less accurate than all other models (Fig 2C). Kappa displayed an identical pattern as
ccr and reached the highest mean value of 0.6753 for model 40. Overall, model 40 was relatively
more accurate than other models in terms both of ccr and kappa and contained 15 predictors
(Table 3). In addition, model 40 could not be further improved by removing either the next
less important predictor (model 41) or the highly correlated predictor (model 42).

Model selection using Boruta for 41 predictive variables. On the basis of the Boruta
approach, two models were developed (models 44–45 in Table 3). Model 44 contained 30 pre-
dictors with a mean ccr of 85.79% (ranging from 85% to 86.43%) and a mean kappa of 0.5279
(ranging from 0.4897 to 0.5616). Model 45 contained 31 predictors with a mean ccr of 85.83%
(ranging from 85% to 87.14%) and a mean kappa of 0.5301 (ranging from 0.4986 to 0.5845),
which was slightly more accurate than model 44.

Model selection using RRF for 41 predictive variables. On the basis of the RRF
approach, a further model was developed (model 46 in Table 3). Model 46 contained 31 predic-
tors with a mean ccr of 85.27% (ranging from 83.57% to 87.14%) and a mean kappa of 0.5078
(ranging from 0.4511 to 0.5853).

In summary, 46 models were developed for hard90 data. Model 24 was the most accurate
model based on the VI and model 27 was the most accurate model based on the AVI using 20
variables; and model 40 was the most accurate model based on the AVI and model 45 was the
most accurate model based on the Boruta using 41 variables. Overall, model 40 was the most
accurate model.

Agreement of the observed and predicted values of the most accurate model. The pre-
dicted values based on the most accurate model (i.e., model 40) and the observed values
matched well for most classes in terms of both user’s accuracy and producer’s accuracy,
although producer’s accuracy was poor for the hard-soft class (Table 4). When the hard-soft
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and soft-hard classes were merged into the hard class, the accuracies were improved, especially
for the user’s accuracy for the hard class (Table 5). The user’s accuracy was higher than the pro-
ducer’s accuracy for non-soft classes (Tables 4 and 5). Non-soft classes, particularly hard-soft,
were under-predicted while the soft class was over-predicted.

Predictive model for hard70 data
Model selection using AVI for 20 predictive variables (AVI & filter). Twenty five mod-

els were developed based on the AVI for 20 variables (models 1–25 in Table 6, Fig 3A). The
first twenty models were developed by removing the least important variable based on AVI.
Correct classification rates reached a local maximum for model 11. Two predictors (i.e. bs21
and bathy.moran) were identified as important variables and a few predictors were identified
as unimportant variables (e.g. profile.curv, bs.moran, variance).

After further adding the important variables to model 11 and removing the unimportant
predictors from subsequent models, ccr increased and reached the highest mean value of
86.27% for model 24. Kappa displayed a similar pattern as ccr and reached the highest mean
value of 0.4905 for model 24. Overall, model 24 with 10 predictors was more accurate than
other models. In addition, most models perfectly predicted the training samples.

Model selection using AVI and KIAVI for 41 predictive variables. On the basis of the
AVI for 41 variables, a further 13 models were developed (models 26–38 in Table 6, Fig 3B).
The AVI of model 38 for hard70 data using 41 variables showed that easting should be
excluded, while on the basis of model 24 for hard70 data it should be included. Hence no fur-
ther model development was conducted for hard70 data using 41 variables. The most accurate
model was model 33 with a mean ccr of 86.52%. Kappa displayed an identical pattern as ccr

Table 4. Confusion matrix between the observed and predicted values of four hardness classes
based on the average of 100 times of 10-fold cross validation using the most accurate predictive
model (i.e., model 40) for hard90.

Observed

Hard Hardsoft Softhard Soft Total User's accuracy

Predicted Hard 4 1 0.42 0 5.42 73.80

Hardsoft 0 6.84 0.86 1.89 9.59 71.32

Softhard 0 0 5.87 0.13 6 97.83

Soft 2 6.16 1.85 108.98 118.99 91.59

Total 6 14 9 111 140

Producer's Accuracy 66.67 48.86 65.22 98.18 89.78

doi:10.1371/journal.pone.0149089.t004

Table 5. Confusion matrix between the observed and predicted values of two hardness classes
based on the average of 100 times of 10-fold cross validation using the most accurate predictive
model (i.e., model 40) for hard90.

Observed

Hard Soft Total User's accuracy

Predicted Hard 18.99 2.02 21.01 90.39

Soft 10.01 108.98 118.99 91.59

Total 29 111 140

Producer's Accuracy 65.48 98.18 91.41

doi:10.1371/journal.pone.0149089.t005
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Table 6. A brief summary of RFmodelling process for hard70 data using various FSmethods and pre-
dictive variables. 1) models 1–25 based on the AVI using 20 variables; 2) models 26–38 based on the AVI
using 41 variables; 3) models 39–49 based on KIAVI using 41 variables; and 4) models 50–52 based on the
Boruta with the maximal number of importance source runs of 2000, 100 and 5000, and model 53 based on
the RRF using 41 variables. The model fit is the predictive accuracy (ccr) of training samples by each RF
model developed. The corresponding predictor for each number is listed in Table 1.

Model Modelling.process Predictors No.
predictors

Model.
fit

1 All 20 predictive variables All 20 variables 20 100

2 model 1: -relief 1–7, 9–20 19 100

3 model 2: -northing 1, 3–7, 9–20 18 100

4 model 3: -bs13 1, 3–7, 9–11, 13–20 17 100

5 model 4: -bs27 1, 3–7, 9–11, 13–14, 16–20 16 100

6 model 5: -slope 1, 3, 4–7, 10–11, 13–14, 16–20 15 100

7 model 6: -bs25 1, 3–7, 10–11, 13, 16–20 14 100

8 model 7: -bs21 1, 3–7, 10–11, 16–20 13 100

9 model 8: -bathy.moran 1, 3–4, 6–7, 10–11, 16–20 12 100

10 model 9: -surface 1, 3–4, 6–7, 11, 16–20 11 100

11 model 10: -bathy 1, 3, 6–7, 11, 16–20 10 100

12 model 11: -tpi 1, 3, 6–7, 16–20 9 100

13 model 12: -bs35 1, 3, 6–7, 16, 18–20 8 100

14 model 13: -variance 1, 3, 6–7, 16, 18, 20 7 100

15 model 14: -bs.moran 1, 3, 6–7, 16, 18 6 100

16 model 15: -bs32 1, 3, 6–7, 18 5 100

17 model 16: -easting 3, 6–7, 18 4 100

18 model 17: -profile.curv 3, 6, 18 3 96.43

19 model 18: -homogeneity 3, 6 2 95

20 model 19: -planar.curv 3 1 91.43

21 model 11: +bs21 1, 3, 6–7, 11, 13, 16–20 11 100

22 model 21: +bathy.moran 1, 3, 5–7, 11, 13, 16–20 12 100

23 model 21: -profile.curv 1, 3, 6, 11, 13, 16–20 10 100

24 model 21: -bs.moran 1, 3, 6–7, 11, 13, 16–19 10 100

25 model 24: -variance 1, 3, 6, 7, 11, 18, 13, 16, 17 9 100

26 All 41 predictors 1–11, 18–20, bs10-bs36 41 100

27 model 26:—bs25, bs10:bs14 1–11, 18–20, bs15-bs36 35 100

28 model 27:—bathy, relief, bs24,
bs26, bs27

1–3, 5–7, 9–11, 18–20, bs15-bs23,
bs28-bs36

30 100

29 model 28:—bs20, bs29, bs30,
bs36

1–3, 5–7, 9–11, 18–20, bs15-bs19,
bs21-bs23, bs28, bs31-bs35

26 100

30 model 29:—nothing and bs28 1, 3, 5–7, 9–11, 18–20, bs15-bs19,
bs21-bs23, bs31-bs35

24 100

31 model 30:—slope and bs34 1, 3, 5–7, 10, 11, 18–20, bs15 to
bs19, bs21-bs23, bs31-bs33, 17

22 100

32 model 31-—bs15, bs16, bs19,
bs21, bs32, bs33 and bs 35

1, 3, 5–7, 10, 11, 18–20, bs17,
bs18, bs22, bs23, bs31

15 100

33 model 32-—bathy.moran,
surface, bs17 and bs22

1, 3, 6–7, 11, 18–20, bs18, bs23,
bs31

11 100

34 model 33-—homogeneity 1, 3, 6–7, 11, 19–20, bs18, bs23,
bs31

10 100

35 model 34-—tpi 1, 3, 6–7, 19–20, bs18, bs23, bs31 9 100

36 model 35-—bs23 1, 3, 6–7, 19–20, bs18, bs31 8 100

37 model 36-—bs18 1, 3, 6–7, 19–20, bs31 7 100

(Continued)
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and reached the highest mean value (i.e. 0.4976) for model 33. This model contained 11
predictors.

On the basis of model 24 for hard70 and also model 40 for hard90 (i.e. the most accurate
model), we further tuned model 33 by including additional predictors that were used in these
two models. This resulted in a further 11 models (models 39–49 in Table 6). Model 39 was the
most accurate model in terms of kappa (i.e. 0.4973) while model 47 is the most accurate model
in terms of ccr (i.e. 86.36) (Table 6 and Fig 3C). Overall, model 33 was relatively more accurate
than other models.

Model selection using Boruta for 41 predictive variables. On the basis of the Boruta
approach, three models were developed (models 50–52 Table 6). Model 50 contained 25 pre-
dictors with a mean ccr of 87.04% (ranging from 85.71% to 87.86%) and a mean kappa of
0.5328 (ranging from 0.4836 to 0.5609). Model 51 contained 27 predictors with a mean ccr of
86.85% (ranging from 84.29% to 87.86%) and a mean kappa of 0.5318 (ranging from 0.4538 to
0.5692). Model 52 contained 29 predictors with a mean ccr of 86.99% (ranging from 84.29% to
87.86%) and a mean kappa of 0.5309 (ranging from 0.4434 to 0.5609). Model 50 was slightly
more accurate than model 51 and model 52.

Model selection using RRF for 41 predictive variables. On the basis of the RRF, one
model was developed (model 53 in Table 6). Model 53 contained 31 predictors with a mean ccr

Table 6. (Continued)

Model Modelling.process Predictors No.
predictors

Model.
fit

38 model 37-—bs.moran 1, 3, 6–7, 19, bs31 6 100

39 Variables for model 24, 33, and
model 40 for hard90

1–3, 6–7, 10–11, 13, 18–20, bs10,
bs18, bs23, bs28-bs36

23 100

40 model 39-—bs10 1–3, 6–7, 10–11, 13, 18–20,bs18,
bs23, bs28-bs36

22 100

41 model 40-—bs28, bs30 abd bs36 1–3, 6–7, 10–11, 13, 18–20, bs18,
bs23, bs29, bs31-17

19 100

42 model 41-—northing 1, 3, 6–7, 10–11, 13, 18–20, bs18,
bs23, bs29, bs31-17

18 100

43 model 42-—bs35 1, 3, 6–7, 10–11, 13, 18–20, bs18,
bs23, bs29, bs31-bs34

17 100

44 model 43-—bs29 and bs34 1, 3, 6–7, 10–11, 13, 18–20,bs18,
bs23, bs31-bs33

15 100

45 model 44-—bs21 1, 3, 6–7, 10–11, 18–20,bs18,
bs23, bs31-bs33

14 100

46 model 45-—bs33 1, 3, 6–7, 10–11, 16, 18–20,bs18,
bs23, bs31

13 100

47 model 46-—surface 1, 3, 6–7, 11, 16, 18–20,bs18,
bs23, bs31

12 100

48 model 47-—tpi 1, 3, 6–7, 16, 18–20,bs18, bs23,
bs31

11 100

49 model 47-—tpi and bs31 1, 3, 6–7, 16, 18–20, bs18, bs23 10 100

50 27 predictors 1, 3, 7, 11, bs12, bs13, bs16-bs36 27 100

51 model 50-—easting, bs12 2–3, 7, 11, 20, bs13, bs16-bs36 25 100

52 model 50- +bs10, bs14 1, 3, 7, 11, bs10, bs12-bs14,
bs16-bs36

29 100

53 31 predictors 1–3, 5, 7–11, 18–20, bs15,
bs17-bs18, bs20-bs25, bs27-bs36

31 100

doi:10.1371/journal.pone.0149089.t006
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of 85.14% (ranging from 82.86% to 87.14%) and a mean kappa of 0.4533 (ranging from 0.3949
to 0.5351).

In summary, 53 models were developed for hard70 data. Model 24 was the most accurate
model based on AVI using 20 variables, and model 33 was the most accurate model based on
AVI and model 50 was the most accurate model based on Boruta using 41 variables. Of these
53 models, model 50 was the most accurate model.

Agreement of the observed and predicted values of the most accurate model. The pre-
dicted values based on the most accurate model (i.e., model 50) and the observed values
matched very well for the soft class in terms of both user’s accuracy and producer’s accuracy;
and producer’s accuracy was poor for non-soft classes, especially for the hard-soft class
(Table 7). When the hard-soft and soft-hard classes were merged into the hard class, the accu-
racies were improved, especially the user’s accuracy for the hard class (Table 8). The user’s
accuracy was higher than the producer’s accuracy for non-soft classes (Tables 7 and 8). All
non-soft classes were under-predicted while the soft class was over-predicted.

Comparison of FS methods based on the most accurate predictive
models identified for hard90 and hard70 data
The accuracy of full models (i.e. model 43 for hard90, and model 26 for hard70) and the most
accurate models identified based on various FS methods have been summarised in Table 9 and
Fig 4. The models developed from 41 variables were more accurate than the models from the

Fig 3. Correct classification rate (%) and kappa (mean: black line; minimum andmaximum: dash red lines) of 49 RFmodels with different predictor
sets based on the averages over 100 iterations of 10-fold cross validation for seabed hardness based on hard70 data; and the model with the
maximummean ccr andmean kappa (circle). a) models 1–25 based on the AVI using 20 predictive variables; b) models 26–38 based on the AVI using 41
variables; c) models 39–49 based on KIAVI using 41 variables.

doi:10.1371/journal.pone.0149089.g003

Table 7. Confusion matrix between the observed and predicted values of four hardness classes
based on the average of 100 times of 10-fold cross validation using the most accurate predictive
model (i.e., model 50) for hard70.

Observed

Hard Hardsoft Softhard Soft Total User's accuracy

Predicted Hard 4 1.22 0.01 2.08 7.31 54.72

Hardsoft 1.02 4.22 0 1.24 6.48 65.12

Softhard 0 0.3 3 0.04 3.34 89.82

Soft 3.98 5.26 2.99 110.64 122.87 90.05

Total 9 11 6 114 140

Producer's Accuracy 44.44 38.36 50.00 97.05 87.04

doi:10.1371/journal.pone.0149089.t007
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pre-selected 20 variables for both hard90 and hard70 (Table 9). The most accurate models
based on various FS techniques were significantly more accurate than the models using either
all 41 variables or the pre-selected 20 variables in terms of both ccr and kappa for both hard90
and hard70 (Table 9).

The most accurate models based on the FS methods were compared in Table 10 and Fig 4.
For hard90, models 24 and 27 were not significantly different in terms of ccr and models 27
and 30 were not significantly different in terms of kappa. For hard70, models 24, 33 and 47
were not significantly different. All other models were significantly different in terms of PA.
Their accuracy changed with FS methods in the following order: for hard90, AVI> VI &
filter> AVI & filter> KIAVI & filter> Boruta> RRF; and for hard70, Boruta> AVI, AVI &
filter, KIAVI> RRF.

The ccr and kappa of the most accurate model (i.e. model 40) for hard90 were significantly
higher than the rest five models (i.e. models 24, 27, 30, 44 and 46) based on the Mann-Whitney
tests (with p values< 0.0001). The ccr and kappa of the most accurate model (i.e. model 50) for
hard70 were significantly higher than those of the remaining four models (i.e. models 24, 33,
47 and 53) based on the Mann-Whitney tests (with p values< 0.0001). In addition, the most

Table 8. Confusion matrix between the observed and predicted values of two hardness classes
based on the average of 100 times of 10-fold cross validation using the most accurate predictive
model (i.e., model 50) for hard70.

Observed

Hard Soft Total User's accuracy

Predicted Hard 13.77 3.36 17.13 80.39

Soft 12.23 110.64 122.87 90.05

Total 26 114 140

Producer's Accuracy 52.96 97.05 88.86

doi:10.1371/journal.pone.0149089.t008

Table 9. Comparison of the accuracy of full models (i.e. model 43 for hard90, andmodels 26 for
hard70) with the most accurate models based various FSmethods. The differences between these com-
parisons based on the Mann-Whitney tests (n = 100 for each model).

Data Model FS method ccr kappa

ccr models p-value kappa models p-value

Hard90 43 41 variables 84.97 0.4973

1 Filter (20 variables) 84.62 1 vs. 43 0.0000 0.4852 1 vs. 43 0.0000

24 VI & filter 88.53 24 vs. 1 0.0000 0.6449 24 vs. 1 0.0000

27 AVI & filter 88.51 27 vs. 1 0.0000 0.6305 27 vs. 1 0.0000

30 KIAVI 88.11 30 vs. 1 0.0000 0.6278 30 vs. 1 0.0000

40 AVI 89.78 40 vs. 43 0.0000 0.6753 40 vs. 43 0.0000

45 Boruta 85.83 44 vs. 43 0.0000 0.5301 44 vs. 43 0.0000

46 GRF 85.28 46 vs. 43 0.0010 0.5078 46 vs. 43 0.0013

Hard70 26 41 variables 84.71 0.4421

1 Filter 84.09 1 vs. 26 0.0000 0.4116 1 vs. 26 0.0000

24 AVI & Filter 86.27 24 vs. 1 0.0000 0.4905 24 vs. 1 0.0000

33 AVI 86.52 33 vs. 26 0.0000 0.4976 33 vs. 26 0.0000

47 KIAVI 86.36 47 vs. 26 0.0000 0.4927 47 vs. 26 0.0000

50 Boruta 87.04 50 vs. 26 0.0000 0.5328 50 vs. 26 0.0000

53 GRF 85.14 53 vs. 26 0.0002 0.4533 53 vs. 26 0.0028

doi:10.1371/journal.pone.0149089.t009

Selecting Optimal Random Forest Predictive Models

PLOS ONE | DOI:10.1371/journal.pone.0149089 February 18, 2016 17 / 29



accurate model for hard90 was significantly more accurate than the most accurate model for
hard70 based on the Mann-Whitney test (with a p value< 0.0001).

In terms of computing efficiency as measured by the number of models developed for iden-
tifying the most accurate model for each FS method, RRF and Boruta were much higher than
AVI, VI and KIAVI.

Comparison of spatial predictions of seabed hardness based on hard90
and hard70 data
The spatial predictions of the most accurate models for hard90 and hard70 were similar, with a
match rate between corresponding hardness classes as high as 92.31% (i.e. with a

Fig 4. Correct classification rate (%) (a) and kappa (b) of the most accurate models based on the averages over 100 iterations of 10-fold cross validation for
hard90 and hard70 data.

doi:10.1371/journal.pone.0149089.g004

Table 10. Comparison of the accuracy of the most accurate models (i.e. model 40 for hard90 andmodel 50 for hard70) with the most accurate mod-
els based various FS techniques, and also model 40 with model 50. The differences between these comparisons based on the Mann-Whitney tests
(n = 100 for each model).

FS method Hard90 Models p-value for ccr p-value for kappa

Developed Model 24 27 30 45 46 24 27 30 45 46

VI & filter 25 24

AVI & filter 4 27 0.8881 0.0010

KIAVI 2+25+4 30 0.0003 0.0006 0.0000 0.4450

Boruta 2 45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GRF 1 46 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVI 11 40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Hard70 Model 24 33 47 53 24 33 47 53

AVI & filter 25 24

AVI 13 33 0.1079 0.3001

KIAVI 11+25+13 47 0.6253 0.1820 0.9357 0.2328

GRF 1 53 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Boruta 3 50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Hard90/Hard70 Model 40 40

50 0.0000 0.0000

doi:10.1371/journal.pone.0149089.t010
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corresponding mismatch rate of 7.69%, Table 11). Hard and soft were predicted less often,
while hard-soft and soft-hard were predicted in greater number based on hard90 data than
hard70. Of the mismatched predictions, about 1.3% of hard predictions for hard70 were pre-
dicted as hard-soft and soft-hard for hard90, while about 5.18% of soft predictions for hard70
were predicted as hard-soft and soft-hard for hard90, leading low match rates for certain clas-
ses between hard90 and hard70.

The predictions of the most accurate models for hard90 and hard70 were illustrated in Fig 5
using a portion of study area (A1) to visually compare the predictions of the RF predictive
models. This area was chosen as an example as it contains highly contrasting geomorphic

Table 11. Confusion matrix between predictions for individual classes based on hard90 and hard70
data for all study areas and for a portion of area A (A1).

All four areas- Hard70 (17,418,262 grid cells) Correctly matched by hard70 (%)

Hard Hard-soft Soft-hard Soft Total

Hard90 Hard 0.85 0.23 0.00 0.09 1.17 72.60

Hard-soft 1.26 3.68 0.10 2.06 7.12 51.77

Soft-hard 0.04 0.13 2.65 3.12 5.95 44.60

Soft 0.41 0.06 0.17 85.12 85.77 99.25

Total 2.57 4.10 2.93 90.41 100.00

Correctly matched
by hard90 (%)

33.15 89.91 90.56 94.16 92.31

Area A1- Hard70 (3,083,153 grid cells) Correctly matched by hard70 (%)

Hard Hard-soft Soft-hard Soft Total

Hard90 Hard 2.01 0.12 0 0.46 2.59 77.78

Hard-soft 5.24 14.82 0.29 6.66 27.01 54.85

Soft-hard 0 0.14 2.45 7.17 9.76 25.09

Soft 1.62 0.01 0.21 58.8 60.64 96.96

Total 8.87 15.09 2.95 73.09 100

Correctly matched
by hard90 (%)

22.66 98.22 82.90 80.45 78.07

doi:10.1371/journal.pone.0149089.t011

Fig 5. Spatial predictions of seabed hardness for a section of area A (A1): a) hard90, b) hard70, c) hardness
with two classes, and d) geomorphic features.

doi:10.1371/journal.pone.0149089.g005
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features. For this particular portion, the match rate is 78.07% (i.e. with a corresponding mis-
match rate of 21.93%, Table 11). Of the mismatched predictions, about 5.24% of hard predic-
tions for hard70 were predicted as hard-soft for hard90, while about 13.83% of soft predictions
for hard70 were predicted as hard-soft and soft-hard for hard90, resulting in low match rates
for some classes between hard90 and hard70. Their predictions captured similar major pat-
terns, while the some hard predictions for hard70 in the high banks were predicted as hard-soft
or soft-hard for hard90 in the southern portion, and some soft predictions for hard70 on the
terrace in the northeast corner were predicted as soft-hard and hard-soft for hard90. The hard
substrates were found mostly on banks that were associated with the highest backscatter values
(Fig 5D). The hard-soft and soft-hard substrates were also mostly found on banks as well as on
portions of terraces. In comparison, soft substrates were mostly found on valleys that were
often associated with the lowest backscatter values; and portions of terraces were also predicted
as soft.

Comparison of spatial predictions: four classes vs. two classes
The spatial predictions for hard90 and hard70 were similar with the predictions based on two
hardness classes [7, 70]. The match rates were 92.06% and 93.18% respectively when the pre-
dictions of hard, hard-soft and soft-hard were pooled into one category (i.e. hard) for hard90
and hard70.

The spatial predictions for hard90 and hard70 in area A1 were similar with the predictions
based on two hardness classes [7] (Fig 5), with the match rates of 81.53% and 89.42% respec-
tively when the predictions of hard, hard-soft and soft-hard were combined into a single cate-
gory (i.e. hard) for hard90 and hard70.

Discussion and Conclusions

Predictive accuracy of seabed hardness
All the models developed produced a good to perfect fit to the data (Tables 3 and 6); and their
PA is also high (Figs 2 and 3). There is no definite relationship between the models’ fit and
their PA, which is consistent with the findings in our previous study [7]. The PA of the most
accurate models based on various FS techniques varies from 0.4852 to 0.6753 for hard90 and
from 0.4116 to 0.5328 for hard70 in terms of kappa (Tables 9 and 10). According to Fielding &
Bell [65], the agreement between the predicted and the tested values is good if kappa is between
0.4 and 0.75. This demonstrates that the PA of the models developed for predicting the seabed
hardness is high. The PA of the most accurate models is even more notable in terms of ccr; and
it varies from 84.62% to 89.78% for hard90 and from 84.09% to 87.04% for hard70. The high
PA implies that: 1) seabed substrate was properly classified based on underwater video footage,
and the data produced for the response variable is of high quality; 2) the hardness classification
schemes developed (i.e. hard90 and hard70) are robust; and 3) the predictors used were infor-
mative. Furthermore, the PA for each model is stable and reliable because it is an averaged PA
based on 100 repetitions of 10-fold cross-validation. Hence we can confirm that:

• sample size used in this study was adequate for modelling the seabed hardness;

• RF is an effective modelling method with high PA not only for presence/absence data but
also for multi-level categorical data;

• robust predictive models were developed;

• seabed hardness of four classes can be predicted with a high accuracy; and
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• RF can be applied to ‘small p and large n’ problems in environmental sciences, with the num-
ber of predictive variables as low as only one.

This study further affirms the superior performance of RF in marine environmental sciences
[14, 15, 25, 26, 32]. The excellent performance of RF has been attributed to a number of fea-
tures associated with RF including the ability to model non-linear relationships commonly
found in the environmental sciences as discussed in previous studies [25, 26, 32].

It is apparent that non-soft classes were under-predicted while the soft class was over-pre-
dicted for both hard90 and hard70 data, which could be attributed to the unbalanced sample
size of the hardness classes. The hard-soft class was under-predicted and approximately 50% of
observed hard-soft samples were predicted as the soft class for both datasets, which was unex-
pected as it is anticipated to be more similar to hard or soft-hard classes than to the soft class.
Although the limitations discussed in [7] could be potential factors resulting in such phenome-
non, further studies are recommended to investigate this phenomenon. Approximately 50% of
the non-soft classes were predicted as the soft class for hard70 data, which could be also attrib-
uted to the limitations discussed in [7]. This finding highlights the difference between hard90
and hard70, suggesting that hard90 data may have more accurately classified the seabed sub-
strate and should be adopted in the future studies.

When the hard-soft and soft-hard classes were merged into the hard class, the user’s and
producer’s accuracy between the observed and the predicted values was improved but still
slightly lower than the previously published findings, particularly for hard70 data [7, 12]. This
reduction in the accuracy could be attributed to that bathymetry was an important predictor in
the previous studies [7, 12], but it is no longer an important predictor in this study. This change
is because banks and terraces are mostly located in shallow water and are most often associated
with hard substrates. However, the hard class in the previous study was split into three classes
in the current study, which are located at similar water depths, thus bathymetry can no longer
differentiate these classes and was not found to be an important predictor in this study.

Predictive accuracy and correlated predictive variables
The PA changes with highly correlated predictors for models developed for hard90 and hard70
data. Their influence on the PA changes with individual predictors. The phenomenon that the
inclusion of highly correlated predictors (i.e. ρ�0.99 and r�0.95) could improve the PA was
observed for many models in this study (e.g. model 1 vs. model 43 and model 17 vs. model 19
for hard90, model 1 vs. model 26 for hard70, and those models compared in Table 10). This
could be explained by the fact that these correlated predictors are informative as they have high
variable importance (S3 File) and their inclusion can increase the number of informative pre-
dictors selected for each individual tree in RF, thus improving the PA. It was observed that
including some correlated variables improved the PA in previous studies [7, 15, 34], suggesting
that correlated variables may be able to compensate for the small number of predictors in envi-
ronmental sciences, and more often than not we only have correlated proxy predictive variables
in environmental sciences instead of causal predictors as seen in simulation studies [31].

In contrast, the exclusion of some highly correlated predictors may improve the PA in some
other cases. It was observed for hard70 where bs27 and bs25 were highly correlated (ρ = 0.99,
r = 1.00), but the exclusion of bs27 from model 4 led to a slight increase in PA for the subse-
quent model (i.e. model 5) containing bs25. The exclusion of bs25 from model 6 for hard70
also resulted in slight improvement in PA for model 7 that contains bs21. This phenomenon
was further evidenced in Fig 2C after removing bs27 that was highly correlated with bs28 and
bs33 (with ρ�0.99 and r = 0.98). Similar findings were observed in previous studies [25, 32, 33,
35].

Selecting Optimal Random Forest Predictive Models

PLOS ONE | DOI:10.1371/journal.pone.0149089 February 18, 2016 21 / 29



Contradictory findings were observed in previous studies in the marine environmental sci-
ences as well as in this study regarding correlated predictors for RF. These opposite effects
imply that not all highly correlated predictors should be used even if there are of high VI or
excluded, and that there are no short-cuts in identifying the optimal predictive model. The
extendedForest [39] package can efficiently deal with the correlated variables in terms of the
variable importance, but selecting predictors that can improve PA from correlated predictive
variables is a challenging task. No free lunch theorems [71] still apply even if the predictors are
highly correlated. This finding also suggests that the typical approach used in pre-selecting pre-
dictors by excluding correlated variables (i.e. r�0.95 or the inflation factor�20) needs to be
re-examined for identifying predictive models using machine learning methods, at least for the
application of random forest in marine environmental sciences. These applications further
demonstrate that feature selection is essential for identifying an optimal predictive model for
RF in marine environmental sciences [15, 25].

Predictive accuracy and important and unimportant predictors
Some important and unimportant predictors were identified based on the VI for hard90 and
the AVI for hard70. They were excluded during the initial FS process, which may obviously
lead to the exclusion of some important predictors and thus result in less accurate predictive
models which has also been observed in previous studies [7, 64]. Adding the important predic-
tors and removing the unimportant ones could partially solve this problem. However, the accu-
racy of predictive models in this study showed inconsistent response patterns to the inclusion
or removal of the important or unimportant predictors. Of the three important predictors
identified for hard90, two of them (i.e. variance and surface) further improved the PA after
adding them back while the inclusion of the remaining one (i.e. relief) reduced the PA (Table 3
and Fig 2A). Of the two identified important variables for hard70, the inclusion of bs21 further
improved the PA while the inclusion of bathy.moran reduced the PA; and of the three unim-
portant variables, removing profile.curv and bs.moran further improved the PA, whereas
removing variance reduced the PA (Table 6 and Fig 3A). It is apparent that their influence on
PA changes with individual predictors. It was also observed that reliance upon variable impor-
tance only can lead to suboptimal predictive model and the most accurate predictive model
may be overlooked in previous studies [7, 64]. These findings suggest that the predictor(s) with
the least variable importance should not be excluded without further testing. The detection of
the important and unimportant predictors provides signals of potential candidates or estab-
lishes prior information for further improvement of the PA. However efforts are required to
select relevant predictors from them to further improve the PA.

Feature selection methods
Five FS methods, VI, AVI, KIAVI, Boruta and RRF, were tested in terms of PA in this study.
They are essentially all VI-based wrapper methods according to Janecek et al. and Saeys et al.
[28, 62]. These methods were applied to the full dataset and a pre-selected sub-dataset. Since
the VI was obtained from RF, these methods are also embedded techniques [28]. To develop
the final predictive models based on VI and AVI, the contribution to the PA of relevant predic-
tors was used to determine their inclusion or elimination in the backward or forward stepwise
selection. Hence, these applications cover three different FS techniques: filter, wrapper and
embedded. In this study, filter and/or wrapper FS techniques were used in combination with
embedded FS techniques within RF.

It is apparent that all FS techniques used in this study improved the PA except that the filter
FS method significantly reduced the PA with respect to the full models. The effects of these
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techniques are however different for hard90 and hard70. For hard90, the model developed by
applying AVI to 41 variables is significantly more accurate than other FS techniques. For
hard70, the model developed by applying Boruta to 41 variables is significantly more accurate
than other FS techniques. These findings highlight that: 1) these FS techniques are data sensi-
tive and data-specific, and 2) to obtain an optimal predictive model for a given dataset, relevant
FS techniques should be tested to select the most appropriate FS technique, otherwise sub-opti-
mal models may be produced. All the most accurate models identified in Tables 9 and 10 are
believed to be the local optimum, which were identified under the FS methods with the limited
resources used. In fact, all optimal models identified based on FS methods are believed to be
local optimal. A complete search for the global optimal model(s) is time consuming and at
times, impossible, especially when there are a large number of predictive variables. This is
because the computational requirements have a factorial increase with the number of variables,
highlighting the importance of FS methods. Although the application of KIAVI did not further
improved the PA, it was found that informing knowledge to VI can further improve the PA [7,
64]. Again no free lunch theorems [71] are still effective when using FS methods. In general,
AVI and Boruta show their effectiveness in searching for the most accurate predictive models
and are recommended for future studies. It may be worth testing whether applying the AVI to
the variables selected by Boruta could further improve the PA in future studies. However, cau-
tion should be taken when applying the filter FS method because: 1) the number of predictive
variables is usually small in environmental sciences; and 2) inclusion of highly correlated pre-
dictors (with r� 0.99) could improve the PA as discussed above.

Computational demand is critical in choosing a FS method. Among the five methods, the
computational time decreases from VI, AVI, KIAVI, Boruta to RRF in terms of the number of
models tested to find the final model. Three advantages of VI were discussed previously [34].
KIAVI and AVI share these advantages and AVI led to the most accurate model for hard90 in
this study, but apparently their computational demand is high and automated programs need
to be developed to increase their computational efficiency in the future. Moreover, these FS
methods are applicable to datasets with small number of features such as those tested in this
study. For datasets with large number of features (e.g. from thousands to millions), dimension
reduction methods may be required to reduce the computing demand. However, caution needs
to be taken when non-linear correlations exist [72].

As discussed in the previous study [7], the PA is the ultimate measure for selecting the pre-
dictive model. Model selection via these FS methods is based on the PA. These FS methods will
produce models that are the most accurate or optimal instead of the most parsimonious as dis-
cussed above and previously [7]. The traditional model selection methods such as AIC and BIC
for regression models (e.g. linear model, generalised linear model) attempt to select the most
parsimonious models that are not necessarily the most accurate models, especially when proxy
variables are used as predictors instead of causal variables. Since the ultimate goal of predictive
modelling is to identify the most accurate model(s), these FS methods are more appropriate
than AIC and BIC methods in selecting predictive model(s). The principles underpinning
these FS methods can be easily applied to other machine learning methods as well as regression
models. Therefore, they are recommended for selecting predictive model(s) for RF and other
modelling techniques in future studies.

Hardness classification methods and prediction maps of seabed
hardness

Hard90 vs hard70. Two seabed hardness classification schemes, hard90 and hard70, were
proposed in this study. In comparison with hard70, the advantages of Hard90 were presumed
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to be that: 1) the probabilities of ‘hard’ and ‘soft’ are increased accordingly by using a threshold
of 90% or 10%, which ensured the ‘hard’ or ‘soft’ substratum classification to be composed
mostly of the representative substratum (i.e. ‘hard’ or ‘soft’); and 2) number of samples for the
mixed classes of hardness are increased and samples are more evenly distributed among four
classes. Thus the PA was expected to be higher for models based on hard90 than on hard70,
which were confirmed by the findings in this study (Tables 9 and 10).

Less hard and soft and more mixed classes were also anticipated to be predicted for hard90
than for hard70, which are confirmed by the findings in Table 11. Hard predictions for hard70
predicted as the hard-soft class for hard90 was less than soft predictions for hard70 predicted
as the soft-hard class for hard90 (1.26% vs. 3.12%); even a portion of soft predictions for
hard70 (2.06%) was predicted as hard-soft for hard90. However, the majority of the predictions
are similar for hard90 and hard70, with a match rate as high as 92.31% between these two
schemes (Table 11). By comparing the distribution of the hardness classes in the hard70 and
hard90, there were three samples that shifted from hard to hard-soft, and from soft to soft-
hard respectively, but the resultant changes in predictions are not as even as the samples.

Four classes vs. two classes. The PA for four hardness classes in this study seems less than
that for two classes in the previous study [7]. A few factors were expected to affect the PA either
positively or negatively:

1. The hard class in the previous study was further divided into three classes in this study, so
the PA was expected to be reduced.

2. Since the locations of the video tracks are again different to their true locations (thus to the
locations of backscatter data), we should not expect to reduce the predictive error much by
using the predictive variables at video locations directly.

3. The predictive variables derived in this study are expected to be more reliable than those in
previous studies [7, 12], because in previous studies the variables were derived for the sam-
ple locations that are usually a few meters to a few kilometres away from the video track,
while in this study all variables were generated for the location of the video locations to
remove the possible effects of the inaccuracy in the variables caused by the distance. Hence
an accuracy improved model is expected.

4. Bathymetry was an important predictor for hard and soft in the previous study [7] but not
in the current study as discussed above in 4.1. This may further explain why the PA was
slightly reduced in this study.

The spatial predictions for hard90 and hard70 were similar with the predictions based on
two hardness classes [7], with match rates as high 92.06% and 93.18% respectively. They are
also as high as 81.53% and 89.42% respectively for A1. These findings show that major patterns
were captured in their predictions, although predictions based on hard70 as expected are more
similar to the predictions based on two classes than the predictions based on hard90. This is
because both the two hardness class system in the previous study [7] and hard70 scheme in
this study used the same 70% and 30% thresholds to classify hard and soft classes.

Geomorphic features. The predicted maps reflect the influence of various geomorphic
features such as banks, terraces, and valleys (Figs 1C and 5). The associations of the predicted
hardness with geomorphic features are generally similar to those discussed in previous studies
[7, 12]. These associations were supported by ecological studies because certain organisms
expected to be found on hard [43, 73] or soft substrates [43, 73] were observed in the corre-
sponding substrates in this study.
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The predictions that were illustrated using a portion of study area (A1) (Fig 5) highlight the
difference in predictions among all geomorphic features for hard90 and hard70, with a lower
match rate than that for all areas (78.07% vs 92.31%) and with more mixed classes predicted for
hard90 (Table 11). Such differences were mainly observed on banks and terraces (Figs 1C and 5).

Limitations and other issues
The nature of the seabed is a fundamental factor in controlling the acoustic returns (i.e. back-
scatter). Soft seabed substrates generally produce lower backscatter intensity; in contrast, hard
seabed substrates generally produce higher backscatter intensity [74–77]. However, the
strength of the acoustic returns can be significantly attenuated or even lost because of scattering
from surface topography and the sessile benthic organisms, causing an apparent reduction in
the backscatter intensity. Likewise, very strong seabed reflections can be observed due to well-
sorted unconsolidated sediments in the absence of any surface topography or the presence of
hard surface underneath a veneer of soft materials. The existence of these factors can affect the
reliability of acoustic data and classification of video images [12], thus affecting the PA.

In addition, the limitations discussed in relation to using video footage to validate substrate
grounds and to the nature of backscatter intensity in Li et al. [7] are also applicable to this study.

Conclusions
Two seabed hardness classification schemes proposed in this study, hard90 and hard70, are
effective and they all led to high PA for seabed hardness predictions. Seabed hardness is pre-
dictable and can be predicted into a spatially continuous layer with a high accuracy, especially
to large areas where multibeam acoustic data exist and predictions of seabed classes are needed
for marine planning and management.

Not all highly correlated predictive variables should be used or excluded. The usual
approach used in pre-selecting variables by excluding correlated ones should be re-examined
for identifying predictive models using machine learning methods, at least for the application
of RF in the environmental sciences.

The identification of the important and unimportant predictors provides guideline for fur-
ther improving the predictive models, although additional effort is required to select relevant
predictors from the important and unimportant predictors.

FS is essential for identifying an optimal predictive model for RF in environmental sciences
but is a challenging task as a complete search for the global optimal model(s) is time consum-
ing and sometimes impossible. AVI and Boruta show their effectiveness in searching for the
most accurate predictive models and are recommended for future studies. Automated compu-
tational programs for AVI are recommended to be developed to improve its computational
efficiency in the future. However, caution should be taken when applying filter FS method in
selecting optimal predictive models.

This study further affirms the superior performance of RF in marine environmental sciences.
RF is an effective modelling method with high PA not only for presence/absence data and but also
for multi-level categorical data. RF can be applied to ‘small p and large n’ problems in environ-
mental sciences. It is recommended for generating spatially continuous predictions of categorical
variables like seabed hardness when the information of relevant predictive variables is available.
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