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Abstract
The purpose of the study is to examine the effect of subliminal priming in terms of the per-

ception of images influenced by words with positive, negative, and neutral emotional con-

tent, through electroencephalograms (EEGs). Participants were instructed to rate how

much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed

to masked lexical prime words that exhibit positive, negative, and neutral connotations with

respect to the images. Simultaneously, the EEGs were recorded. Statistical tests such as

repeated measures ANOVAs and two-tailed paired-samples t-tests were performed to mea-

sure significant differences in the likability ratings among the three prime affect types; the

results showed a strong shift in the likeness judgment for the images in the positively primed

condition compared to the other two. The acquired EEGs were examined to assess the dif-

ference in brain activity associated with the three different conditions. The consistent results

obtained confirmed the overall priming effect on participants’ explicit ratings. In addition,

machine learning algorithms such as support vector machines (SVMs), and AdaBoost clas-

sifiers were applied to infer the prime affect type from the ERPs. The highest classification

rates of 95.0% and 70.0% obtained respectively for average-trial binary classifier and aver-

age-trial multi-class further emphasize that the ERPs encode information about the different

kinds of primes.

1 Introduction
Understanding how affective content influences decision making without being consciously
perceived has been an area of active research [1]. Such evaluative and affective responses rely
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on the interplay of underlying emotional and cognitive processes, which are assumed to be
instantaneous and automatic [2, 3]. When a subliminal presentation of a prime object preju-
dices or changes one’s evaluation of a subsequently presented target object in the direction of
the affective valence of the prime object, there is said to be an affective priming effect [4]. This
effect occurs faster and more accurately when the prime and target are affectively congruent
(i.e., positive-positive or negative-negative) than when affectively incongruent (i.e., positive-
negative or negative-positive) [4, 5].

Various past and recent studies have found the affect priming effect across an array of
prime stimuli, from emotional pictures [6–11] to emotional words [12–15] or both [16–18].
Most of these studies elicited the use of ERPs alongside behavioral performance measure-
ments and, as a result, have identified two emotion-related ERP components [19]. The early
posterior negativity (EPN) occurs around 100–200 ms [20, 21] and the late positive complex
(LPC) at around 200–500 ms [22, 23]. Neurophysiological analysis of subliminal priming has
made the tracking of these seemingly automatic unconscious processes visible, allowing an
online measurement with temporal resolution and complex information processing effi-
ciently, otherwise not possible with standard behavioral measurements alone, such as tracking
reaction time or accuracy scores [17, 18, 24]. ERP studies have also been used in applications
such as object recognition [25], decoding of visual attention [26, 27], and prediction of human
cognitive states [28].

However, while utilizing EEG has been beneficial in investigating brain-behavior relation-
ships, can ERP data accurately and efficiently reveal one’s intention or what one is thinking? Is
it possible to ‘decode’ an individual’s thoughts or even unconscious mental state based only on
measurements of their brain activity? It seems that this prospect has remained purely hypothet-
ical [29]. Therefore, in this present study, we address the question of whether unconscious
mental states can be consistently decoded from performance patterns during a subliminal
affective priming task. Standard ERP analyzes and pattern classification techniques, i.e., Sup-
port Vector Machine (SVM) and AdaBoost classifiers, are implemented in a comparative study
to provide additional evidence to bolster the reliability of ERP data alongside behavioral data.
Pattern classifiers facilitate the integration of neural activity into a decision variable so as to
compute the comparison of performance parameters with corresponding behavioral perfor-
mance. Classifiers such as SVM and AdaBoost have been found to perform extremely well for
brain data [30–33]. The main goal of the present study is to quantitatively assess the ability of
ERP metrics to successfully predict the affective valence (positive, negative, and neutral) of the
visual lexical stimulus (prime word) presented to the participant and hence reconstruct the
mental states across observers according to ERP data.

To the best of our knowledge, no study published to date has used pattern classifiers like the
SVM in characterizing the neural correlates of behavioral performance during a subliminal
priming presentation of affective cross-domain stimuli so as to predict the mental states of
young, healthy participants. The primes used in the present study are words across three
valences (positive, negative, and neutral), and subsequent target stimuli are originally neutral
images (cf. Gibbons, 2009 for similar experimental stimuli). In a recent study by Grotegerd
et al. (2013), SVM was used in a subliminal priming experiment on unipolar and bipolar
depression patients but with emotional faces as both prime and target stimuli. Philiastides et al.
(2006), Philiastides and Sajda (2006), and Das et al. (2010) used pattern classifiers during per-
ceptual decision paradigms (single-trial EEG) for predicting perceptual decision biases, and
both of the prime-target stimuli were pictures (face/car paradigm). Bode et al. (2012) likewise
used SVM in their multivariate pattern analyzes to study choice priming biases in a perceptual
decision paradigm with static noise-masked images of pianos and chairs.
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The use of subliminal emotional stimuli (words and images) in our experimental design has
various implications on the predictions for this study. We expect that the affective primes will
cause participants to respond differently to the target images and emotional-content-depen-
dent ERP modulations can be observed as early as at the P1 (40–120 ms), N1 (80–170 ms) and
P2 (100–210 ms) time windows, characteristic of the EPN [34]. In addition, the LPC can be
expected in the posterior regions due to a shift in likeness judgment in the positively primed
condition not found in the negative and neutral conditions [35–37]. Specifically, the affective
word priming conditions would elicit a lexical priming effect, notably the P300 and N400
effects, associated with attentional capture, evaluation, and memory encoding [38–40]. There
would also be a more pronounced late ERP component in the posterior regions of the right
hemisphere rather than the left, as the right hemisphere is said to play a dominant role in emo-
tional prosody and semantics [41]. Lastly, the SVM as a pattern classifier is predicted to be a
successful tool for discriminating among the prime types and thereby the mental states of
participants.

The preliminary results obtained were previously published in [42].

2 Methods
In this section, we describe the experimental protocol, stimuli selection, procedure, EEG signal
recording, preprocessing, feature extraction, and classification techniques. The theoretical
background of SVM and AdaBoost are also briefly reviewed.

2.1 Participants
Forty English-speaking students (26 males, 14 females; M = 22.3 years, ranging 19–33) at
Nanyang Technological University volunteered to participate in this study. All had normal or
corrected-to-normal vision and were naive to the purpose of the experiment. The Edinburgh
Handedness Inventory [43] was administered to determine handedness (39 right-handed and
1 left-handed). The Nanyang Technological University Institutional Review Board approved
this study and experimental paradigm. All participants gave informed written consent and
received monetary remuneration for their participation.

2.2 Stimuli
An initial pilot study was conducted to construct the stimulus set. Six hundred and seventy-
five images were acquired at random from the Internet and converted to grayscale. All images
depicted objects or places that could be named with a single word (e.g., bangles, restaurant).
Each image in the initial set was paired with a positive, negative, and neutral word prime based
on suggestions from four analysts of varied cultural backgrounds. Words that were semanti-
cally unrelated to the image were considered neutral word primes. The resultant word-image
pairs were then submitted to a preliminary rating study to determine the strength of associa-
tion between each image and its three suggested words.

In the rating study, 10 participants (6 females) rated the following on a 7-point Likert scale:

1. the likability of the depicted object/place in the image (least = 1; most = 7),

2. the ease of recognition of the depicted object/place in the image (difficult = 1; easy = 7),

3. the strength of association between the image and each of its three prime words (no associa-
tion = 1; high association = 7) and,

4. the affect valance of that association (very negative = 1; neutral = 4; very positive = 7).
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The order of the images and the three prime words to be rated per image was randomized
among participants. Each image and its word primes were rated by all 10 participants. The
selection of suitable word-image pairs for each affect type was based on the following criteria:
positive word-image pairs were rated between 5 and 7 for affect valence by at least 80% of par-
ticipants, neutral pairs were rated 4 by at least 80% of participants, and negative pairs were
rated between 1 and 3 by at least 80% of participants. This procedure created a stimulus pool of
417 word-image pairs consisting of 163 positive pairs, 128 neutral pairs, and 126 negative
pairs. No images passed the scoring criteria for more than one affect type, thus there are no
repeated images within the stimulus pool.

Next, 150 word-image pair consisting of 50 positive pairs, 50 neutral pairs, and 50 negative
pairs were selected from the stimulus pool for the experiment. To ensure that the images within
each condition had similar distributions of qualities, rating scores for each image-word pairs
were averaged across the participants and submitted to a separate one-way ANOVA for
verification. Affect valance scores were highly significant between all three affect conditions
(F(2,147) = 383.68, p<0.001). The mean association valance scores for the positive, negative,
and neutral conditions were 5.40, 2.77, and 3.96, respectively. Likability (Likert score) and ease
of recognition scores were non-significant between the three conditions (F(2,147) = 0.57,
p>0.1; F(2,147) = 0.15, p>0.1).

It should be noted that the association strength for positive and negative conditions was sig-
nificantly different (F(1,98) = 45.30, p<0.001). To limit this effect, only word-image pairs with
mean association strengths greater than 3 were retained as stimuli. The mean association
strength scores for positive, negative, and neutral conditions were 5.14, 3.70, and 1.56, respec-
tively. A few samples of prime word—image pairs chosen are shown in Fig 1.

Words were used as subliminal affective primes for the images. Visual stimuli were pre-
sented on the LCD monitor (Dell computer, resolution 800 × 600, refresh rate of 60 Hz, color
depth of 16-bit) at a viewing distance of 60 cm.

2.3 Experiment Procedure
The sequence of the events in a single-trial is schematized in Fig 2. The start of each trial was
triggered by presenting a blank screen for 1000 ms followed by displaying a fixation point, the
mark ‘+’ at the center of the white screen for 1000 ms. Offset from the fixation point, a prime
word was presented subliminally for 34 ms, followed by a mask ‘##########’ for 34 ms. The
duration of the prime words was carefully chosen according to the previous literature showing
that a presentation of a simple shape [44], or a word [45, 46] for 34 ms causes a subliminal
priming effect. Following the mask, a target image was exposed for 1500 ms. On the target
image offset, participants were prompted to rate how much they liked the presented image on
a 7-point Likert scale, ranging from one (liked the least) to seven (liked the most). The prompt
remained in view until the participant’s response was obtained, which was made by pressing
one of the seven buttons of the keyboard. Simultaneously, the EEG signals were recorded. The
inter-trial interval was fixed at 1000 ms. Each participant performed 150 trials of the rating
task, split up into 5 different blocks consisting of 30 trials per block, with a short break between
the blocks. The sequence of ‘prime word—image’ pairs was randomized between blocks, and
each pair was unique.

An additional procedure was carried out with 10 participants (8 males; mean age of 23.4),
different from the participants in the experiment with primes, to determine image rating
behavior in the absence of subliminal priming. The procedure for the experiment without
primes excluded the 34 ms-long prime word presentation from the original sequence and was
otherwise identical.
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2.4 EEG Recording and Preprocessing
The EEG was recorded using a 32-channel HydroCel GSN (HCGSN) sensor array from Electri-
cal Geodesic Inc. (EGI), and arranged according to the 10–20 system [47] at a sampling rate of
250 Hz. Net Amplifier 300 was used to amplify the signal at each electrode by a factor of
approximately 20. The EEG data were processed with EEGLab [48] running in the MATLAB
(Mathworks, Natick, MA, USA) environment. The recorded data were band pass filtered at
0.1–30 Hz and then referenced to the average of all electrodes.

Epochs for ERPs were collected at −1000 ms to 1500 ms around the image onset for each
priming condition. The baseline was set to be −1000 ms to 0 ms. Infomax [49], an independent
components analysis algorithm implemented in EEGLAB, was applied to the remaining data
to eliminate eye, muscle, and line noise artifacts. In a small number of participants, noisy chan-
nels in raw data were removed and interpolated after back-projection using spherical spline
interpolation. Individual epochs were then visually inspected for the remaining artifacts, and
8.2% of all epochs were rejected from the final analysis.

Fig 1. Three types of ‘prime-word—image’ pairs.

doi:10.1371/journal.pone.0148332.g001
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2.5 ERP Feature Extraction
We extracted features from the time, frequency, and time-frequency domains, which include
window-based mean amplitudes, relative power from alpha, beta, and gamma bands, power
spectral density (PSD) estimates from short time Fourier transform (STFT), and wavelet coeffi-
cients from the discrete wavelet transform (DWT).

The pre-processed artifact-free single-trial ERP waveforms were averaged across the trials for
each participant, electrode, and prime affect type. The mean amplitudes in 25 ms discrete time
windows, from 0 to 500 ms of the ERP segment, after the image onset, were then extracted. The
neural activity associated with different prime affect conditions, the variation as time elapses,
and the existence of ERP components related to various brain activities could be measured and
differentiated among the prime affect types. The mean amplitudes are used as input features to
the classifiers.

Further, we applied fast Fourier transform (FFT) to the single-trial ERPs, computed the
power spectrum, and extracted relative power corresponds to alpha (8–12 Hz), beta (13–30
Hz), and gamma (30–60 Hz) bands. The extracted values are then fed to the classifiers.

For a non-stationary signal like ERP, the time-frequency analyzes such as STFT and wavelet
transform (WT) help identifying the time varying spectral content. STFT is applied to single-
trial ERPs with a Hamming window of 128 point length with 50% overlap. Then, the FFT algo-
rithm is applied to each segment. The PSD estimates of each segment, corresponding to differ-
ent frequency bands, are extracted and used as input to the classifier.

In the STFT algorithm, a fixed duration time window is applied across all frequencies. In
general, high-frequency signals require shorter time-windows and low-frequency signals
require longer time-windows to optimally characterize the signal. This limitation is eliminated
by using WT, in which the window size varies across the frequencies.

Fig 2. Experimental sequence for a single-trial consisting of a blank screen, fixationmark, prime stimulus, mask, main stimulus, and response
box.

doi:10.1371/journal.pone.0148332.g002
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The DWT is used to calculate the wavelet coefficients at discrete intervals of time and scale.
This technique provides optimal resolution in both the time and the frequency domains. The
DWT of a signal x(t) is expressed as:

DWTðj; kÞ ¼ 1ffiffiffiffi
2j

p
Z 1

�1
xðtÞc t � 2jk

2j

� �
dt; ð1Þ

where a and b are replaced by 2j and 2jk respectively.
We applied decomposition levels up to 5 to the single-trial ERP data. The approximate coef-

ficients (cAj) at level j were used for reconstructing the signal. We observed that the significant
ERP features were kept well preserved up to the decomposition level-3. Hence, we selected
level-3 decomposition for further analyzes. Tests were conducted with several mother wavelet
functions such as Daubechies (db2, db4, and db8), Symlet (sym8), and Biorthogonal (Bior4.4)
waves, and the one that yielded the maximum efficiency was selected for the application [50–
52]. The approximate coefficients at level-3 (cA3) were used for classification.

The above-mentioned features were acquired from the single-trial ERPs and were averaged
across the trials to generate the average ERP features to be used for classification.

2.6 Feature Selection
In order to acquire a set of optimal features that allows us to differentiate the three prime affect
types, we employed a dimensionality reduction technique called linear local Fisher discrimi-
nant analysis (LFDA) [53]. LFDA transforms the high-dimensional data samples into a low-
dimensional space while most of the intrinsic information is preserved [53]. This technique
combines the ideas of Fisher discriminant analysis (FDA) and locality preserving projection
(LPP). As a result, the between-class separability is increased, and within-class local structure is
preserved. The samples (xi 2 R

n) in n-dimensional space are transformed to an r-dimensional
space (we set r = 5) by using an n × r transformation matrix T as follows:

zi ¼ T⊺xi; ð2Þ

where zi 2 R
rð1 � r � nÞ are the samples in the reduced space (embedded samples).

The features are normalized for each participant by using Z-scores, where the mean is set to
zero and the variance is set to 1. The high-dimensional normalized ERP feature set is fed to the
LFDA, and the resultant embedded samples are provided to the classifiers.

For each classifier, optimized feature selection through LFDA was carried out.

3 Learning Algorithms: An Overview
We applied two different classification algorithms to infer the prime affect from the ERP data:
SVMs and AdaBoost classifiers. These algorithms have successfully been applied to various
classification problems [54–57]. A brief review of the theory behind the two learning algo-
rithms is given in the following subsections.

3.1 Support Vector machines
Support vector machines (SVMs), introduced by Vapnik [58], are large margin classifiers. In
the context of decoding information from EEGs, SVMs have exhibited satisfactory classifica-
tion rates [59, 60]. In addition, they are known to have good generalization performance (i.e.,
error rate on test sets), and insensitivity to overtraining and to the curse-of-dimensionality.

Let us consider a training set ofm vectors xi 2 R
n, where xi belongs to an n-dimensional fea-

ture spaceX . Each vector xi is associated with a label yi, where yi belongs to a finite label space
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Y. For binary classification, we assume Y ¼ f�1;þ1g, i.e., the prime affect type ({positive, neg-
ative} or {positive, neutral} or {negative, neutral}). Let us consider a hyperplane w � x + b = 0,
where w is the normal to the plane, kwk is the Euclidean norm of w, and |b|/kwk is the perpen-
dicular distance from the hyperplane to the origin. Also, assume that the hyperplane separates
the two classes in some spaceH and no prior knowledge is available about the data distribution.
Then, the optimal hyperplane is the one that maximizes the margin. The optimal values of w
and b are obtained by solving the constrained minimization problem using Lagrange multipliers
α = α1, α2, . . ., αm:

f ðxÞ ¼ sign
Xm
i¼1

aiyiKðxi; xÞ þ b

 !
; ð3Þ

where K(xi, x) is the kernel function. We refer the readers to [58] for more details on SVMs. The
multi-class problem is formulated using the ‘one-against-all’ (OAA) strategy which constructs k
(class labels) binary SVM classifiers, each of which distinguishes one class from the rest. The
OAA strategy seems to be robust for cases having a small number of classes and a small set of
training samples.

We trained the SVMs using the radial basis function (RBF) (a.k.a. Gaussian) kernel. It is
highly effective in problems where the relationship between the class labels and the attributes is
non-linear. The optimal values of the parameters such as RBF width σ and the regularization
constant C are set by cross-validation. This results in the values σ = 8 and C = 1 for average
ERP features, and σ = 2 and C = 1 for single-trial ERP features.

3.2 AdaBoost
The AdaBoost algorithm proposed by Freund and Schapire has been successfully applied in
numerous classification problems [61–65]. It is a type of learning algorithm that combines
many simple and moderately inaccurate classifiers into a single highly accurate classifier.

The AdaBoost algorithm repeatedly calls a given weak learning algorithm in a series of itera-
tions t = 1, 2, . . ., T. The weak learner accepts the sample set S = {(x1, y1), (x2, y2), . . ., (xm, ym)}
along with a distribution Dt over {1, 2, . . .,m} and outputs a weak hypothesis
ht : X ! f�1;þ1g. Dt denotes the distribution or a set of weights for the training set. Initially,
all weights are set equally and are updated in the subsequent iterations in such a way that the
misclassified samples assume higher weights and the correctly classified samples the lower
weights. This technique forces the weak learner in the subsequent round to focus on the hard
sample [61, 62]. For each instance x, the sign of ht(x) identifies the predicted class label, and the
absolute value gives the confidence in this classification.

The final hypothesis H is computed as a weighted majority vote of T weak hypotheses ht
with αt being the weight assigned to ht. Therefore:

HðxÞ ¼ sign
XT
t¼1

athtðxÞ: ð4Þ

The AdaBoost is adaptive in that it adapts to the error rate of individual weak hypotheses.
The AdaBoost algorithm has been extended to handle multi-class case where the goal is to find
weak hypotheses with small pseudo-loss rather than hypotheses whose classification error is
small. This is often referred to as AdaBoost.M2 [61].

For a given training sample (xi, yi), where xi 2 X , and yi 2 Y ¼ f1; 2; ::; kg, the hypothesis
h is used to answer k − 1 binary questions where k is the number of distinct class labels (k = 3).
For an instance xi and incorrect label y 6¼ yi, assume a weight q(i, y) associated with the
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question that discriminates y from the correct label yi. Provided with Dt and label weighting
function qt, the pseudo-loss of ht is expressed as:

�t ¼
1

2

Xm
i¼1

DtðiÞ 1� htðxi; yiÞ þ
X
y 6¼yi

qtði; yÞhtðxi; yÞ
 !

:

We performed several classification tests with a decision-tree based AdaBoost algorithm
with T = 10, 20, 30, 40, and 50. The value T = 20 yielded a good compromise between the com-
putation time and classification accuracy, and is chosen for binary as well as multi-class prob-
lems. In comparison with SVM, no parameter tuning (except T) is required for AdaBoost.
Further, SVMs are more computationally demanding than AdaBoost because SVM requires
quadratic programming, whereas AdaBoost requires only linear programming.

4 Results and Discussion
In this section, we present the results for:

• Behavioral data (Likert scores) analysis for the experiment with and without subliminal
primes

• EEG data analysis for the experiment with subliminal primes

• Decoding of the ERP data using the learning algorithms:

• SVM (average-trial and single-trial classification)

• AdaBoost (average-trial and single-trial classification)

4.1 Analysis of behavioral data
The responses on a 7-point Likert scale for each participant in the experiment with (40 sub-
jects) and without (10 subjects) subliminal primes were averaged across the trials within each
affect condition (positive, negative, and neutral) and then analyzed by means of one-way
repeated measures ANOVA and two-tailed paired t-tests to determine the effect of subliminal
priming on participant’s likability ratings on images.

The repeated measures ANOVA test with three conditions was significant for the experi-
ment with subliminal primes (p = 1.11E-16<0.05), indicating significant differences in the
Likert scores across the three affect conditions. However, no such effect was observed in the
experiment without subliminal primes (p = 0.861).

The priming effect on behavior was further examined with the help of a two-tailed paired t-
test for each pair of conditions (see Table 1). For the experiment with primes, the test returned
significant results for positive-negative (p = 1.41E-09) and positive-neutral (p = 3.36E-12)
pairs, implying a strong bias in the likeness judgment toward positive for the images in the pos-
itively primed condition compared to that of the negative condition. The effect of negative
primes on behavior was, however, not evident in the data (p = 0.596 for negative-neutral). A
possible explanation for this might be the weak association between the negative prime words
and the stimuli images compared to that of the positive. The mean Likert score ratings for
positive, negative, and neutral conditions were 5.02 (SD = 0.46), 4.48 (SD = 0.43), and 4.51
(SD = 0.34), respectively in the experiment with primes. Conversely, all three t-tests were insig-
nificant for the experiment without primes (see Table 1). The mean Likert score ratings in this
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experiment were 4.67 (SD = 0.48), 4.61 (SD = 0.40), and 4.57 (SD = 0.62) for positive, negative,
and neutral conditions, respectively.

In summary, the differences among positive, negative, and neutral conditions were observed
only in the experiment with subliminal primes and not in the one without primes. This con-
firms that the observed differences in behavior are purely due to the effect of subliminal primes
shown prior to the stimuli images and not due to the physical and subjective qualities of the
supraliminal images.

4.2 Analysis of EEG data
The grand ERP averages at different channels reflect the differences in brain activity among
positive, negative, and neutral conditions at the early (50–100 ms) and late (400–450 ms)
latencies (see Fig 3). The modulations in the EEG signal before the image onset could be due
to the effect of prime word and the use of filter. We observed the N400 effect at channel Pz,
associated with lexical priming [66]. One-way repeated measures ANOVA tests were carried
out to examine the difference in brain activity among the conditions. The artifact-free ERP
signals corresponding to three different conditions were first averaged across the trials, and
then the mean amplitudes from discrete time windows were extracted using a window of
length 25 ms for each subject. The mean amplitudes at discrete time windows corresponding
to different prime affect conditions were analyzed by means of ANOVA tests. The p-values
are summarized in Tables 2 and 3. It is interesting to note that the ANOVA test showed a sig-
nificant difference between the negative and the neutral conditions in 400–425 ms and 425–
450 ms time windows of channel Pz. Thus, the effect of negative primes, which was not visible
in the behavioral data, was observed and confirmed through ERP analysis. This finding
emphasizes the relevance of ERP studies in detecting a subliminal priming effect, which is
rather subtle.

The effect was prominent in the occipital, lower temporal, and parietal lobes, and the differ-
ence was mainly between positive-negative, and positive-neutral pairs. The consistent differ-
ences among the three affect types demonstrated an overall priming effect.

The role of left/right dorsolateral prefrontal cortex (DLPFC) in predicting the neural activity
of fMRI associated with sentence polarities was address in [67]. It was claimed that the right
hemisphere (RDLPFC) can predict the sentence polarity with highest accuracy as compared to
left hemisphere (LDLPFC). As can be seen from Table 2, the highest significant p-value was
reported at channel O2, which is located at the right hemisphere. This is in line with the state-
ment in [67].

Table 1. The p-values obtained from paired-samples t-test performed over the average response
scores corresponding to positive-negative (Pos-Neg), positive-neutral (Pos-Neu), and negative-neu-
tral (Neg-Neu) pairs.

Paired-samples t-test

Prime pair Experiment with primes Experiment without primes

Pos-Neg 1.41E-09* 0.709

Pos-Neu 3.36E-12* 0.692

Neg-Neu 0.596 0.758

* Significant at p<0.05

doi:10.1371/journal.pone.0148332.t001
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Fig 3. Grand ERP average for positive (in red), negative (in green), and neutral (in blue) prime affect
types.

doi:10.1371/journal.pone.0148332.g003
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4.3 Decoding ERPs
Here, we discuss the performance of the applied classifiers (SVM and AdaBoost) in inferring
the prime affect type from the ERPs. We focus on two major classification tasks: (i) average-
ERP classification and (ii) single-trial ERP classification.

4.3.1 Average-trial ERP classification. Performance evaluation: Leave-one-subject-out
cross-validation (LOSO-CV) was adopted to assess the performance of the classifiers in the
average-trial ERP classification. The training set comprised the feature set of 39 participants’
average-trial ERP data. The model was then tested against the remaining subject. The process
was repeated until all the subjects were employed as a test set. Finally, we report confusion
matrices and measure the classifier accuracy, which is the average accuracy of all the subjects.
The confusion matrices for a multi-class and a binary-class (positive-negative) classifiers are
given in Tables 4 and 5, respectively; the confusion matrices for positive-neutral and negative-
neutral classifiers are constructed similarly.

Results: Classification was performed using the average ERP features (averaged across the
trials for each prime affect type) acquired from the 0–500 ms segment of the ERP, after the
stimulus onset.

For each binary SVM classifier, the classification rate (% accuracy) for LOSO-CV is pre-
sented in Table 6. The highest classification accuracies obtained for SVMs were 95.0%, 87.5%,
and 85.0% for positive-negative, positive-neutral, and negative-neutral, respectively. The fea-
tures from the channels located at the central, temporal, and parietal lobes were found to be

Table 2. The one-way repeatedmeasures ANOVA test results for the windowed average ERPs with 25 ms analysis window that yield lowest p-
values.

50–75 ms 75–100 ms 300–325 ms

Ch P-Ng P-Nu N-Nu P-Ng P-Nu N-Nu P-Ng P-Nu N-Nu

O1 5.1E-03* 6.2E-03* 0.90 1.4E-05* 1.5E-04* 0.51 0.51 0.52 0.18

O2 3.8E-03* 7.9E-03* 0.57 4.2E-06* 3.9E-04* 0.45 0.87 0.40 0.50

Oz 3.7E-03* 0.02* 0.89 6.6E-06* 5.8E-04* 0.38 0.67 0.27 0.15

T8 0.98 0.48 0.38 0.47 0.38 0.80 0.83 0.06 0.05

Pz 0.12 0.94 0.10 0.11 0.91 0.15 0.07 0.82 0.02*

* Significant at p<0.05

doi:10.1371/journal.pone.0148332.t002

Table 3. The one-way repeatedmeasures ANOVA test results for the windowed average ERPs with 25 ms analysis window that yield lowest p-
values.

350–375 ms 400–425 ms 425–450 ms

Ch P-Ng P-Nu N-Nu P-Ng P-Nu N-Nu P-Ng P-Nu N-Nu

O1 0.84 0.16 0.17 0.60 0.28 0.09 0.57 0.23 0.08

O2 0.38 0.15 0.52 0.97 0.62 0.58 0.62 0.78 0.44

Oz 0.87 0.10 0.13 0.55 0.32 0.12 0.46 0.35 0.10

T8 0.06 0.01* 0.22 0.01* 4.9E-03* 0.32 7.7E-03* 7.8E-03* 0.45

Pz 0.20 0.24 7.7E-03* 0.06 0.50 6.7E-03* 0.05 0.28 3.2E-03*

* Significant at p<0.05

doi:10.1371/journal.pone.0148332.t003
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significant for discerning negative from positive, and also from neutral. However, features
from only temporal and parietal lobes were required to discriminate between positive and neu-
tral samples.

To further investigate and confirm that the participant’s mental state could easily be
inferred from the average ERP features with a high performance rate, we conducted similar
classification tasks using AdaBoost classifier. Maximum classification rates of 91.25%, 92.50%,
and 81.25% were attained with AdaBoost for positive-negative, positive-neutral, and negative-
neutral, respectively (see Table 7). The highest individual classification performance was
accomplished when using ERP data from channels at locations other than frontal. We did not
notice any differences in decoding performance when training with features from the right and
left hemispheres in any individual classifiers.

The performance of the individual binary classifiers of SVM and AdaBoost was slightly dif-
ferent, but both were found to be effective for the classification problem at hand. This decoding
analysis revealed that different prime affect types induce significant changes in the ERP wave-
forms, which can be identified by means of any powerful classifier with appropriately tuned
parameters and optimally selected input features. In other words, it is possible to reliably
decode one’s mental states, induced by subliminal primes, using ERPs.

In addition, we investigated multi-class classification problems using the average ERP data.
Satisfactory performance results of 70% and 61.67% accuracy rates were obtained for SVM and

Table 4. Confusion matrix for a multiclass classifier.

predicted

pos neg neu

actual pos x x x

neg x x x

neu x x x

doi:10.1371/journal.pone.0148332.t004

Table 5. Confusion matrix for a positive-negative binary classifier.

predicted

pos neg

actual pos x x

neg x x

doi:10.1371/journal.pone.0148332.t005

Table 6. Binary SVM classifier performance for average-ERP data.

SVM Accuracy
(%)

Confusion Matrix
(%)

Input Features

Pos-
Neg

95.0 97:5 2:5

7:5 92:5

" #
relative power at channel T7, DWT coefficients (sym8) at channel P4, amplitude at channel C4, and
PSD values at channel Pz.

Pos-
Neu

87.5 85:0 15:0

10:0 90:0

" #
relative power at channel T8, DWT coefficients (db4) at channel P7, amplitude at channel T7, and PSD
values at channel T7.

Neg-
Neu

85.0 80:0 20:0

10:0 90:0

" #
relative power at channel P4, DWT coefficients (sym8) at channel C4, amplitude at channel P4, and
PSD values at channel T8.

doi:10.1371/journal.pone.0148332.t006
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AdaBoost, respectively. The sensitivity of positive, negative, and neutral classes was 80.00%,
72.50%, and 57.50%, respectively for SVM. The figures were in the order of 67.50%, 75.00%,
and 42.50% for AdaBoost (see Table 8). In summary, the SVMmulti-class classifier outper-
formed AdaBoost.

The multiclass SVM and AdaBoost classifier performance were statistically validated by
performing identical classification procedures on randomly permuted data (see Fig 4). Thou-
sand synthetic data sets were generated by randomly assigning the class labels to the data. The
performance on the actual set is marked using ‘X’. For both SVM and AdaBoost, the perfor-
mance on the synthetic data set was not better than the one on the actual set. As can be seen
from Fig 4, the highest accuracy obtained with SVM and AdaBoost were 49.17% and 58.33%
respectively.

4.3.2 Single-trial ERP classification. Performance evaluation:We applied leave-one-
subject-out cross-validation (LOSO-CV) and leave-one-trial-out cross-validation (LOTO-CV)
to assess subject-independent and subject-dependent models of single-trial classification,
respectively. In the subject-independent approach, a classifier was generated from the training
set, comprising of the feature set of 39 participants’ single-trial ERPs, and the resulting classifier
was tested against the remaining subject’s single-trial ERPs. The process was repeated for all
subjects. Finally, we calculated the classifier accuracy, i.e., the average accuracy of all the sub-
jects. On the other hand, the subject-dependent model reserved one trial for testing purposes
and used the remaining trials (approximately 99 trials in the case of the binary classifier) for
training. Here, the final classifier accuracy was the average accuracy of all the trials of the 40
subjects.

Results: To make use of the information available in all single-trial ERPs, we trained clas-
sifiers with single-trial ERP features. Both SVM and AdaBoost performances were examined.

Table 7. Binary AdaBoost classifier performance for average-ERP data.

AdaBoost Accuracy
(%)

Confusion Matrix
(%)

Input Features

Pos-Neg 91.25 95:0 5:0

12:5 87:5

" #
relative power at channel C4, DWT coefficients (db2) at channel C4, amplitude at channel O1, and
PSD values at channel P8.

Pos-Neu 92.50 92:5 7:5

7:5 92:5

" #
relative power at channel T7, DWT coefficients (db2) at channel O1, amplitude at channel O1, and
PSD values at channel P8.

Neg-Neu 81.25 85:0 15:0

22:5 77:5

" #
relative power at channel T7, DWT coefficients (db2) at channel Oz, amplitude at channel Pz, and
PSD values at channel P8.

doi:10.1371/journal.pone.0148332.t007

Table 8. Performance of the multiclass classifiers for average ERP data.

Classifier Accuracy
(%)

Confusion Matrix
(%)

Input Features

SVM 70.00 80:0 5:0 15:0

15:0 72:5 12:5

15:0 27:5 57:5

2
664

3
775

relative power at channel C4, DWT coefficients (db4) at channel P8, amplitude at channel P7, and
PSD values at channel F7.

AdaBoost 61.67 67:5 30:0 2:5

15:0 75:0 10:0

17:5 40:0 42:5

2
664

3
775

relative power at channel O1, DWT coefficients (sym8) at channel P7, amplitude at channel P4, and
PSD values at channel T8.

doi:10.1371/journal.pone.0148332.t008
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Fig 4. Multiclass SVM and AdaBoost performance on randomly permuted data.

doi:10.1371/journal.pone.0148332.g004
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Subject-independent and subject-dependent approaches were carried out. Tables 9 and 10
show the performance of subject-independent and subject-dependent classifiers respectively
when using features from single-trial ERPs. For the subject-independent case, both SVM and
AdaBoost performance were similar in terms of accuracies: 59.42%, 58.49%, and 53.67%,
respectively, for positive-negative, positive-neutral, and negative-neutral SVM classifiers, and
59.80%, 58.20%, and 54.00%, respectively, for positive-negative, positive-neutral, and nega-
tive-neutral AdaBoost classifiers. As expected, for the subject-dependent case, the prediction
accuracies were higher: 65.03%, 65.16%, and 62.65% for positive-negative, positive-neutral,
and negative-neutral SVM classifiers, respectively, and 67.65%, 67.34%, and 63.23% for
positive-negative, positive-neutral, and negative-neutral, respectively, for the AdaBoost
classifiers.

Fig 5 shows single-trial SVM and AdaBoost classification results for individual subjects. For
some subjects, classification rates of 85% were achieved for single-trial ERPs. This finding fur-
ther emphasizes that the ERPs encode information about the different kinds of primes.

Table 9. Performance of subject-independent classifiers for single-trial ERP data.

Classifier Accuracy
(%)

Input Features

SVM subject-independent Pos-
Neg

59.42 relative power at channel C4, DWT coefficients (db4) at channel O1, amplitude at channel P8, and
PSD values at channel T7.

Pos-
Neu

58.49 relative power at channel O1, DWT coefficients (db4) at channel O1, amplitude at channel P7, and
PSD values at channel C4.

Neg-
Neu

53.67 relative power at channel P4, DWT coefficients (db4) at channel O1, amplitude at channel O1, and
PSD values at channel P8.

AdaBoost subject-
independent

Pos-
Neg

59.80 relative power at channel P4, DWT coefficients (db4) at channel P8, amplitude at channel O1, and
PSD values at channel C4.

Pos-
Neu

58.20 relative power at channel C4, DWT coefficients (db4) at channel P4, amplitude at channel P7, and
PSD values at channel Pz.

Neg-
Neu

54.00 relative power at channel F7, DWT coefficients (db4) at channel O1, amplitude at channel Oz, and
PSD values at channel P8.

doi:10.1371/journal.pone.0148332.t009

Table 10. Performance of the subject-dependent classifiers for single-trial ERP data.

Classifier Accuracy
(%)

Input Features

SVM subject-dependent Pos-
Neg

65.03 relative power at channel F7, DWT coefficients (db4) at channel O1, amplitude at channel T8, and
PSD values at channel O1.

Pos-
Neu

65.16 relative power at channel C4, DWT coefficients (db4) at channel Oz, amplitude at channel O1, and
PSD values at channel T7.

Neg-
Neu

62.65 relative power at channel O1, DWT coefficients (db4) at channel P7, amplitude at channel T7, and
PSD values at channel O2.

AdaBoost subject-
dependent

Pos-
Neg

67.65 relative power at channel O1, DWT coefficients (db4) at channel P7, amplitude at channel F7, and
PSD values at channel T7.

Pos-
Neu

67.34 relative power at channel O2, DWT coefficients (db4) at channel P8, amplitude at channel F7, and
PSD values at channel O2.

Neg-
Neu

63.23 relative power at channel F7, DWT coefficients (db4) at channel T7, amplitude at channel T8, and
PSD values at channel T8.

doi:10.1371/journal.pone.0148332.t010
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4.3.3 SVM and AdaBoost performance on identical input feature sets. The best perfor-
mance results of SVM and AdaBoost classifiers on average-trial and single-trial ERP features
were given in the previous sections. It is also interesting to compare the results on identical
input feature sets as shown in Tables 11–14. The features that yielded best classification perfor-
mance for binary SVM did not perform well for AdaBoost, and vice versa (see Tables 11 and
12). This is due to the fact that the features were optimized for each classifier separately. Subject
independent and subject dependent performance on identical input features were computed
and submitted in Tables 13 and 14.

Fig 5. Single-trial ERP classification results (SVM (left) and AdaBoost (right)) of individual subjects (subject#1 to subject#40).

doi:10.1371/journal.pone.0148332.g005
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Table 11. Binary SVM and AdaBoost classifier performance for average-ERP data using identical input features.

Classifier Accuracy (%) Input Features

SVM AdaBoost

Pos-Neg 61.25 91.25 relative power at channel C4, DWT coefficients (db2) at channel C4, amplitude at channel O1, and PSD values at
channel P8.

Pos-Neu 52.50 92.50 relative power at channel T7, DWT coefficients (db2) at channel O1, amplitude at channel O1, and PSD values at
channel P8.

Neg-Neu 61.25 81.25 relative power at channel T7, DWT coefficients (db2) at channel Oz, amplitude at channel Pz, and PSD values at
channel P8.

Pos-Neg 95.0 70.00 relative power at channel T7, DWT coefficients (sym8) at channel P4, amplitude at channel C4, and PSD values at
channel Pz.

Pos-Neu 87.5 62.50 relative power at channel T8, DWT coefficients (db4) at channel P7, amplitude at channel T7, and PSD values at
channel T7.

Neg-Neu 85.0 53.75 relative power at channel P4, DWT coefficients (sym8) at channel C4, amplitude at channel P4, and PSD values at
channel T8.

doi:10.1371/journal.pone.0148332.t011

Table 12. Performance of the multiclass classifiers for average ERP data using identical input
features.

Accuracy (%) Input Features

SVM Adaboost

70.00 44.17 relative power at channel C4, DWT coefficients (db4) at channel P8, amplitude at
channel P7, and PSD values at channel F7.

40 61.67 relative power at channel O1, DWT coefficients (sym8) at channel P7, amplitude at
channel P4, and PSD values at channel T8.

doi:10.1371/journal.pone.0148332.t012

Table 13. Single-trial subject dependent and subject independent SVM classifier performance on identical input features.

Classifier Accuracy (%) Input Features

Subject
independent

Subject
dependent

Pos-Neg 59.52 62.20 relative power at channel C4, DWT coefficients (db4) at channel O1, amplitude at channel P8, and
PSD values at channel T7.

Pos-Neu 58.49 61.39 relative power at channel O1, DWT coefficients (db4) at channel O1, amplitude at channel P7,
and PSD values at channel C4.

Neg-Neu 53.67 55.83 relative power at channel P4, DWT coefficients (db4) at channel O1, amplitude at channel O1,
and PSD values at channel P8.

Pos-Neg 54.07 65.03 relative power at channel F7, DWT coefficients (db4) at channel O1, amplitude at channel T8, and
PSD values at channel O1.

Pos-Neu 55.59 65.16 relative power at channel C4, DWT coefficients (db4) at channel Oz, amplitude at channel O1,
and PSD values at channel T7.

Neg-Neu 50.60 62.65 relative power at channel O1, DWT coefficients (db4) at channel P7, amplitude at channel T7, and
PSD values at channel O2.

doi:10.1371/journal.pone.0148332.t013

Effect of Subliminal Lexical Priming on the Perception of Images

PLOS ONE | DOI:10.1371/journal.pone.0148332 February 11, 2016 18 / 22



5 Conclusions
The current study investigated the changes in behavioral and electrophysiological responses to
relatively natural and neutral images, after being subliminally exposed to three different types
of prime words, which were deliberately designed to generate positive, negative, and neutral
emotional associations with the images. Consistent with previous related studies on subliminal
priming, the results showed the significant effect of priming on subjective judgment. The anal-
ysis of the behavioral data demonstrated a shift in the likeness judgment toward the positive
for the images in the positive prime affect condition compared to that of the negative condi-
tion. The significance of negative priming on image rating was not visible in the behavioral
responses data. A similar experiment conducted in the absence of subliminal prime words con-
firmed that the difference obtained in the behavioral data of the primed experiment was due to
the influence of priming.

More interestingly, we were curious to examine how this behavioral shift affects the brain
signals (EEG in particular), which could be considered a more objective measure to assess the
priming effect. We observed an early and late response difference in the ERPs among the three
prime affect types, mainly in the posterior region. These intriguing findings inspired us to
explore further to what extent the ERPs encode information relevant to the priming effect.
Promising correct classification rates of 95.00%, 87.50%, and 85.00% were reported for posi-
tive-negative, positive-neutral, and negative-neutral binary SVM classifiers, respectively, and
91.25%, 92.50%, and 81.25% for AdaBoost classifiers using average ERP data. The performance
of the multi-class problem was lower than that of the binary problems (70.00% and 61.67% for
SVM and AdaBoost respectively), as expected, since it is a more difficult classification problem.
In addition, the decoding accuracies of the single-trial ERP classifications were also reasonable,
with accuracies of 80%–85% for certain subjects.

In summary, our results not only support the previous literature on priming, but also high-
light the significance of ERP studies for gaining better understanding the brain-behavior corre-
lations. The promising results could benefit research in areas such as brain and cognition
research, and health science, and rehabilitation research. In addition, the results could also be
used for motivational research, for instance, for subliminally motivating/influencing the staff
and students for better productivity and creativity. Further research will need to be carried out

Table 14. Single-trial subject dependent and subject independent AdaBoost classifier performance on identical input features.

Classifier Accuracy (%) Input Features

Subject
independent

Subject
dependent

Pos-Neg 59.80 62.25 relative power at channel P4, DWT coefficients (db4) at channel P8, amplitude at channel O1, and
PSD values at channel C4.

Pos-Neu 58.20 61.75 relative power at channel C4, DWT coefficients (db4) at channel P4, amplitude at channel P7, and
PSD values at channel Pz.

Neg-Neu 54.00 58.06 relative power at channel F7, DWT coefficients (db4) at channel O1, amplitude at channel Oz, and
PSD values at channel P8.

Pos-Neg 57.48 67.65 relative power at channel O1, DWT coefficients (db4) at channel P7, amplitude at channel F7, and
PSD values at channel T7.

Pos-Neu 54.96 67.34 relative power at channel O2, DWT coefficients (db4) at channel P8, amplitude at channel F7, and
PSD values at channel O2.

Neg-Neu 52.60 63.23 relative power at channel F7, DWT coefficients (db4) at channel T7, amplitude at channel T8, and
PSD values at channel T8.

doi:10.1371/journal.pone.0148332.t014
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to explore the short-term and long-term effects of priming on subjective and objective judg-
ments of images, as well as whether a gender-specific effect can be observed.
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