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Abstract
Differentiation between ischaemic and non-ischaemic transient ST segment events of long

term ambulatory electrocardiograms is a persisting weakness in present ischaemia detec-

tion systems. Traditional ST segment level measuring is not a sufficiently precise technique

due to the single point of measurement and severe noise which is often present. We devel-

oped a robust noise resistant orthogonal-transformation based delineation method, which

allows tracing the shape of transient ST segment morphology changes from the entire ST

segment in terms of diagnostic and morphologic feature-vector time series, and also allows

further analysis. For these purposes, we developed a new Legendre Polynomials based

Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical tran-

sient changes of ST segment morphology categories during myocardial ischaemia (level,

slope and scooping), thus providing direct insight into the types of time domain morphology

changes through the LPT feature-vector space. We also generated new Karhunen and Lo

ève Transformation (KLT) ST segment basis functions using a robust covariance matrix

constructed from the ST segment pattern vectors derived from the Long Term ST Database

(LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST

segment episodes, we present a study on the representation of transient ST segment mor-

phology categories, and an evaluation study on the classification power of the KLT- and

LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment

episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors

was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and

10-fold cross-validation. New sets of feature-vector time series for both transformations

were derived for the records of the LTST DB which is freely available on the PhysioNet web-

site and were contributed to the LTST DB. The KLT and LPT present new possibilities for

human-expert diagnostics, and for automated ischaemia detection.
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Introduction
Ambulatory electrocardiogram (AECG) monitoring of long term electrocardiogram (ECG)
records, obtained during the patient’s normal daily activities, is important in the assessment of
symptomatic and asymptomatic, or “silent”, ischaemia which may lead to myocardial infarc-
tion and consequently death. Due to the long duration of records (24 hours), which means an
enormous amount of data, and due to the possible presence of severe noise, automated proce-
dures for the extraction of diagnostic and morphologic features are becoming very important.
A convenient method for the representation and tracking of transient signal-shape changes are
time series of features. Automated analysis is of great help to clinicians in early assessment of
cardiac ischaemia severity for the accurate interpretation of relevant clinical results and for
proper treatment of the patient. Fig 1 shows two typical data segments of AECG records. A
transient ischaemic ST segment episode compatible with ischaemia is present in the upper data
segment (Fig 1A). An increased heart rate and transient morphology change of the ST seg-
ments of heart beats may be observed. The lower data segment (Fig 1B) is an example of severe
noise which is often present in AECG records and cause the main problems during the visual
and automatic assessing of the severity of ischaemic ST segment episodes.

Long term AECG records typically show significant (> 50μV) transient changes in the
amplitude of the ST segment level, and transient changes of ST segment morphology, forming
transient ST segment episodes. ST segment level is measured 80 ms, or 60 ms, if the heart rate
exceeds 120 bpm, after the end of ventricle depolarization period, i.e., 80 ms, or 60 ms, after
point J in the ECG (see Fig 2). These significant transient changes are caused by ischaemia,
which is of main clinical importance, and by a variety of reasons other than ischaemia. Signifi-
cant non-ischaemic ST segment changes may be: (1) slow drifts of the ST segment level due to
slow diurnal changes or effects of medication, or due to non-postural changes in the cardiac
electrical axis; (2) sudden shifts of the ST segment level due to shifts of the mean cardiac electri-
cal axis of the heart (axis shifts) as a consequence of postural changes or sudden changes in
ventricular conduction [1, 2]. Another problem are transient non-ischaemic heart-rate related
ST segment episodes appearing as transient changes of the ST segment level, but they are actu-
ally due to increased heart rate and shortening of RR intervals, and, e.g., consequently moving
of the T wave closer to the QRS complex, thus distorting ST segment level measurements.
These episodes are not caused by an obstruction of blood flow to the heart. Reliable automated
ST analyzers should be able to distinguish clinically significant ischaemic ST changes from
non-ischaemic ones.

An early study on the visual examination of ECG variables plotted in high resolution tempo-
ral trend format for the retrospective identification of the beginnings and ends of ST episodes
[3] proved the technique to be superior (sensitivity of 100%, positive predictivity of 100%) to
the conventional visual scrutiny of raw ECG signals (sensitivity of 82.5%, positive predictivity
of 95.7%) and suitable for the quantification of ST episodes. Due to the enormous amount of
data in AECG records (24 hours), and due to severe high frequency muscle noise and outliers,
which are usually present and complicate manual analysis, automated techniques to estimate
diagnostic and morphologic features are necessary. A key difficulty is that traditional ST seg-
ment level measuring in a single point at a fixed location (J + 80(60) ms) is not an adequately
precise technique for real ischaemic ST episodes detection.

The use of orthogonal transformations is important. Orthogonal transformations reduce
the dimensionality of data, retain information related to useful signal, and represent the data
in terms of uncorrelated features (sets of coefficients or feature vectors) that are based on
orthogonal basis functions. The Karhunen and Loève Transformation (KLT) yields minimum
expected least mean squared error on the reconstruction of pattern vectors. The purpose so far
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of using the KLT in ECG signal analysis was noise estimation [4], visually identifying acute
ischaemic episodes [5], the representation of ECGmorphology [4, 6], the automated detection
of transient ST segment episodes during AECG monitoring [7, 8], the analysis of the cardiac
repolarization period (ST-T complex) [9–12], visually identifying and manually annotating the
transient ischaemic and non-ischaemic ST segment episodes of the LTST DB [1], and auto-
mated ischaemic and non-ischaemic heartbeat classification [13]. The Hermite polynomials
were used for estimating ECG wave features [14] and for clustering ECG complexes [15]. The
Hermite, Legendre and Chebyshev polynomials were used for filtering and representing ECG
morphology [16]. The feasibility of ECG feature extraction and representation of transient ST
segment morphology of mice ECG using the Chebyshev-polynomial based transformation was
shown [17]. Furthermore, combinations of the KLT, Legendre polynomials and a variety of
other ECG features were used for transient ischaemic and non-ischaemic ST episode classifica-
tion [18–20].

Robust methods for parameter extraction for use in intensive care units are becoming
important [21]. The severe noise frequently present in AECGs necessitates the development of
robust noise resistant delineation systems to accurately trace transient changes of ST segment
morphology during myocardial ischemia in terms of diagnostic and morphologic feature-vec-
tor time series. Robust parameter extraction techniques yield nearly the same performance no
matter which records are analyzed.

In this paper, we present a new robust delineation method for ST segment morphology fea-
ture extraction, and transient ST segment morphology-change representation and tracing in
the sense of generation of ST segment diagnostic and morphologic feature-vector time series

Fig 1. Typical data segments of AECG records. (A) The beginning, extrema and end (from top to bottom)
of a transient ST segment episode compatible with ischaemia. (B) Severe noise.

doi:10.1371/journal.pone.0148814.g001
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using orthogonal transformations. We present a new approach for shape representation of
transient ST segment morphology changes using the orthogonal Legendre polynomials, i.e.,
Legendre Polynomial based Transformation (LPT) of ST segment. Furthermore, we develop
new ST segment KLT basis functions derived from a robustly generated covariance matrix
composed of the ST segment pattern vectors of the entire LTST DB. We then assess the repre-
sentational power of the KLT- and LPT-based derivation of morphology feature-vector time
series through a study on the representation of significant transient ischaemic and non-ischae-
mic ST segment morphology categories. We also evaluate the classification power of the KLT-
and LPT-based feature vectors to distinguish between the ischaemic and non-ischaemic ST seg-
ment episodes of the LTST DB.

Methods
Fig 2 shows the ECG of a normal heartbeat with marked points and intervals to estimate the ST
segment diagnostic and morphologic features that are relevant to represent, monitor and char-
acterize transient ischaemic and non-ischaemic ST segment changes. The diagnostic ST seg-
ment feature, like ST segment level, provides direct measurement of raw ST segment pattern
vectors in time domain in a single point at a fixed location (J + 80(60) ms), while orthogonal
transformation-based ST segment morphologic feature vectors utilize information from the
entire ST segment, thus providing high representational power in terms of ST segment mor-
phology categories, as well as subtle morphology features, and differentiation between transient
ischaemic and non-ischaemic ST segment events.

The motivation for a new approach using the orthogonal transformation of ST segment
based on orthogonal polynomials comes from observing the shapes of the ST segment KLT

Fig 2. The ECG of a normal heartbeat. A heartbeat of a two-lead AECG record with marked points and
intervals to estimate ST segment diagnostic and morphologic features.

doi:10.1371/journal.pone.0148814.g002
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basis functions [7] obtained from the European Society of Cardiology ST-T Database (ESC DB)
[2, 22], the standard reference for assessing the quality of AECG analyzers. These basis func-
tions (see Fig 3) span over two ECG leads. We found that the shapes of the KLT basis functions
are similar to the three main morphologic categories of ST segment morphology changes. The
first and second KLT basis functions have shapes similar to a constant function and thus corre-
spond to the elevation or depression of ST segments. The third and fourth KLT basis functions
have shapes similar to a linear function and thus correspond to the slope of ST segments. The
fifth (and sixth) KLT basis function has a shape similar to a quadratic function and thus corre-
sponds to the scooping of ST segments. However, for these basis functions there is no natural
mapping between the deflections of ST segment KLT feature-vector time series and the actual
deflections of ST segment morphology change categories like: depression/elevation, up- and
down-sloping, and scooping.

Therefore, we concluded to devise a set of new orthogonal basis functions that span over a
single ECG lead, with similar characteristics as the KLT, and with the further advantage of
strict correspondence to elevation/depression, slope change, and scooping, to better delineate
the transient shapes of ST segment morphology changes. The first three Legendre polynomials
(a constant, linear function and square function) uniquely possess these shapes and they are
also orthogonal. We used them to derive a new set of basis functions for the Legendre Polyno-
mial-based Transformation of ST segment (Fig 4A) that span over a single ECG lead.

In addition, we derived a new set of ST segment KLT basis functions, which also span over a
single ECG lead, from the entire collection of the records of the LTST DB using a robust covari-
ance matrix, with outliers due to noise rejected. The LTST DB database contains approximately
a ten times larger ECG data set compared to the ESC DB database, covers a considerably
greater amount of “real-world” data, and spans a wide variety of significant ischaemic and
non-ischaemic ST segment episodes and other ST segment morphology change events due to
axis shifts and conduction changes. The shapes of the newly derived KLT basis functions (Fig
4B) are more similar to typical morphology shape changes of ST segments, very similar to the
LPT basis functions, and allow more accurate single-lead tracing of ST segment morphology
change categories.

The Legendre Polynomial based Transformation of ST segment and
derivation of the LPT basis functions
The Legendre polynomials [23] are a class of orthogonal polynomials. They are solutions to the
Legendre differential equation. The first five Legendre polynomials are:

P0ðxÞ ¼ 1; ð1Þ

P1ðxÞ ¼ x; ð2Þ

P2ðxÞ ¼
1

2
ð3x2 � 1Þ; ð3Þ

P3ðxÞ ¼
1

2
ð5x3 � 3xÞ; ð4Þ

P4ðxÞ ¼
1

8
ð35x4 � 30x2 þ 3Þ: ð5Þ
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The Legendre polynomials can be generated by the following recurrence relation:

ðjþ 1Þ Pjþ1ðxÞ � ð2jþ 1Þ x PjðxÞ þ j Pj�1ðxÞ ¼ 0 ; j ¼ 1; 2; 3; ::: : ð6Þ

They are orthogonal over the range [-1,1] satisfying the orthogonality relationship:Z 1

�1

PnðxÞ PmðxÞ dx ¼ 2

2n� 1
dmn ; n ¼ 1; 2; ::: ; m ¼ 1; 2; ::: ; ð7Þ

where δmn is the Kronecker delta. The Legendre polynomials possess the desired orthogonality
and desired shapes. Orthogonality is an important property for basis functions to be uncorre-
lated, thus preventing information scattering among different axes of the transformed space
and enabling transformation reversibility and the derivation of residual errors. The shapes of
the first three Legendre polynomials (a constant, linear function and square function) have the
advantage of direct insight into the most important morphological changes of ST segments in

Fig 3. The ST segment KLT basis functions (they span over two ECG leads) obtained from the ESC
DB. The duration of the ST segment basis functions is 2 x 120 ms, from F + 40 ms to F + 160 ms, in 2 x 16
sample resolution.

doi:10.1371/journal.pone.0148814.g003

Fig 4. The derived LPT and KLT basis functions. (A) The Legendre orthogonal polynomials as the ST
segment basis functions,ΦL, spanning over a single ECG lead. (B) The ST segment KLT basis functions,ΦK,
obtained from the LTST DB which span over a single ECG lead. The duration of the ST segment basis
functions is 120 ms, from F + 40 ms to F + 160 ms, and are in 32 sample resolution.

doi:10.1371/journal.pone.0148814.g004
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time domain (elevation or depression, positive or negative slope, and positive or negative
scooping) through the feature space, if the polynomials are used as transformation basis func-
tions. Such a similarity in terms of polynomial shapes can also be observed if considering some
other classes of orthogonal polynomials like Chebyshev polynomials [17], however the Cheby-
shev polynomials loose the desired shapes (a constant, linear function and square function) in
their orthogonal form.

The Legendre polynomials can also be generated by the Gram-Schmidt orthonormalization
[24] to functions of the following form:

Qj�1 ðxÞ ¼ x j�1 ; j ¼ 1; 2; 3; ::: ; ð8Þ

on the interval [-1,1] with respect to the weighting function, w(x) = 1. In order to derive the
discrete basis functions for the orthonormal transformation of the ST segment based on the
Legendre polynomials, we first constructed a discrete matrix, O(ij), which is composed from
the polynomials Qj−1, sampled atM = 32 points in the range [-1,1]:

ΩðijÞ ¼ Qj�1 2
ði� 1Þ
ðM � 1Þ � 1

� �
; i ¼ 1; 2; :::;M; j ¼ 1; 2; :::;M ; ð9Þ

where [.] denotes the argument, x, of the polynomials from the range [-1,1], i denotes the sam-
ple number of discretized polynomials, and j is the polynomial number. The discrete Gram-
Schmidt orthonormalization [25] to the matrix O(ij) generates a matrix, F(ij), of the same
dimensionalityM ×M, composed from orthonormal discretized Legendre polynomials. Dur-
ing the Gram-Schmidt process, iteratively derived orthogonal polynomials,C(ij), are normal-
ized, yielding the matrix F(ij):

ΦðijÞ ¼ cijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
k¼1

ðwk c
2

kjÞ
s ; i ¼ 1; 2; :::;M; j ¼ 1; 2; :::;M ; ð10Þ

where ψij are the elements of the discretized orthogonal Legendre polynomials of the matrixC
(ij), and wi = 1 is the discretized weighting function, w(x) = 1. Fig 4A shows the first few ortho-
normal LPT basis functions of the matrix FL = F(ij), as the order of the polynomials increases.

Due to discretization and a degree of numerical instability generally present in numerical
algorithms, some loss of orthogonality in the generated basis functions is expected [25]. (Note
that this is also true for the discrete KLT.) The LPT basis functions contained in the FL matrix
are expected to be orthonormal,

ΦL Φ
T
L ¼ I ; ð11Þ

where I is the identity matrix. This holds to an adequately high degree of numerical accuracy.
If the discrete Gram-Schmidt orthonormalization is applied to the polynomials Qj−1, the result
are orthonormal discretized Legendre polynomials which only slightly differ from their con-
tinuous analogue [25]. Due to the iterative nature of the generation algorithm, numerical
errors grow with the increasing basis function number. We tested the orthonormality of the
discrete LPT basis functions derived by calculating the values of elements of the identity
matrix. For the first 10 LPT basis functions of the matrix FL, the maximal numerical error of
the diagonal elements of the identity matrix, I, was 3,4 . 10−6, and for the off-diagonal ele-
ments it was 1, 0 . 10−5.

The LPT expansion is thus based on mutually orthogonal Legendre polynomials used as
the basis functions for the transformation. Since the Legendre polynomials were chosen
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intentionally due to their shape similarity to the KLT basis functions in the descending order of
the associated eigenvalues, it can be reasoned that the Legendre polynomial based expansion
contains most of the morphology information in the first few axes of the new coordinate sys-
tem as well.

The Karhunen and Loève Transformation and the derivation of new KLT
basis functions
The KLT expansion is based on mutually orthogonal eigenvectors belonging to eigenvalues in
descending order of the covariance matrix associated with the pattern vectors. It is possible to
approximate the pattern vector with least mean square error through a feature vector of
reduced dimension in comparison to other suboptimal transformations. Detailes about the
KLT can be found elsewhere [26, 27]. To avoid the problem of sensitivity of eigenvectors to
noise pattern vectors, we used the kernel-approximation method [28] by which we rejected
noisy outliers and replaced pattern classes by their means yielding a robust covariance matrix
[28].

To construct the robust covariance matrix, we used clean heart beats from the LTST DB left
after preprocessing the records with robust KLT feature-space based noise and the outlier
extraction procedure [7]. The procedure proved to be robust and accurate. On average, 8.51%
of heart beats were rejected from each of the LTST DB records.

Then we attached the first and second lead of 86 total records from the LTST DB one after
the other. The latter is justified since single lead basis functions independent of the actual phys-
iological ECG lead are desired. Besides, physiological ECG leads are not consistently mapped
to the same lead number in the records of the LTST DB. Thus we got 15,661,886 total pattern
vectors from 7,830,943 clean heart beats from the database. Input pattern vectors of deviating
intervals (ischaemic, non-ischaemic) and of intervals with no deviation of the records of the
LTST DB were separated to form classes, which were then replaced by their means, and cen-
tralized by subtracting the mean vector obtained over all classes, thus forming a robust covari-
ance matrix. There were 1642 ischaemic intervals, 510 non-ischaemic and 2298 intervals with
no deviation. Fig 4B shows the first five newly derived ST segment KLT basis functions, FK, in
the descending order of magnitude of their corresponding eigenvalues. Note the similarity
between the KLT and LPT basis functions.

Derivation of ST segment diagnostic and morphologic feature-vector
time series
The developed delineation method includes a preprocessing step, the derivation of traditional
time domain diagnostic features, derivation the KLT- and LPT-based ST segment feature vec-
tors, and construction of the feature-vector time series. The preprocessing step includes follow-
ing essential tasks: heartbeat detection and classification, estimation of stable fiducial point,
estimation of the iso-electric level for each heartbeat, noise removal, and removal of abnormal
heart beats and their neighbors. In the preprocessing step, we applied: Aristotle arrhythmia
detector [29] detecting and classifying heart beats, and estimating the stable fiducial point, an
algorithm that looks for the PQ interval as the “most flat” signal interval prior the heartbeat’s
fiducial point and estimates the iso-electric level [30], removal of high-frequency noise using a
6-pole low-pass Butterworth filter with the cut-off frequency at 55Hz, removal of baseline wan-
der using cubic spline approximation and subtraction technique, and removal of abnormal
heart beats and their neighbors.

Derivation of ST segment diagnostic feature-vector time series. Derivation of traditional
time domain ST segment diagnostic feature-vector time series is an essential part of delineating
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transient ST segment morphology changes. On the other hand, we want to study and empha-
size the representational power of the KLT- and LPT-based ST segment morphologic feature-
vector time series in comparison to traditional time domain diagnostic feature-vector time
series. With the proposed delineation method, time domain ST segment diagnostic feature-vec-
tor time series of instantaneous heart rate, ST segment level, and ST segment slope are derived.

Instantaneous heart rate, h(j), where j denotes the heartbeat number, is defined by consecu-
tive measurements of RR intervals between heart beats. A sample of the ST segment level time
series, sl(i, j), where i denotes the lead number, is defined as:

slði; jÞ ¼ a80ð60Þði; jÞ � zði; jÞ ; ð12Þ

where a80(60)(i, j) is the ST segment amplitude of the j-th heartbeat, estimating the ST segment
amplitude at the point J+80(60) ms, and z(i, j) is its iso-electric level. The point of measurement
of the ST segment amplitude, a80(60)(i, j), is linearly adjusted between the points F(i, j) + 160
ms and F(i, j) + 120 ms as the heart rate h(j) varies between 120 bpm down to 100 bpm. The
value of the ST segment slope, ss(i, j), is estimated simply as the amplitude difference:

ssði; jÞ ¼ a80ð60Þði; jÞ � a20ði; jÞ ; ð13Þ

where a20(i, j) is the ST segment amplitude, estimating the ST segment amplitude at the point
J+20 ms, measured at the point F(i, j) + 60 ms.

Derivation of the KLT- and LPT-based ST segment morphologic feature-vector time
series. To get the KLT- and LPT-based ST segment feature-vector time series, an N-dimen-

sional (N = 9) KLT feature vector, s
0
Kði; jÞ, and an N-dimensional LPT feature vector, s

0
L ði; jÞ,

are derived in each lead, i, and for each single iso-electric corrected heartbeat, j:

s
0
Kði; jÞ ¼ Φ T

K xði; jÞ ; ð14Þ

s
0
L ði; jÞ ¼ Φ T

L xði; jÞ ; ð15Þ

where x(i, j) is an input ST segment pattern vector composed fromM = 32 signal samples in
the interval from F(i, j) + 40 ms to F(i, j) + 160 ms, and FK and FL are the KLT and LPT basis
function transformation matrices.

To get the final KLT and LPT feature-vector time series, sK(i, j) and sL(i, j), the coefficients

of the KLT and LPT feature vectors, s
0
K; kði; jÞ and s 0

L; kði; jÞ, are normalized according to the

corresponding standard deviations, ρk and θk, of the KLT and LPT expansion coefficients,
respectively:

sK;kði; jÞ ¼ s
0
K; kði; jÞ
rk

; k ¼ 1; 2; ::;N ; ð16Þ

sL;kði; jÞ ¼ s
0
L; kði; jÞ
yk

; k ¼ 1; 2; ::;N : ð17Þ

In terms of the coefficient values of the feature vectors, tiny features of the pattern vectors cor-
responding to higher basis functions with lower standard deviations are thus emphasized. This
way, each feature of the feature vectors is normalized with the corresponding standard devia-
tion, so that its standard deviation, B is 1.

Standard deviations ρk and θk of the KLT and LPT expansion coefficients are those com-
puted on the basis of 7,830,943 clean heart beats from the LTST DB that were used for the con-
struction of a robust covariance matrix to derive the KLT basis functions. Table 1 shows the
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values of the first five standard deviations, ρj and θj, of the coefficients of the KLT and LPT fea-
ture-vector time series in descending order. The magnitudes of the standard deviations com-
puted, ρj, of the KLT feature-vector coefficients are in descending order as expected. The
magnitudes of standard deviations, θj, of the LPT feature-vector coefficients appear to be in
descending order too, as the order of the polynomials increases.

The normalization of the coefficients also allows one to express distances between the fea-
ture vectors in terms of the Mahalanobis distance measure, d(i, j), between the feature vector of
the j-th heartbeat and the feature vector of the first heartbeat as a single-dimensional com-
pound feature useful for more comprehensive visual, as well as machine based, analysis:

d 2
K ði; jÞ ¼

XND

k¼1

ðsK; kði; jÞ � s K; kði; 1ÞÞ 2
; ð18Þ

d 2
Lði; jÞ ¼

XND

k¼1

ðs L; kði; jÞ � s L; kði; 1ÞÞ 2
; ð19Þ

where sK, k(i, 1) and sL, k(i, 1) are the feature vectors of the first heartbeat, and ND is the Mahala-
nobis distance measure dimensionality.

Results
The robust new delineation method for ST segment morphology feature extraction and tran-
sient ST segment morphology-change representation developed is capable of deriving morpho-
logic ST segment feature-vector time series from input ECG signals. They can be used in trend
plot form for representing and characterizing relevant transient ischaemic and non-ischaemic
ST segment morphology categories, as well as for further automatic analysis.

We derived KLT- and LPT-based feature-vector time series for all records of the LTST DB.
The entire LTST DB feature-vector time series collection is free and available online on Physi-
oNet [2] web site (https://www.physionet.org/physiobank/database/ltstdb/, doi:10.13026/

C2G01T). The time series of the first nine KLT coefficients, s
0
K; kði; jÞ, and of the normalized

KLT coefficients, sK, k(i, j), with the corresponding residual errors, are stored in the �.kls and
�.nks files of the LTST DB (https://www.physionet.org/physiobank/database/ltstdb/kl-single-

uncentralized/); while the time series of the first nine LPT coefficients, s
0
L; kði; jÞ, and of the nor-

malized LPT coefficients, sL, k(i, j), with the corresponding residual errors, are stored in the
�.loc and �.noc files of the LTST DB (https://www.physionet.org/physiobank/database/ltstdb/
legendre/). Examples of trend plots of derived morphologic feature-vector time series for the
selected records of the LTST DB are shown in Fig 5 and in Fig 6.

Table 1. Standard deviations of the coefficients of the KLT and LPT feature-vector time series.

j 1 2 3 4 5

ρj 112.66 42.29 23.09 10.92 7.15

θj 133.20 49.67 23.57 15.36 12.85

The first five standard deviations, ρj and θj, of the coefficients of the KLT and LPT feature-vector time series

as obtained from the LTST DB using the ΦK and ΦL basis functions, respectively. Values are in units (20

units = 100μV).

doi:10.1371/journal.pone.0148814.t001
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Fig 5. The trend plots of the derived diagnostic andmorphologic feature-vector time series. The second lead of record s20421 of the LTST DB from
04:00 [h:min] to 07:00 containing axis shifts and transient ischaemic ST segment episodes. From top to bottom: heart rate, h(j), in [bpm]; ST segment level,
sl(2, j), and ST segment slope, ss(2, j), (resolution: 100μV/div); stream of human-expert annotated ischaemic ST segment episodes (long rectangles); and the
first five KLT and the first five LPT ST segment coefficients, sK, k(2, j) and sL, k(2, j), with their corresponding Mahalanobis distance measures, dK(2, j) and
dL(2, j), respectively, (resolution: 1ς/div). At the right: Heart beats according to markers A, B and C, prior to the axis shift [04:13:26.176], after the axis shift
[04:43:30.416], and at the extrema of ischaemic ST episode [06:30:08.056] with marked interval (ST) where the KLT and LPT basis functions reside.

doi:10.1371/journal.pone.0148814.g005
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Fig 6. ST segment episodes in terms of the KLT and LPT feature-vector time series representation. (A) Example of ischaemic ST segment episode
showing ST segment scooping (the first lead of record s30681, from 10:06 [h:min] to 10:36). (B) Example of non-ischaemic heart-rate related ST segment
episode showing moving of the T wave closer to the QRS complex (the first lead of record s20431, from 00:30 to 01:00).Upper: The KLT feature-vector time
series, sK(i, j).Middle: Human-expert annotated depressed ischaemic or elevated non-ischaemic ST segment episode. Lower: The LPT feature-vector time
series, sL(i, j). Right: Normal reference heartbeat (dotted line) at the time marked with R with overlaid ischaemic or non-ischaemic heartbeat (solid line) at the
extrema of the episode at the time marked with X.

doi:10.1371/journal.pone.0148814.g006
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Representation of transient ST segment morphology categories
During the annotating of the transient ST segment episodes of the LTST DB, expert cardiolo-
gists defined two classes of ST segment change episodes with the following characteristics [1]:
1) Transient ischaemic ST segment change episodes that are characterized by the typical trian-
gular temporal pattern of ST segment level and may or may not be accompanied by a change in
heart rate, when clinical information from the subject suggests ischaemia, with typical and
most often ST segment morphology change categories like: depression, elevation, horizontal
flattening, down-sloping, and scooping; and 2) Transient non-ischaemic ST segment change
episodes that are characterized by the typical triangular temporal pattern of ST segment level
and by obligatory simultaneous change in heart rate, when clinical information from the sub-
ject does not suggest ischaemia, with the typical and most frequent ST segment morphology
change categories like: J-point depression with positive slope, moving of T wave into ST seg-
ment, parallel shift of ST segment compared to the reference or basal ST segment, and T wave
peaking. As we present next, these categories of ST segment morphology changes can better be
tracked by the ST segment feature-vector time series obtained using new KLT and LPT basis
functions to derive ST segment feture-vector time series.

Fig 5 shows an example of morphologic feature-vector time series for a record from the
LTST DB containing axis shifts and ischaemic ST episodes. Considering heart beats at the
markers A and B, before and after the axis shift, morphology change is clearly visible, and the
ST segment, in the region where basis functions reside (interval marked as ST), is elevated
and with a positive slope. The latter two morphology changes can be observed in the trends
of time domain diagnostic parameters and in the corresponding time series of the first and
second LPT coefficient time series (LPT 1, LPT 2), but the feature-behavior mapping is less
straightforward in the first and second KLT coefficient time series (KLT 1, KLT2). Plots KLT
3 and LPT 3 at markers A and C illustrate how the third coefficient of the LPT provides
clearer estimations of scooping, as expected, because of its exact square-function derived
shape, as opposed to the third coefficient of the KLT. Similarly, considering heartbeat C at
the extrema of an ischaemic ST episode, the ST segment is depressed, down-sloped and
shows negative scooping. There three morphology changes can be observed in the trends of
the time series of the first, second and third LPT coefficient time series, but are less directly
mapped in the KLT coefficient time series. From the trends of time domain diagnostic
parameters, i.e., ST segment level and slope (the upper part of Fig 5), scooping cannot be dis-
tinguished at all.

In Fig 6 typical morphology changes during transient ischaemic and non-ischaemic ST seg-
ment episodes are shown. Fig 6A shows an example of a depressed (negative) ischaemic ST epi-
sode with ST segment scooping, while Fig 6B shows an example of elevated non-ischaemic ST
episode due to the moving of the T wave closer to the QRS complex. The ST segment morphol-
ogy changes correlate with the shapes of the corresponding basis functions (see Fig 4) and the
morphology change category can quickly be visually determined from the trend plots. The
time course of the LPT coefficient time series in example A shows depression (1st coeff.), posi-
tive slope (2nd coeff.) and positive scooping (3rd coeff.); while in example B, elevation (1st
coeff.), positive slope (2nd coeff.) and positive scooping (3rd coeff.). This is consistent with the
actual transient morphology change of the two episodes, and shapes and signs of the first three
LPT basis functions. These significant transient morphology changes are clearly manifested
and also visible in the KLT coefficient time series in both cases, but with the opposite sign of
the first three KLT coefficient time series. This is due to the close similarity of the first three
KLT basis functions to the constant, linear function, and square function, but with opposite
sign of the three basis functions (see Fig 4).
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Evaluation of the classification between transient ischaemic and non-
ischaemic ST segment episodes
Since ECG ST segment morphology delineation provides fundamental features to be used in
subsequent automatic analysis, we performed an evaluation study on the classification power
of the KLT- and LPT-based feature vectors, sK(i, j) and sL(i, j), to classify between the transient
ischaemic and non-ischaemic ST segment episodes from the LTST DB. We set out to classify
episodes of changed ST segment morphology from the entire LTST DB to the class of episodes
caused by ischaemia and to the class of non-ischaemic heart-rate related episodes.

We used five established classifiers: k-Nearest Neighbors (kNN), Classification Tree (CT),
Quadratic Discriminant Analysis (QDA), Support Vector Machines (SVM) with second-order
polynomial kernel using Least Square method, and Naive Bayes Classifier (NBC) with distribu-
tion by kernel smoothing density estimate. Mathworks Matlab Statistics Toolbox algorithm
implementations were used. Classification performance results are summarized in Table 2 in
terms of Sensitivity, Se = TP/(T P+FN), Specificity, Sp = TN/(TN+FP), and Classification Accu-
racy, C A = (TP+TN)/(TP+FN+TN+FP), where TP denotes the number of true positives
(ischaemic episodes classified as ischaemic), FN the number of false negatives (ischaemic epi-
sodes classified as non-ischaemic), TN the number of true negatives (non-ischaemic episodes
classified as non-ischaemic), and FP the number of false positives (non-ischaemic episodes
classified as ischaemic).

Each episode of the LTST DB annotated in each single ECG lead according to the annota-
tion protocol B [1] was represented by a mean feature vector of the KLT and a mean feature
vector of the LPT coefficients, derived from an interval of 20 seconds around the episode
extreme. Classification performance evaluation results are shown in Table 2. Classification
power was tested using three different feature transformation-coefficient subsets: coefficients
1-3, coefficients 1-5 and coefficients 1-8. These feature vectors were used as input data for clas-
sification performance evaluation by 10-fold cross-validation with 10 repetitions. Classification
was performed separately with the KLT and LPT feature vectors. The resulting input data con-
sisted of 1130 instances of ischaemic ST segment episodes and 234 instances of non-ischaemic
heart-rate related ST segment episodes. The highest classification performance was obtained
using the kNN, k = 3, the KLT coefficients 1-8, SeKLT = 91%, SpKLT = 85%, and CAKLT = 90%.

Discussion and conclusions
The Legendre polynomials as basis functions of the transformation of the ECG ST segment
proved to be convenient for the purposes of feature extraction and shape representation
because of their simple generation process and orthogonality. Visual examination confirmed
that the new LPT approach based on the Legendre polynomials is a valid representation of ST
segment morphology. It has the unique additional benefit of direct insight into the clinically
important typical time domain ST segment morphology changes. Typical time domain charac-
teristics of transient ST segment morphology changes like elevation or depression, up- or
down-sloping, and scooping are clearly visible in feature-vector time series (Figs 5 and 6). The
shapes of the first three Legendre polynomials (a constant, linear and square function) precisely
correspond to these characteristics and thus provide accurate extraction of the desired features.

While trends of time domain diagnostic parameters show ST segment level and slope
changes of ischaemic ST episodes as measured at a single point (J + 80(60) ms) only, time series
of the KLT and LPT feature-vector coefficients offer clearer insight into the categories of tran-
sient ST segment morphology changes. This is especially true for the subtle scooping of ST seg-
ment (see Figs 5 and 6), which can not be efficiently measured in time domain. The third
coefficient of the LPT produces clear deviations consistent with visually detectable shapes.
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Clinicians can easily examine important features by visual observation of the LPT feature-vec-
tor time series trends spanning several hours on a single display. This is significantly faster
than evaluating ST segment morphology changes on the level of individual heart beats or
examining feature-vector time series without clearly understandable time domain meaning.
On the other hand, the developed delineation method, especially using the KLT, offers a more
comprehensive estimation of ST segment features for automated systems in contrast to the
traditional time domain measurements (ST segment level and slope at fixed points in the ST
segment) since the orthogonal transformation based techniques extract information of mor-
phology from the entire ST segment. Another advantage is that detection of the J point can be
omitted.

The results of the evaluation study on classification performance (Table 2) show the poten-
tial of the feature vectors based on the new KLT and LPT basis functions for classification
between ischaemic and non-ischaemic ST segment episodes. Besides assessing classification
performance in distinguishing ischaemic from non-ischaemic ST segment episodes, our goal
was also to assess classification performance of the KLT compared to the LPT. Classifiers used
in this study perform slightly better if using the new KLT feature vectors than using the new
LPT feature vectors (SeKLT = 91%, SpKLT = 85%, CAKLT = 90%; compared to SeLPT = 85%,
SpLPT = 72%, CALPT = 82%; for the best-performing classifier kNN, k = 3, and using the best

Table 2. Classification performance evaluation results.

KLT LPT

SeKLT(%) SpKLT(%) CAKLT(%) SeLPT(%) SpLPT(%) CALPT(%)

Coeff. 1-3 3NN 79 74 78 69 61 68

4NN 76 83 77 64 65 64

5NN 72 86 74 59 73 62

CT 82 56 78 78 47 73

QDA 53 85 58 45 85 53

SVM 72 64 71 59 63 60

NBC 71 68 70 62 67 63

Coeff. 1-5 3NN 88 82 87 83 75 82

4NN 85 84 85 79 82 79

5NN 82 86 83 75 84 76

CT 87 63 83 84 59 80

QDA 69 82 71 61 82 65

SVM 79 75 78 77 74 76

NBC 81 69 79 70 70 70

Coeff. 1-8 3NN 91 85 90 85 72 82

4NN 89 85 88 82 79 81

5NN 87 87 87 79 80 79

CT 90 68 86 86 56 81

QDA 90 53 84 90 40 81

SVM 81 76 81 81 74 79

NBC 83 73 81 74 67 73

Classification between ischaemic and non-ischaemic heart-rate related ST segment episodes using k-Nearest Neighbors (kNN) with k = 3 (3NN), k = 4

(4NN), and k = 5 (5NN), Classification Tree (CT), Quadratic Discriminant Analysis (QDA), Support Vector Machines (SVM), and Naive Bayes Classifier

(NBC) using the KLT and LPT feature vectors. Se—Sensitivity, Sp—Specificity, C A—Classification Accuracy. The highest classification accuracy for

each group of coefficients is bold.

doi:10.1371/journal.pone.0148814.t002
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performing feature subset, coefficients 1-8). This was expected, as the LPT is based on the
Legendre polynomials and is not fitted to any “training” data in comparison to the KLT. In
spite this the classification performances are still comparable.

Related studies on the classification between ischaemic and non-ischaemic ST segment epi-
sodes employed a variety of other approaches. A decision tree based classification between
ischaemic and non-ischaemic ST segment episodes of the LTST DB was performed in [18]. In
this study, compound features like heart rate, Legendre polynomial coefficients, and the Maha-
lanobis distance of the QRS complex KLT coefficients were used. These compound features
were actually derived as differences between features of pre-episode onset, pre-episode offset,
and episode extreme. Classification performances achieved on the entire set of ischaemic and
non-ischaemic ST segment episodes of the LTST DB were 98.4% (Se) and 85.9% (Sp). Using
the bootstrap method to assess the robustness of the performance statistics and to predict the
real-world performance of the approach, the 5% confidence limits achieved were 97.8% (Se)
and 81.5% (Sp). A similar discriminant analysis based approach [19] in the classification of
ischaemic and non-ischaemic ST segment episodes of the LTST DB used compound features
derived as differences between features of pre-episode onset, pre-episode offset, and episode
extreme as well. The features used were heart rate, QT interval, ST segment level, and QRS
complex and ST segment KLT coefficients. The classification performances achieved using
leave-one-out cross-validation estimation were 84.5% (Se) and 86.6% (Sp). Yet another study
[20] conducted a genetic algorithm-based selection to identify the nine, out of 35, most relevant
features to classify ischaemic and non-ishaemic ST segment episodes of the LTST DB. The
selected features were single features like the low to high frequency ratio (LF/HF ratio) of heart
rate ST segment level, and the root mean square of the ST segment shape change, and com-
pound features (differences in features from pre-episode onset and pre-episode offset) like
heart rate, ST segment slope, R wave up-slope, root mean square of the QRS complex shape
change, and the Mahalanobis distances of the QRS complex and ST segment KLT coefficients.
Ischaemic and non-ischaemic ST segment episodes from the LTST DB were separated into
training and testing sets. The performances obtained from the testing set using the Relevance
vector machine (a special case of a sparse Bayesian learning algorithm) were 88.7% (Se) and
86.8% (Sp).

Our study intentionally used non-compound features and those based solely on the KLT- or
LPT-based feature vectors. Our goals were to assess the classification performance to classify
between ischaemic and non-ischaemic ST segment episodes, and to assess the classification
performance of the KLT-based feature vectors as opposed to the LPT-based feature vectors. To
assess the classification performance we used 10-fold cross-validation with 10 repetitions. In
comparison to [18–20] we also tested a variety of classifiers (kNN, CT, QDA, SVM, NBC). The
k-Nearest Neighbors classifier yielded the highest classification performances if using the KLT-
based feature vectors, SeKLT = 91% and SpKLT = 85%. The classification performances achieved
are quite comparable to the performances obtained in [18], and higher than those obtained in
[19, 20]. The Mahalanobis distances of the QRS complex and ST segment KLT coefficients in
[18, 20] and the QRS complex and ST segment KLT coefficients in [19, 20] were derived using
the KLT basis functions [7] from the ESC DB. These basis functions span over two ECG leads
(for these ST segment KLT basis functions see Fig 3). Consequently, we may expect that the
extracted features in terms of the KLT coefficients will less accurately emphasize the presence
of ischaemia, since ischaemic ST segment change shapes may be significant in one ECG lead,
but less significant, or even absent, in the other ECG lead. One of the advances of the proposed
method lies in the fact that the newly developed KLT basis functions, and the LPT basis func-
tions, span over a single ECG lead, thus the extracted features will more accurately emphasize
the presence, or not, of ischaemic ST segment shape changes. The next advance of the proposed

Electrocardiogram ST-Segment Morphology Delineation Method

PLOS ONE | DOI:10.1371/journal.pone.0148814 February 10, 2016 16 / 18



method lies in the reduced set of features (the KLT- and LPT-based feature vectors only) that
yield high classification performance, the only prerequisite is a stable fiducial point for each
heartbeat. Furthermore, extracting the morphologic features of ST segments exclusively in
terms of the KLT or LPT feature vectors is more robust in the sense that they are less suscepti-
ble to ECG signal variability and noise. Another advance of the proposed method are non-
compound features that are extracted only at the extrema of ischaemic and non-ischaemic ST
segment episodes. There is no need for the accurate detection of the beginnings of the episodes,
which is difficult.

The LPT offers an additional asset of immediate insight into the type and shape of ST seg-
ment change in time domain. This fact indicates possibilities for the development of new clini-
cal diagnostic criteria for the reliable visual detection of transient ischemia using the LPT.
Consequently, significantly lower rates of erroneously estimated ST segment features can be
expected.

As for the task of the delineation of significant transient ST segment morphology changes
from the entire ST segment, we conclude that the LPT basis functions provide higher accuracy
in the representation of transient ST segment morphology categories, while the new KLT basis
functions provide higher classification accuracy between ischaemic and non-ischaemic ST seg-
ment episodes, offering future applications such as new automated transient ischaemia detec-
tion systems.
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