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Abstract

Background

Cardiovascular Magnetic Resonance (CMR) provides valuable information in patients with

hypertrophic cardiomyopathy (HCM) based on myocardial tissue differentiation and the

detection of small morphological details. CMR at 7.0T improves spatial resolution versus

today’s clinical protocols. This capability is as yet untapped in HCM patients. We aimed to

examine the feasibility of CMR at 7.0T in HCM patients and to demonstrate its capability for

the visualization of subtle morphological details.

Methods

We screened 131 patients with HCM. 13 patients (9 males, 56 ±31 years) and 13 healthy

age- and gender-matched subjects (9 males, 55 ±31years) underwent CMR at 7.0T and

3.0T (Siemens, Erlangen, Germany). For the assessment of cardiac function and morphol-

ogy, 2D CINE imaging was performed (voxel size at 7.0T: (1.4x1.4x2.5) mm3 and

(1.4x1.4x4.0) mm3; at 3.0T: (1.8x1.8x6.0) mm3). Late gadolinium enhancement (LGE) was

performed at 3.0T for detection of fibrosis.

Results

All scans were successful and evaluable. At 3.0T, quantification of the left ventricle (LV)

showed similar results in short axis view vs. the biplane approach (LVEDV, LVESV,

LVMASS, LVEF) (p = 0.286; p = 0.534; p = 0.155; p = 0.131). The LV-parameters obtained
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at 7.0T where in accordance with the 3.0T data (pLVEDV = 0.110; pLVESV = 0.091; pLVMASS =

0.131; pLVEF = 0.182). LGE was detectable in 12/13 (92%) of the HCM patients. High spatial

resolution CINE imaging at 7.0T revealed hyperintense regions, identifying myocardial

crypts in 7/13 (54%) of the HCM patients. All crypts were located in the LGE-positive

regions. The crypts were not detectable at 3.0T using a clinical protocol.

Conclusions

CMR at 7.0T is feasible in patients with HCM. High spatial resolution gradient echo 2D

CINE imaging at 7.0T allowed the detection of subtle morphological details in regions of

extended hypertrophy and LGE.

Introduction
Cardiovascular magnetic resonance (CMR) is known to offer additional morphologic informa-
tion in hypertrophic cardiomyopathy (HCM). Accurate phenotyping is essential for the diag-
nosis and risk stratification of HCM [1]. Echocardiography is currently the most important
basic imaging modality in the diagnostic work-up of patients and relatives [2]. CMR is able to
provide information beyond myocardial function based on CINE-imaging by detecting fibrosis
based on Late Gadolinium Enhancement (LGE) imaging [3]. Fibrosis imaging plays an impor-
tant role in risk stratification of HCM. It is accepted as a “modifier” in the HCM guidelines [1].
In a comprehensive evaluation of HCM, CMR-based myocardial tissue differentiation with
assessment of perfusion and fibrosis provides important information [4,5]. An ongoing multi-
center international trial (Hypertrophic Cardiomyopathie Registry-HCMR) includes fibrosis
imaging based on LGE and T1-mapping and will help to define the role of CMR in risk stratifi-
cation [6].

Furthermore, CMR allows the identification of focal hypertrophy in atypical regions. In par-
ticular the apical and the anterolateral region may be underestimated with echocardiography
[7]. In recent years, small morphological features such as myocardial crypts or clefts have come
to awareness. They have been described increasingly in different genotypes, but are not specific
for HCM [8,9]. The detection of small myocardial structures goes along with the improvement
of clinically available imaging technology, mainly with an increased spatial resolution.

Currently, experimental MRI at 7.0 Tesla (T) is under evaluation in a human setting, mainly
covering neuroscience. Neurovascular ultrahigh field (UHF)-MR has been successfully per-
formed in different clinical entities. Based on the increased spatial resolution MRI at 7.0T was
superior to 3.0T [10]. Early applications of UHF-CMR manifest the enhancements in spatial
resolution, but were limited to healthy volunteer studies [11–15].

The aim of our study was to prove the feasibility of CMR at 7.0T in HCM and investigate its
capability for the detection of subtle morphological changes in comparison to standardized
clinical protocols.

Methods
The ethics committee (Charite Campus Mitte EA1/54/09) approved the study and all partici-
pants provided written informed consent prior to the study. (Ethics committee: Ethicausschuss
1 am Campus Charite Mitte head: Prof. Dr. R Uebelhack Charitéplatz 1, 10117 Berlin phone:
+4030450–517222 Ethics approval number: EA1/054/09, Renewal number: NI 532/6-2)
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Study population
We prospectively screened patients with HCM. As a reference group healthy volunteers were
identified for eligibility for 7.0T.

Exclusion criteria
Usual MR-exclusion criteria such as claustrophobia and implanted devices were applied. In
particular at 7.0T, all metallic implants and tattoos led to an exclusion. Furthermore, all
patients with any evidence of other cardiovascular diseases, severe arrhythmias and renal fail-
ure based on the estimation of glomerular filtration reserve< 60ml/min were excluded.

Patients
The diagnosis of HCM was based on clinical parameters including echocardiography following
the guidelines [1].

Healthy volunteers
Healthy volunteer was defined based on clinical investigation and a negative history of any dis-
eases. There were no ECG-abnormalities and cardiac function was normal.

CMR-protocol
CMR at 7.0 Tesla. A whole body 7.0T MR-system (Magnetom, Siemens Healthcare,

Erlangen, Germany, equipped with a gradient system providing a maximum gradient strength
of 38 mT/m and a maximum slew rate of 170 mT/m/ms (Siemens Healthcare, Erlangen, Ger-
many) were used. For signal reception and transmission, a 16-channel radio-frequency (RF)
transceiver array tailored for CMR at 7.0T was employed [14]. Prior to the study, the RF coil
underwent thorough safety assessment in line with the technical standards given by IEC
60601-2-33:2010 Ed.3 and IEC 60601–1:2005 Ed.3 [16]. The safety assessment, the imple-
mented safety measures, the technical documentation and the risk management file for the coil
were evaluated and duly approved for implementation in clinical studies following conformity
declaration provided by a notified body.

The basic scan protocol was described recently [11,12]. In brief, 2D CINE FLASH images
were acquired using a high resolution fast gradient echo (FGRE) technique in end-expiratory
breath-holds. Imaging parameters were: echo time (TE) = 2.7 ms, repetition time (TR) = 5.5
ms, nominal flip angle (FA) = 32°, field of view (FOV) typically (360x360) mm2, FOV
phase = 73%, acquisition matrix size = 256×186, bandwidth (BW) = 445 Hz/pixel, 30 phases
per heart cycle, parallel imaging using two-fold acceleration and GRAPPA reconstruction
(R = 2). We acquired three long-axis views of the left ventricle ((slice thickness (slth) =
4.0mm)) corresponding to the standard procedure in clinical routine. Additionally, three short
axes views (slth 4.0mm and 2.5mm) were acquired in the LGE-positive region as identified at
3.0T. Specific slices were acquired to enhance regions with noticeable structure as identified in
clinical scans at 3.0T. Cardiac gating was performed with acoustic cardiac triggering (easyACT,
MRI.TOOLS GmbH, Berlin, Germany) [17] or pulse oximetry.

CMR at 3.0 Tesla. A 3.0T MR system (Magnetom Verio, Siemens Healthcare, Erlangen,
Germany) was used. For signal transmission, a whole body RF coil was applied. For signal
reception a 32-channel RF coil dedicated for CMR was employed.

According to the established clinical protocol, 2D steady-state free precession (SSFP) CINE
imaging was applied for cardiac chamber quantification. We acquired four-, two—and three
chamber views and a stack of short axis views covering the whole left ventricle without a gap (slth:
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6.0mm, TR: 3.1ms, TE: 1.3ms FA: 45°, FOV: (340 x 276) mm2, matrix: 192x156, BW: 704Hz/px,
30 phases per heart cycle, GRAPPA reconstruction, acceleration factor 2 [18]. LGE images were
acquired 10 to 15 minutes after application of gadobutrol (0.2mmol/kg body weight) using fast
low angle shot (FLASH) inversion recovery gradient echo to detect fibrosis. Imaging parameters
were: TR = 10.5ms, TE = 5.4ms, FA = 30°, FOV (350 x 262) mm2, matrix 256 x162, slth 6.0mm,
BW 140Hz/px, GRAPPA acceleration factor 2. Cardiac gating was performed using ECG.

CMR at 1.5 Tesla. A subgroup of our study population (n = 2) underwent an additional
scan at 1.5T (MAGNETOM Avanto, Siemens Healthcare, Erlangen, Germany) using a
12-channel RF body array coil for signal reception. 2D CINE images were acquired using SSFP
following our routine protocol. Imaging parameters were: TE = 2.7 ms, TR = 5.5 ms, FA = 80°,
FOV typically (340x340) mm2, matrix 192×156, slth 7.0mm, 30 phases per heart cycle, parallel
imaging with two-fold acceleration and GRAPPA reconstruction. Pre-contrast multi–echo fat–
water–separated imaging was applied as following: bandwidth = 977 Hz/pixel,
matrix = 256×126, TR = 11.2 ms, TE = 1.64, 4.17, 6.7, and 9.23 ms, flip angle = 20–25° [19].

Image analysis
Quantitative analysis. LV morphology was quantified using CVI42 version 4.15 (Circle

Cardiovascular Imaging, Calgary, Canada). LV myocardium was delineated by semi-automati-
cally contouring the endocardial and epicardial borders. For LV quantification, both biplanar
(3.0T, 7.0T) and short axis data were analyzed (3.0T). The papillary muscles were excluded
from LV-mass and counted as blood in the biplanar approach reflecting the area-length
method as published, whereas the LV quantification based on the short axis stack regarded the
papillary muscles as myocardium [20].

Qualitative analysis. Image quality of the CINE images at 7.0T was analyzed qualitatively.
Artifacts and anatomical particularities were assessed as published recently [12]. Quality score
were 0 = non-diagnostic, 1 = good, and 2 = excellent. The artifact-score was as following:
2 = major artifacts, 1 = mild artifacts, 0 = no artifacts. Two experienced observers
(FVK> 10000 CMR scans, MP> 1500 CMR scans) evaluated a mid-ventricular short axis
view with different slice thicknesses (4.0 and 2.5mm) and a three chamber view (4mm). Visual
assessment of pericardial effusion was based on CINE imaging evaluating the pericardial bright
signal following clinical criteria. Wall motion abnormalities were visually scored following
established criteria (normo-, hypo-, a- and dyskinesia).

All images were systematically screened for subtle morphological abnormalities such as the
myocardial structure itself and papillary muscles. The visual evaluation was slice based and an
evaluation of the perpendicular slices using a cross-reference tool was allowed. The definition
of myocardial crypts was based on previous studies [9].

Statistics
Results are presented as mean ± standard deviation. The Wilcoxon matched pairs test was used
to compare the results in HCM patients. The Mann-Whitney test was used to compare the
results between healthy volunteers and patients. Statistical significance was accepted as p<0.05.
Statistical analyses were performed using SPSS version 20.0 (IBM, Armonk) and Prism version
5.0 (graphpad, San Diego).

Results

Study population
We screened 131 patients with HCM between 2011 and 2014. Main reasons for exclusion at 7.0
T were implants like cardiac devices (n = 16), significant cardiac-morbidity (n = 32), other co-
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morbidities (35) and arrhythmias (n = 7). Because of the rigorous exclusion criteria we had to
exclude patients with dental implants (n = 16), tattoos (7). Some patients refused to participate
in the 7.0 T study (n = 18).

26 participants (13 HCM patients) were included and successfully scanned at 7.0T and at
clinical scanners (mean time interval 29 days) (Fig 1). Mean scan time at 7.0T assessing the LV-
morphology was 22±13 minutes. All scans could be performed without any complication. Only
temporary dizziness, temperature sensations and metallic taste were reported in 6 cases at 7.0T.

HCM-Patients
We examined 9 males (mean age: 56 ±31) and 4 females (mean age: 54 ±12) at 7.0T (Table 1).
No relevant symptoms were reported during or after the 7.0T-scan.

All patients underwent also CMR at clinical field strengths. Eleven patients were investi-
gated at 3.0T, two patients refused the examination. In these cases we evaluated the clinical
scan at 1.5 T. The clinical CMR protocol at 1.5T assessing LV function and fibrosis was similar
to the 3.0T-protocol.

Healthy Volunteers
Nine male and four female healthy volunteers completed the scan at 7.0T. They were age- and
gender-matched to HCM (Table 1). No relevant symptoms during or after the 7.0T-scan were
reported.

Fig 1. Feasibility of CMR in HCM patients at 7.0T.High Resolution CINE images of each patient (slice
thickness 2.5 mm) All images were evaluable as shown by these two-chamber views, but the quality scoring
revealed differences. A-H) Examples with a good images quality and mild artifacts. I-M) Images with different
types of artifacts

doi:10.1371/journal.pone.0148066.g001
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Qualitative image analysis
The image quality score of 7.0T 2D CINE FGRE data reflected a good quality. The quality was
scored as”good” with a mean of 1.1±0.3 by observer 1 and 1.3±0.2 by observer 2 (FvK,MP).
Artifacts were identified in six patients, but they did not influence the evaluation of the cardiac
function. The mean artifact score was classified as mild reflected by a score of 1.2±0.2 given by
observer 1 and 1.4±0.3 by observer 2.

The visual evaluation of the 7.0T CINE images acquired with a slice thickness of 2.5mm and
4.0mm and an in-plane spatial resolution of (1.4x1.4) mm2 revealed unexpected results of the
myocardial structure in the areas of LGE depicted at 3.0T (distribution of LGE see Fig 2). At

Table 1. Clinical characteristics and left ventricular assessment for healthy volunteers and HCM
patients at 7.0 T. BMI—Body Mass Index, LVEDV—Left Ventricular End-Diastolic Volume, LVEF—Left Ven-
tricular Ejection Fraction, LVESV—Left Ventricular End-Systolic Volume, PE—Pericardial Effusion, WMA—
Wall Motion Abnormalities.

patients with HCM healthy volunteers

gender 13 (9 male) 13 (9 male)

age (years) 56 (25–71) 55 (24–71)

BMI (kg/m2) 27 (22–36) 24 (19–29)

Dental wires(n) 11 4

WMA(n) 1 -

PE(n) 1 -

Crypts(n) -

- absolute 7

- average/patient 1

- maximum/patient 3

LGE(n) 12 -

LVmass (g) 174.9 (112.8–273.5) 100.3 (75.2–134.5)

LVEDV (ml) 136.7 (68.5–231.2) 127.2 (94.9–186.8)

LVEF (%) 59.9 (50.2–76.0) 58.5 (49.8–71.6)

LVESV (ml) 51.2 (26.3–71.3) 55.4 (35.8–75.8)

doi:10.1371/journal.pone.0148066.t001

Fig 2. Distribution and prevalence of fibrosis and crypts.Myocardial crypts were only located in the
regions with fibrosis as identified by LGE at 3.0T

doi:10.1371/journal.pone.0148066.g002

HCM - CMR at 7.0 Tesla

PLOS ONE | DOI:10.1371/journal.pone.0148066 February 10, 2016 6 / 13



7.0T, we detected small hyperintense regions in the myocardium mainly in the hypertrophied
anteroseptal region. Most of them had access to the blood of the left ventricle. The visibility of
the hyperintense regions was related to the cardiac phase. The structures were best detectable
during diastole. The findings could be identified as myocardial crypts (Fig 3 and S1 File). To
exclude the theoretical possibility of fatty infiltration as the cause of the hyperintense signal, we
re-scanned two patients at 1.5T applying multi–echo fat–water–separated imaging. No fat was
detectable in the respective regions (Fig 4).

Myocardial crypts were observed in 7/13 (54%) of HCM patients at 7.0T. The agreement of
two experienced (MP and FvK) readers was 92%. Prospective and retrospective analysis of the
corresponding CINE images at the clinical field strengths did not allow the detection of intra-
myocardial hyperintense structures. No myocardial crypts were detected in healthy volunteers.

Quantitative analysis of the left ventricle
There were no significant differences between short axis and long axis assessment at 3.0T:
LVEDV (p = 0.286), LVESV (p = 0.534), LVEF (p = 0.131) and LV-Mass (p = 0.155). The long
axis comparison between 3.0T and 7.0T also revealed no significant differences: LVEDV
(p = 0.110), LVESV (p = 0.091), LVEF (p = 0.182) and LV-MASS (p = 0.131) (Table 2). Plots
are shown in Fig 5.

Quantitative analysis of LV function at 7.0T in healthy volunteers is shown in Table 1.

Fig 3. Case example: Patient with myocardial crypts. In the top row fibrosis imaging (LGE at 3.0T) is
shown. The yellow arrow indicates the fibrosis (A long axis view B short axis view). In the bottom row cine
imaging at 7.0T is shown The red arrow indicates the myocardial crypts (A long axis view B short axis view).
Remarkable, fibrosis and crypts have a certain overlap. One may assume, that the bright signal at 3.0T might
be also induced by blood within the crypts.

doi:10.1371/journal.pone.0148066.g003
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Fig 4. HCM patient with myocardial crypts in the anteroseptal region.Upper row: 3-chamber view with different techniques, Bottom row: short axis view
using the same techniques, A and B CINE images at 3.0T, C and D Late Gadolinium Enhancement at 3.0T, E and F CINE images at 7.0T, G and H CINE
images at 1.5 T CMR, I and J Fat-Water images, Single arrows indicates LGE at 3.0T, Double arrow displays myocardial crypt at 7.0T.

doi:10.1371/journal.pone.0148066.g004

Table 2. Left ventricular assessment of HCM patients at different field strengths. SAX = Short axis

7.0T(biplanar) 3.0T(biplanar) 3.0T(sax) p-value(3.0T biplanar vs. 3.0T sax) p-value(7.0T biplanar vs 3.0T biplanar)

LVEDV (ml)Mean 136.7 139.9 148.0 0.286 0.110

Min-Max 68.5–231.2 86.3–256.5 81.93–240.4

LVESV (ml)Mean 51.2 53.0 50.0 0.534 0.091

Min-Max 26.3–71.3 25.3–85.9 26.0–75.3

LVM (g)Mean 174.9 187.0 183.8 0.155 0.131

Min-Max 112.8–273.5 112.6–319.4 105.3–314.6

LVEF (%)Mean 59.9 62.9 65.7 0.131 0.182

Min-Max 50.2–76.0 53.6–70.7 59.0–76.7

doi:10.1371/journal.pone.0148066.t002

Fig 5. Comparison of left ventricular function between the different field strengths. The comparison of left ventricular function revealed no ignificant
differences between the field strengths, Top: Left ventricular function at 3.0 T (biplanar versus short axis). Bottom: Left ventricular function at 7.0 T compared
to 3.0 T (both biplanar).

doi:10.1371/journal.pone.0148066.g005
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As expected, LV-mass differed significantly between healthy volunteers and HCM patients
(p = 0.001). There were no significant differences in LVEDV (p = 0.541), LVESV (p = 0.316)
and LVEF (p = 0.451) between field strength.

Technical aspects
Magnetic field inhomogeneity did not influence the assessment of the cardiac structures. Car-
diac gating was successful in all participants. In six volunteers we had to switch from acoustic
gating to pulse oxymetry (four HCM patients and two healthy volunteers).

Discussion
To the best of our knowledge, this is the first study showing the feasibility of CMR at 7.0T in a
larger group of cardiac patients. Besides the successful implementation of 7.0T in HCM, we
were able to identify unexpected subtle crypts in hypertrophied regions, which were not detect-
able at clinical field strengths in a routine setting [4,21]. The detection of various morphologi-
cal changes may have impact on advanced non-invasive phenotyping of HCM.

Quantitative assessment of left ventricle
The assessment of the left ventricular function is a basic requisite of a CMR scan. In our setting
we could confirm that the LV-function obtained at 7.0T accords with the 3.0T data. Our find-
ings are in line with previous results, that the assessment of cardiac function is reliable at 7.0T
[11]. So far the assessment of cardiac function is not an obstacle to further application develop-
ments at ultrahigh field strengths.

Qualitative assessment of left ventricle
Based on high-resolution CINE imaging, we have identified myocardial crypts at 7.0T. They
were detectable in regions with hypertrophy and fibrotic changes as indicated by LGE. We
detected the crypts in more than 50% of our HCM-patients applying high spatial resolution
CINE imaging at 7.0T. Theoretically, the incidence of crypts could be even higher, as in our set-
ting full coverage including different slice positions or high resolution 3D cine imaging was not
applicable. The detected crypts were not observed at 3.0T or 1.5 T using standardized 2D CINE
SSFP imaging. The findings may lead to new insights into the bright regions seen with LGE
imaging (Fig 4). LGE itself is associated with an impaired clinical outcome based on heart fail-
ure and arrhythmias [4]. A further differentiation could enhance the prediction of different
outcomes. The interpretation of hyperintense signal in non-contrast CINE imaging can be dif-
ficult, as it can be caused by fat or fluid [19]. We could exclude that the bright signal is caused
by fat by using fat-water imaging at 1.5 T.

Crypts have already been described in HCM applying CMR [22,23]. Interestingly, they were
found in HCM patients with LV-hypertrophy, but also in genotype-positive patients without
LV-hypertrophy [9]. One group detected the crypts more often in non-hypertrophied regions
and explained that by the remodeling process [9].

One could assume that the myocardial crypts are compressed by the hypertrophied myocar-
dium. The currently used image spatial resolution at lower field strength is not good enough to
depict them. During the time course of disease while developing heart failure, they could be
detectable. The prevalence of myocardial crypts as detected at 7.0T seems to be as high as
described in pre hypertrophy stages of HCM [8]. Systematic CMR based follow-up would offer
the chance to depict this and to elucidate the underlying mechanisms. The description of subtle
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myocardial structural changes, such as crypts, may help to predict the disease development and
the differentiation between risk of sudden cardiac death and development of heart failure.

Petryka et al reported a prevalence of crypts in HCM of 15.6% using both 1.5T and 3.0T.
Crypts were mainly identified in the non-hypertrophied inferior wall [24]. In our study, the
prevalence of crypts was 54%. In post-mortem studies, crypts were identified in up to 32% and
were mostly localized in the anteroseptal region [25], matching our findings. Hence, the
increased spatial resolution of 7.0T may lead to an improvement in the identification of small
structures. Currently, the clinical advantage of myocardial crypt detection is unclear. There is
first evidence, that the identification of� 2 crypts had a 100% positive predictive value to iden-
tify carriers [8]. Another group could show that deep basal inferoseptal crypts are more com-
mon in patients with HCM with disease-causing mutations than in patients with genotype-
negative HCM [22]. Assessment of family members is one of the most challenging and respon-
sible tasks in a clinical setting. Detection of multiple crypts may add additional information.

The definition of crypts was based on access to the blood of the ventricles. All but one struc-
ture could be verified in perpendicular slices. In one patient (Fig 4f) we were not able to exclude,
that this hyperintense region is related to a septal branch. But it is very unlikely, as the larger
coronaries were not visible in the same intensity. A whole heart coverage would have been help-
ful to assess all anatomical details with 2D CINE imaging and should be used in future trials.

The detection of the inferobasal myocardial crypts is usually detectable in the two- chamber
view, sometimes better in a modified one [8]. The assessment of additional crypts may depend
on slice positioning. In the current trial we have focused on the most hypertrophied myocardial
segments.

Safety and technical aspects
All volunteers completed the CMR examination; no severe adverse events occurred matching
pervious experiences [11]. The rate of minor subjective events was similar to recently published
data [26]. Safety data about metallic implants are rare for 7.0T. At least dental wires, which
many of the participants of the present study had, did not cause any problems. Other safety
issues have to be addressed in the future to expand the use of 7.0T in cardiac patients. For
example coronary stents are frequent in patients with coronary artery disease. The prevalence
in US patients aged 20 and over is about 6.5% [27]. Currently the safety of CMR at ultrahigh
fields (B0 � 7.0 T) for patients with stents is under investigation. Recently, electro-magnetic
field simulations and heating experiments at 7.0T demonstrated that radiofrequency (RF)-
induced stent heating did not exceed limits given by the IEC guidelines for RF power deposi-
tion [28]. Another study scrutinized RF induced heating of coronary stents at 7.0T for a broad
range of stent configurations [29].

Following the success of neuroradiology by detecting subtle focal lesions in the brain [30],
CMR at ultrahigh fields may also allow us to detect histopathological structures of the heart. We
were able to detect subtle myocardial structures at 7.0 T thanks to the spatial resolution which is
superior to the capabilities of clinical field strengths. The differentiation of fibrotic areas in
HCMmight be helpful to identify prospectively patients with further development of systolic
heart failure, but this was not a part of this pilot study. We anticipate, that CMR at 7.0T can also
provide information on fibrotic tissue changes without any contrast application. First results
have indicated, that at least assessment of changes in blood oxygenation could be possible [31].

Conclusion
7.0T MRI is feasible in patients with HCM. High spatial resolution CINE imaging at 7.0T
allows the identification of subtle morphological details in regions of extended hypertrophy
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and fibrosis. These structures were not detectable at clinical field strength and may allow new
insights into the development of remodeling.

Limitation
In this pilot trial the number of patients was limited; therefore a genotype/phenotype correla-
tion is missing. This study has addressed the potential advantage of higher spatial resolution,
whereas the challenges of acquisition time and systematic evaluation of magnetic field inhomo-
geneity have to be elucidated in next studies. RF power deposition was not a limiting factor in
this setting, but could impact other CMR techniques such as fast spin-echo imaging.

In our setting we did not perform coverage of the entire LV by CINE-imaging due to exami-
nation time constraints. That may impact the assessment of further small structures. The use of
high-resolution 3D cine application would help to overcome this limitation.

Supporting Information
S1 File. HCM patient with myocardial crypts at 7.0T.
(MP4)
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