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Abstract

Objectives

There is much speculation on which hypervariable region provides the highest bacterial

specificity in 16S rRNA sequencing. The optimum solution to prevent bias and to obtain a

comprehensive view of complex bacterial communities would be to sequence the entire

16S rRNA gene; however, this is not possible with second generation standard library

design and short-read next-generation sequencing technology.

Methods

This paper examines a new process using seven hypervariable or V regions of the 16S

rRNA (six amplicons: V2, V3, V4, V6-7, V8, and V9) processed simultaneously on the Ion

Torrent Personal Genome Machine (Life Technologies, Grand Island, NY). Four mock sam-

ples were amplified using the 16S Ion Metagenomics Kit™ (Life Technologies) and their

sequencing data is subjected to a novel analytical pipeline.

Results

Results are presented at family and genus level. The Kullback-Leibler divergence (DKL), a

measure of the departure of the computed from the nominal bacterial distribution in the

mock samples, was used to infer which region performed best at the family and genus lev-

els. Three different hypervariable regions, V2, V4, and V6-7, produced the lowest diver-

gence compared to the known mock sample. The V9 region gave the highest (worst)

average DKL while the V4 gave the lowest (best) average DKL. In addition to having a high

DKL, the V9 region in both the forward and reverse directions performed the worst finding
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only 17% and 53% of the known family level and 12% and 47% of the genus level bacteria,

while results from the forward and reverse V4 region identified all 17 family level bacteria.

Conclusions

The results of our analysis have shown that our sequencing methods using 6 hypervariable

regions of the 16S rRNA and subsequent analysis is valid. This method also allowed for the

assessment of how well each of the variable regions might perform simultaneously. Our

findings will provide the basis for future work intended to assess microbial abundance at dif-

ferent time points throughout a clinical protocol.

Background
Using the 16S rRNA gene and the advances in high-throughput sequencing techniques or
next-generation sequencing (NGS), it is now possible to identify bacteria by their genetic signa-
ture [1, 2]. The 16S rRNA gene is composed of approximately 1542 base pairs (Fig 1) and con-
tains nine hypervariable regions surrounded by conserved regions [3]. With the advent of
NGS, researchers are able to assign taxonomy by designing primers that targets a particular
hypervariable region or multiple consecutive regions. Initially, the entire 16S gene was
sequenced using the chain-termination method or Sanger sequencing [4]. This method allowed
the sequencing of long DNA strands, often longer than 500 base pairs (bp). However, the
Sanger method is expensive and required days to complete. With the advent of short-read
NGS, only part of the 16S gene can be sequenced, up to 400 base pairs [5]. Newer third genera-
tion sequencing technology can sequence strands longer than 1400 bp, but this technology is
still relatively novel or expensive that make it less than ideal for 16S sequencing based taxo-
nomic assignment at this time [6,7].

Advanced NGS has not only revolutionized research and made it possible to test many
hypotheses that previously had been impossible but also established a new “gold standard” for
bacterial identification [8, 9]. However, an interesting and complex question related to the 16S
rRNA gene is: Which hypervariable (V) region(s) of the gene supply sufficient sequence diver-
sity to identify the most bacteria accurately [10, 11]. Inherent biases arise depending on the
region selected. For example, it is known that specific hypervariable regions are more likely to
identify certain bacteria [12–15]. Such biases might distort the comprehensive view of complex
bacterial communities.

Fig 1. Schematic of 16S rRNA gene and primer targets. Schematic of 16s gene and location of two primer sets from the Ion 16S™Metagenomics Kit *.
This kit is composed of two sets of primers in separate tubes targeting seven hypervariable regions along the 16s gene. Primer sets in tube one, represented
by blue arrows, shows locations of primers for V2, V4, and V8. Primer sets in tube two, represented by green arrows, shows locations of primer for V3, V6-7
and V9. Sequencing using the Ion Torrent machine is bidirectional, not paired primers. One primer targets two regions, V6 and V7. (* Image is owned by Life
Technologies Corporation, www.lifetechnologies.com, copied from https://www.lifetechnologies.com/content/dam/LifeTech/Documents/PDFs/Ion-
16S-Metagenomics-Kit-Software-Application-Note.pdf © 2015 Thermo Fisher Scientific, Inc. Used with permission.)

doi:10.1371/journal.pone.0148047.g001
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The oral microbiome, because of its diversity and location at the entrance into the aero
digestive tract, is a complex community and the selection of which hypervariable region(s) of
the 16S gene to use, is a crucial step. Many attempts at identifying the most robust hypervari-
able region have been published [14,16–21]. In the oral microbiome, researchers have used
hypervariable regions V1-2 or V3 in studying saliva [22–23]. In examining 18 different sites in
the human microbiome including many in the oral microbiome, Huse et al. examined V1-3
and V3-5 and found comparable results when using these two sequencing sets [24]. An earlier
study by Lazarevic et al. used V5 to identify oral bacteria from multiple oral sites [25]. Kumar
and colleagues collected subgingival plaque specimens from smokers with periodontal disease
and compared three different regions of the 16S rRNA gene (V1-3, V4-6 and V7-9) and Sanger
sequencing [19]. These researchers concluded that it was important to use V1-3 and V7-9 to
capture results which are similar to Sanger sequencing. Perhaps then, there is not just one
region but rather several regions that should be selected based on the type of bacteria one is
hoping to identify. While researchers tend to favor the V4 hypervariable region, there is a lack
of consensus regarding which V region to use and no consistent hypervariable region is
employed in all microbiome studies [16, 26–29].

In this paper we present the results of a novel approach simultaneously sequencing 6 of the
hypervariable regions of the 16S rRNA gene in mock samples. The Ion 16S Metagenomic Kit ™
(Catalog no. A26216 Life Technologies, Grand Island, NY) was recently offered by the company
to be used with the Ion Torrent Personal Genome Machine (Life Technologies, Grand Island,
NY). The kit includes 6 proprietary primers designed to target V2, V4 and V8 in one multiplex
PCR reaction and in a second reaction, to target V3, V6-7, and V9 [30]. To date, the only analyt-
ical pipeline suggested for use with this kit, is the Ion Reporter software by the Life Technologies
Company. The goal of this work is to develop an alternative method utilizing open access tools
such as QIIME, Mothur and UPARSE for downstream processing and hypothesis testing.

Methods

Collection of microbial mock communities
Mock samples Human Microbiome Project: Genomic DNA fromMicrobial Mock Community
B (Staggered, Low Concentration), v5.2L, for 16S rRNA Gene Sequencing, HM-783D, Geno-
mic DNA fromMicrobial Mock Community B (Staggered, High Concentration), v5.2H, for
Whole Genome Shotgun Sequencing, HM-277D, Genomic DNA fromMicrobial Mock Com-
munity B (Even, High Concentration), v5.1H, for Whole Genome Shotgun Sequencing, HM-
276D, Genomic DNA fromMicrobial Mock Community B (Even, Low Concentration), v5.1L,
for 16S RNA Gene Sequencing, HM-782D. The mock communities each contained 20 different
common bacterial strains [31]. Gram positive and negative bacteria were included. The Even
samples (Even High and Even Low) contained equal numbers of ribosomal RNA operon
counts across all bacteria with Even High containing 106 operons per bacteria and Even Low
with 105. The other two samples (Staggered High and Staggered Low) contained staggered
numbers of ribosomal RNA operon counts differing by bacteria with the Staggered High sam-
ple ranging from 103 to 10 7 operons and the staggered low sample ranging from 103 to 106

operons. The four samples are accessible through NCBI's Sequence Read Archive (SRA), under
study accession number SUB1054354.

16S Metagenomics Kit Sequencing using Ion Torrent PGM
The 16S region was amplified with 16S Ion Metagenomics Kit ™ (Life Technologies) by 2 sepa-
rate PCR reactions using primer set V2, V4, V8 and V3, V6-7, V9. Equal volumes of V2, V4,
V8 and V3, V6-7, V9 amplification reactions were combined. Fifty nanograms of combined
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amplicons were processed to make the DNA library using Ion Plus Fragment Library Kit ™ and
Ion Xpress Barcodes Adapters, 1–16 ™ (Life Technologies, Grand Island, NY). Adapter-ligated
and nick-repaired DNA was amplified with the following steps: 1 cycle of 95°C for 5 min; 5
cycles of 95°C for 15sec, 58°C for 15 sec, 70°C for 1 min; hold at 4°C. Each step was followed by
purification using 1.4 volumes of Agencourt AMPure beads (Beckman Coulter, Inc, Atlanta,
Georgia) and eluted in low Tris-EDTA buffer. Size and quantity of processed libraries were
evaluated with DNA high sensitivity kit in 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA.). Each sample was adjusted to 26 picomolar concentration. Equal volumes of all 4
samples were combined and processed with One-Touch 2 and One-Touch ES systems (Life
Technologies, Grand Island, NY) according to the manufacturer’ instructions. Sequencing was
performed on the Ion Personal Genome Machine (PGM) using 400-bp kit and 316 v2 chip.
Base calling and run demultiplexing were performed by Torrent Suite version 4.4.2 (Life Tech-
nologies, Grand Island, NY) with default parameters. FileExporter version 4.4.0. 0 (Life Tech-
nologies, Grand Island, NY) was used to generate demultiplexed fastq files for each sample.
Mean read length for both forward and reverse reads ranged between 235bp to 238bp for all
four samples.

Data processing and preparation
The data pipeline can be described in 3 steps for this work (Fig 2). Pre-processing includes
quality filtering and length filtering, adding read labels in order to mimic non-demultiplexed
data for downstream analysis, and concatenating reads into one file. The second step involves
dividing reads into 6 subsets of the 6 hypervariable regions. This step begins with aligning the
reads to the Silva Database using Mothur, separating reads into forward and reverse, and bin-
ning reads based on start and stop coordinate from the Mothur alignment [32–33]. The third
step, Operational Taxonomic Units (OTU) clustering and taxonomic assignment, includes
trimming reads and removing chimeras, clustering reads into OTUs and assigning taxonomy
using Quantitative Insights into Microbial Ecology (QIIME) [34]. Finally, OTUs were com-
pared across different V regions. Future work will be to develop a consensus OTU table, if pos-
sible, taking into account OTUs from each region.

Pre-processing
Reads were quality filtered using a fastq filter script from the USEARCH suite of tools (fas-
tq_filter) and removed if they were shorter than 200bp and had more than 1 total expected
number of errors for all bases in the read (Fig 2) [35]. The total expected number of errors is
the sum of the error probabilities (more information can be found in the USEARCHmanual).
Read IDs were edited and formatted to match the downstream processing pipeline using
UPARSE and QIIME so that a read ID contained “Ex##;barcodelabel = [sample name];” where
‘##’ is a number in numerical order and ‘sample name’ is the sample identifier [34,36,37]. Once
reads from each sample were quality filtered and IDs edited, the data were concatenated so that
one fasta file contains reads from all samples in the study to mimic non-demultiplexed data.

Separating reads into different variable regions
Because reads from libraries generated from the 16S Metagenomics Kit contain 6 primer pairs
targeting 7 different variable regions (one primer pair targets V6 and V7 thus this paper will
refer to 6 regions), the first step was to separate the reads into their respective targeted regions
before OTU picking. In order to do this, we aligned the full set of reads with the Mothur script
align.seqs using Silva as the reference database (www.mothur.org/, Silva version 119, database
downloaded August 2014). All default parameters were used along with the option ‘flip = true’
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[32]. The addition of this parameter will evoke the script to print out the read ids that aligned
better after reverse complementing. The aligned fasta file was then submitted to an in-house
Perl script that counts the number of reads with the same start and stop alignment position
along the reference database. The reference database coordinates were translated to the 16S
rRNA gene coordinates using one aligned reference sequence, Streptococcus mutans (Genbank
Accession: DQ677761). The forward and reverse reads were then visualized along the trans-
lated 16S rRNA gene coordinates (Fig 3) and reads were grouped into their corresponding vari-
able regions based on where they aligned (Table 1). The script, filterbyname.sh from BBMap
tools was used to make 12 different subsets (forward and reverse for each of 6 regions) of reads
by read IDs [38].

Forward reads (Fig 3A) were grouped into variable regions by the following: V2 stop coordi-
nates had to be< = 350, V3 reads had to align between 200–600, V4 reads had to align between
450 bp-800 bp, V6-7 reads had to align between 850–1180, V8 reads had to align between
1000–1370 and V9 start coordinates had to start at least by 1200. Reverse reads (Fig 3B) were
grouped into variable regions by the following: V2 stop coordinates had to be< = 370, V3
reads had to align between 250–550, V4 reads had to align between 500 bp-850 bp, V6-7 reads
had to align between 900–1200, V8 reads had to align between 1050–1360 and V9 start coordi-
nates had to start at least by 1250.

Fig 2. Data Processing Pipeline.Workflow of data processing pipeline using Ion 16S Metagenomics Kit.
Step 1, Pre-processing of the data consists of quality filtering, read ID editing and concatenating reads into
one file. Step 2, creating subsets of reads into appropriate targeted variable regions consists first of using
Mothur to align the reads, then separating reads into forward and reverse based on their alignment into 16S
gene coordinates. This last step allows reads to be binned into their appropriate targeted region. Step 3, uses
a mixture of QIIME and UPARSE for OTU clustering and taxonomy assignment. Step 4, discusses future
directions in order to come up with a consensus table taking into account bacteria found from each variable
region and computing α and β diversity.

doi:10.1371/journal.pone.0148047.g002
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Classification and taxonomic assignment per region
The data analysis workflow was adapted from a pipeline published by the Brazilian Micro-
biome Project specific to Ion Torrent data, which incorporates tools from QIIME and UPARSE

Fig 3. Aligned Reads by Region.Coverage of aligned forward (A) and reverse (B) reads. X-axis shows the
position along the 16S rRNA gene using Streptococcus mutans (GenBank accession DQ677761) as the
reference and the y-axis shows the number of reads giving the same start and stop position. Colors of the
lines indicate which variable region the read was assigned to given the aligned coordinates. Colors
correspond to reads assigned to 1 of 6 subsets of reads for OTU picking; V2 (red), V3 (green), V4 (blue), V6-7
(orange) and V8 (blue-green) and V9 (purple).

doi:10.1371/journal.pone.0148047.g003

Analytical Pipeline of Multiple Hypervariable Regions of 16S rRNA Gene

PLOSONE | DOI:10.1371/journal.pone.0148047 February 1, 2016 6 / 18



[39,40]. The pipeline was run 12 separate times in order to create OTU tables for each of the 6
regions from both forward and reverse reads. Because the primer sequences were not published
by the company, the primer trimming step involved globally removing the first 20 base pairs,
leaving median read lengths of about 200–220 bp in length. Reads were dereplicated, abun-
dance sorted and singleton sequences were discarded using the UPARSE pipeline. OTU clus-
tering was performed using UPARSE (cluster_otus). Chimera checking due to PCR artifacts
was performed using the UCHIME algorithm using the “Gold” database from ChimeraSlayer
as the reference [41,42]. Reads were mapped back to the OTU database using USEARCH7 with
a minimum identity of at least 97%. OTUs were labeled using a UPARSE Python script (uc2o-
tutab.py). Taxonomy assignment was performed using QIIME (assign_taxonomy.py).

In order to compare reads assigned to each region against the known mock community, for
family level analysis, OTU counts were determined by summing over multiple OTUs assigned
to the same family and for genus level analysis the same was performed by summing over mul-
tiple OTUs assigned to the same genus level. Any OTU not classified up to family level and/or
genus was labeled “Unassigned”. The presence of bacteria in any of the four mock samples for
each region and for both forward and reverse was recorded and reported at the family and
genus level (Fig 4). Reverse reads are shown in S1 Fig.

Comparison of multiple variable regions

Proportional abundance within each mock sample for each region was determined for both
family and genus levels and these proportions were compared to the expected proportions for
both the Even and Staggered samples provided by BEI Resources (Manassas, Virginia) [31].
Stacked bar charts at the genus level are shown to illustrate how well the observed proportions
for four mock samples, Even High, Even Low, Staggered High and Staggered Low match to the
expected Even and expected Staggered. Fig 5 shows Even Low (Fig 5A) and Staggered Low (Fig
5B) for genus level mock samples for each of the 6 regions forward reads. (S2 Fig shows Even
High (Fig A in S2 Fig) and Staggered High (Fig B in S2 Fig) forward reads at the genus level).

Table 1. Division of Reads.

Direction Start Stop Number of reads Number of OTUs

V2 forward < = 350 20,835 23

V2 reverse < = 370 24,649 23

V3 forward > = 200 < = 600 75,304 19

V3 reverse > = 250 < = 550 77,267 19

V4 forward > = 450 < = 800 55,038 21

V4 reverse > = 500 < = 850 41,404 20

V6-7 forward > = 850 < = 1180 29,995 22

V6-7 reverse > = 900 < = 1200 40,023 24

V8 forward > = 1000 < = 1370 61,559 18

V8 reverse > = 1050 < = 1360 58,252 20

V9 forward > = 1200 5,354 3

V9 reverse > = 1250 8,212 10

Table showing division of reads into respective variable regions. Binning start and stop coordinates for both forward and reverse reads into their

respective regions. Total number of rewards per region shown in column 5 “Number of reads”. Total number of OTUs after OTU picking for each region

shown in column 6 “Number of OTUs”.

doi:10.1371/journal.pone.0148047.t001
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Genus level proportions were determined by first summing up OTU counts that classified up
to and beyond genus level and then calculating the sum divided by the total over all genus level
counts.

In an attempt to see how well the diversity and evenness of the communities for each region
for each mock sample matched that of the known, the Shannon Diversity (SD) index was calcu-
lated for both the known and observed mock samples at the family and genus level (Table 2)
and the difference between the known SD and the average SD across the samples for each
region was calculated for both family and genus level (Fig 6). The Shannon Diversity index
gives a measure of the species diversity in a given community while taking into account both
the abundance and the evenness of species present in a community [43].

The Kullback-Leibler divergence DKL measures the difference between two probability dis-
tributions, P and Q. A larger DKL shows a bigger divergence between the two.[44] The Kull-
back-Leibler divergence was calculated at family and genus level for each observed mock
sample versus its respective known mock for each of the 6 regions for both forward (Fig 7A)
and reverse reads (S3 Fig). In order to avoid dividing by 0, a constant of 1 was added to the
entire set of count data before the proportions were calculated. This addition of the constant of
1 accounted for those cases where a region was unable to find a particular taxonomic group

Fig 4. Incidence map showing bacteria found at family and genus level. Incidence map showing whether bacteria was found in the forward reads at both
the family and genus (red), at the family only (blue) or not found at family or genus level (black X) for each of the 6 regions.

doi:10.1371/journal.pone.0148047.g004
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and had a count of 0 or missing entry. Average DKL over all 4 mock samples for each region
was calculated for both family and genus and plotted for each region (Fig 7B).

Comparison of forward and reverse reads
In order to investigate how well forward and reverse reads for each region compared, forward
and reverse reads were joined by family level bacteria for each region and total OTU counts
were compared in bivariate plots. Bivariate plots for four mock samples and 3 regions, V2, V4
and V6-7 can be seen in S4 Fig.

Fig 5. Family Level Bacterial Abundance. Bacterial abundance for knownmock samples and 6 other
variable regions of forward reads. (A) Genus Level Known Even vs. Even Lowmock samples, (B) Genus
Level Known Staggered vs. Staggered Low mock samples. (Figs A and B in S2 Fig show Even High and
Staggered High samples for genus level)

doi:10.1371/journal.pone.0148047.g005
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Results

Filtering and separating reads into variable regions
Reads were visualized along the 16S gene of Streptococcus mutans (DQ677761) in order to
identify boundaries for variable region groupings (Table 1 and Fig 3). As shown in Table 1, V3
was assigned the most reads averaging 76,285 over forward and reverse. Reads targeting V9
had the smallest number of reads averaging at 6,783 over forward and reverse. Start and stop
coordinates for region assignments were chosen based on their distribution in Fig 3. Reverse
reads are shifted by about 50bp. The total number of reads and OTUs for each region is noted
in Table 1, column 5 and 6 respectively.

Read classification for each mock sample over 6 regions
Classification up to the genus level was investigated for each region in both forward and
reverse. Surprisingly, bacteria in the genus Escherichia were not identified for all regions in
both forward and reverse reads, however the family level Enterobacteriaceae was in fact identi-
fied for all regions. Since the mock community composition is known and includes E. coli, the
decision to present both family and genus level data was made for this project. Fig 4 shows the
17 family and genus level bacteria present respectively in the mock samples and whether or not
that bacteria was found at both family and genus, family only or not found up to either level for
a particular region in any of the four mock samples. Regions giving better resolution than oth-
ers were V2, V4 and V6-7 while V3, V8 and V9 gave less resolution up to both family and
genus level. V4 gave 100% resolution in both forward and reverse for family but gave only 82%
resolution for genus, i.e. all 17 bacteria were found at the family level among any of the 4 mock
samples and 14/17 bacteria were found at the genus level. V2 gave 100% and 94% resolution in
the forward reads for family and genus and found 88% and 76% of the bacteria at the genus in
the reverse reads. The V9 region performed poorly at both family and genus level finding less
than 60% of the bacteria in any direction. Not noted in the figure is one particular bacteria
found that is not present in the mock, Planococcaceae for the V8 forward and V3 reverse
regions. Forward reads targeted to the V6-7 region had a small percentage of unassigned bacte-
ria. These reads clustered to an OTU that classified only up to order Bacillales.

While we report on family and genus level findings in this study, it is important to note
which regions classified the most species correctly. In the forward reads, V2 was able to classify
9 OTUs up to species, V3 was able to classify 2 OTUs up to species, V4 was able to classify 4

Table 2. Shannon Diversity Index.

Observed Known V2 V2 V3 V3 V4 V4 V6-7 V6-7 V8 V8 V9 V9
Fwd Rev Fwd Rev Fwd Rev Fwd Rev Fwd Rev Fwd Rev

EvHi 2.76 2.68 2.58 2.23 2.31 2.57 2.48 2.52 2.51 2.35 2.32 0.7 0.7

2.61 2.42 2.11 2.11 2.41 2.28 2.34 2.38 2.13 2.14 0.02 0.13

EvLo 2.76 2.65 2.59 2.24 2.32 2.6 2.49 2.54 2.54 2.37 2.35 0.7 0.7

2.58 2.43 2.1 2 2.12 2.43 2.29 2.34 2.40 2.16 2.18 0.03 0.13

StHi 1.7 1.64 1.66 1.19 1.18 1.56 1.52 1.78 1.76 1.44 1.43 0.06 0.06

1.45 1.48 0.90 0.62 1.32 1.33 1.43 1.58 1.15 1.13 0.45 0.89

StLo 1.7 1.67 1.71 1.23 1.16 1.59 1.55 1.77 1.69 1.42 1.41 0.05 0.05

1.50 1.60 0.94 0.61 1.32 1.34 1.42 1.54 1.12 1.11 0.52 1.28

Shannon diversity index at the family (upper cell) and genus level (lower cell) calculated for four mock samples on known and observed in 6 regions for

both forward and reverse.

doi:10.1371/journal.pone.0148047.t002
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OTUs up to species, V6-7 was able to classify 4 OTUs up to species, V8 was able to classify 4
OTUs up to species and V9 did not classify any of its 3 OTUs up to species level. In the reverse
reads, V2 was able to classify 6 OTUs up to species, V3 was able to classify 3 OTUs up to spe-
cies, V4 was able to classify 3 OTUs up to species, V6-7 was able to classify 5 OTUs up to spe-
cies, V8 was able to classify 5 OTUs up to species and V9 was able to classify 2 OTUs up to
species however one of those was misclassified from Acinetobacter baumannii to Acinetobacter
rhizosphaera.

Differences between forward and reverse
We looked at how different forward and reverse reads are for each region. We first looked at
whether a forward or reverse set per region identified each expected bacterial family. We found
that for all regions except V6-7 and V9, forward reads found overall more expected bacterial
strains than reverse reads (Fig 4 and S1 Fig). In V6-7, V8 and V9, Bacillacea/Bacillus was not

Fig 6. Average Shannon Diversity Difference from known at the Family and Genus level. Average difference between the known Shannon Diversity
index vs that calculated for each region at both the family and genus level. Y-axis shows the hypervariable region. X-axis shows the Family (left) and Genus
(right) average difference values. Red bars show the average difference in the forward read analysis and the blue bars show the average difference in the
reverse read analysis.

doi:10.1371/journal.pone.0148047.g006
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found in forward but was found in reverse reads and there were quite a few bacteria that were
not found in V9 forward. Interesting to note is that the total read count for the V9 forward set
was about 35% less than that for the reverse set which could attribute to this finding. In addi-
tion, we looked at the Shannon Diversity for both forward and reverse and compared it to that
of the known and found that the SD differences for both forward and reverse within a region
were similar to each other (Fig 6 and Table 2). We compared the OTU counts for forward and
reverse at the family level for V2, V4 and V6-7 (S4 Fig). The V2 Even samples are less similar
than the Staggered samples and namely we see bacteria having higher OTU counts in the
reverse than in the forward for V2 (Fig A in S4 Fig). We do see that there were slightly higher
total read counts for V2 reverse than for V2 forward. The V4 Even samples are similar (Fig B

Fig 7. Kullback-Leibler Divergence. (A) Bar graph showing family (upper) and genus (lower) level Kullback-
Leibler divergence (y-axis) for 6 regions (x-axis). Known mock compared to observed mock (EvHi, purple;
EvLo green; StHi red; StLo blue) for forward reads. The average DKL over all mock samples for each region is
shown above the bar charts for a particular region. (B) Average Dkl over 4 mock samples at each region for
both family (blue) and genus (red).

doi:10.1371/journal.pone.0148047.g007
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in S4 Fig), falling along the line of identity but forward tends to have higher OTU counts than
reverse. The Staggered V4 samples look very similar. All samples for region V6-7 also look sim-
ilar with the Even samples having slightly higher OTU counts in the reverse reads. Overall, V4
forward and reverse have the highest agreement when reviewing total number of bacteria iden-
tified and in the OTU counts. The V6-7 Even High and Staggered High samples showed
slightly higher OTU counts for reverse compared to forward (Fig C in S4 Fig). The Even Low
and Staggered Low OTU counts looked similar with many of the counts falling along the line
of identity. After reviewing this information, we find that we cannot say definitively that either
forward or reverse is better than the other and therefore we will proceed with analyzing reads
separately in future work.

Detectability of bacteria with low operons
The sequenced mock samples provide a theoretical mock community, where DNA from indi-
vidual species is pooled based on the number of ribosomal RNA (rRNA) operon counts in the
respective genomes. In an effort to investigate the detectability threshold (i.e. those bacteria
having operon counts at 1,000) of the current sequencing and analytical pipeline, we sequenced
a mock sample (Staggered Low) containing bacteria with operons ranging from 1,000 to
1,000,000. There were 5 different species present at the lowest operon level of 1,000, those
being Actinomyces odontolyticus, Bacteroides vulgatus, Deinococcus radiodurans, Enterococcus
faecalis and Streptococcus pneumonia. We will discuss four of these five bacteria at the genus
level since Streptococcus has three species with low to high operon counts. Actinomyces was
detected only in V4, V6-7 and V8 forward in counts of 3, 2 and 1. The other regions were not
able to detect Actinomyces in forward. In reverse, the only region able to detect Actinomyces
was V6-7 with a count of 1. This could be considered not detected depending on optional
count filtering. Bacteroides was detected in all forward regions except V8 and V9 at counts
between 4–9. For reverse regions, Bacteroides was detected only in V3, V4 and V6-7 in counts
of 8, 4 and 5. Deinococcus was detected in all forward regions except V3 and V9 at counts
between 2–5. For reverse regions, Deinococcus was only detected at counts of 1 for V2 and V4
only. Finally Enterococcus was detected in forward regions V3, V4, V6-7 and V8 at counts of 2,
6, 1 and 2. For reverse regions, Enterococcus was detected in all regions except V9 at counts
ranging from 1–6. These results show that some regions are better at detecting low-level bacte-
ria than others. If a method for generating a consensus table over all 6 regions is obtained, then
it is sufficient to say that this method is able to detect even lowly abundant bacteria.

Comparison of known versus observed mock samples and statistical
analysis
Stacked bar charts for the known and observed Even Low and Staggered Low samples shown
in Fig 5 gives an illustration of how well a region performed to what was expected. As shown in
Fig 5A, regions V2, V4 and V6-7 look most similar to the known even bar chart. Regions V3
and V8 also look similar but appear to be missing some of the bacteria. Region V9 clearly
shows the most dissimilarity from what is expected. Interestingly, Fig 5B, Staggered Low,
seems to show that regions V2, V4, V6-7 and V8 show the closest similarity to the known
while regions V3 and V9 show more dissimilarity. In order to quantitate how well the observed
distribution compared to that of the known, the Kullback-Leibler divergence for both the fam-
ily and genus level data was calculated for the forward and reverse reads and the results are
shown in Fig 7A and 7B and S3 Fig. Regions V2, V4, V6-7 and V8 give the lowest DKL for for-
ward in both the family and genus level results while regions V3 and V9 give the highest aver-
age DKL over all four mock samples. Fig 7B shows the average DKL for each region and a
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similar trend across the regions is seen between the family and genus level data. Considering
that regions V2 and V4 showed the lowest average DKL over all four samples and found all 17
bacteria at least at the family level, it is worth mentioning that these regions might be the best
to use to draw conclusions from for future studies.

In addition to reporting the family level Kullback-Leibler divergence for each sample, we
also computed the family level and genus level Shannon Diversity (SD) index in the known
mock samples and that for each of the observed mock samples for each region (Table 2) for
both forward and reverse reads. As shown in the table, the SD for the known Even samples is
2.76 and that for the Staggered samples is 1.7. In order to visualize how different a SD for a
region is from the known SD, we plotted the average difference between the known and mock
samples for each region. Fig 6 shows the histogram of these differences for both forward and
reverse reads. Interestingly, the forward and reverse bars are very similar suggesting that the
diversity is not changed between either the forward and reverse analyses. In addition, the small-
est difference is seen in V2, V4 and V6-7 for both the Family and Genus results. The largest dif-
ference in diversity between the known and mock samples is seen in V9 for both Family and
Genus further confirming that the V9 region does not give reliable results.

Discussion
Amajor goal of all human microbiome projects is to identify the bacteria that compose com-
plex communities. In order to do this, valid and reproducible methods are required. The pur-
pose of this paper is to validate and demonstrate the utility of a recently developed method that
is capable of identifying bacteria using six hypervariable regions of the 16S rRNA gene. Since
the advent of NGS and read length limitations with standard NGS technologies, researchers
typically select one or two regions of the 16S rRNA gene. In this paper we present results using
six hypervariable regions to attain a comprehensive view of the human microbiome without
introducing the inherent biases of selecting only one or two regions of the gene. Other studies
have sequenced multiple hypervariable regions on the same samples and have compared the
data across the regions in order to investigate if a region performs better than others [14, 19].
Also, one study used third generation sequence or single-molecule real time sequencing to
characterize the lung microbiome [45]. To our knowledge, there are no comparable studies
using simultaneously processed multiple hypervariable regions of the 16S rRNA gene as
described in this paper. The NIH Human Microbiome Project used a mock community to
develop their clinical protocols and compared multiple variable regions. In their discussion of
the findings, they noted that using multiple regions of the 16S gene would improve results. [26]

We have shown the results of using multiple hypervariable regions of the 16S rRNA gene
using four mock communities at both the family and genus level. The four mock communities
had genomic material from 20 species of bacteria or 17 genera and families. Fig 4 displays the
results of the analysis across the different hypervariable regions. Our results demonstrate that
the amplicons targeting the V4 regions and the V2 forward reads identified all 17 family level
bacteria while V2 reverse, and V6-7 forward and reverse were almost as consistent. Amplicons
targeting the V9 region performed poorly identifying only 3/17 forward and 9/17 reverse. The
V8 region for both forward and reverse identified 14/17 of the bacteria. Since V9 performed
poorly it should be noted that the total number of reads targeting V9 was at least 14 times lower
than the V3 region which had the highest average total read count of all other regions at 76K for
forward and reverse. This could suggest that the Ion 16S™Metagenomics Kit does not do well
on the end of the 16S rRNA gene. In addition, we provided the results of the sequencing of the
mock samples at the family and genus levels. As noted, at the genus level we were not able to
identify the genus Escherichia but at the family level were able to identify Enterobacteriaceae.
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The Ion Torrent PGM produces unpaired bidirectional sequencing reads with a median
length of 200–220 bp, therefore the reads were analyzed separately. There is some published lit-
erature suggesting that results from both forward and reverse directions are similar and per-
haps do not need to be examined separately [28, 46]. Although those studies were performed
on different sequencing platforms and also were from paired reads (Illumina HiSeq and MiSeq
and the Genome Analyzer IIx) the results could also be the same for the Ion Torrent. We exam-
ined this question and found some differences between the forward and reverse reads thus we
conclude that we will present both forward and reverse read results in future work.

In summary, the V2, V4 region and V6-7 displays consistent results. We validated these
relationships using two different measures. Regions V2, V4 and V6-7 gave the lowest average
DKL over all regions and regions and the Shannon Diversity index was the closest to that of the
known in V2, V6-7 and V4 respectively. In examining the different mock communities, the
Staggered Low results test the lower number operons in the genomic material against the
known results. The Staggered Low set had the lowest number of operons with some bacteria at
103 level. Actinomyces was detected in hypervariable regions, V4, V6-7 and V8 and Deinococcus
was detected in all forward hypervariable regions except V3. The same was true of Enterococ-
cus, being detected in all regions in the forward reads. These findings demonstrate the ability of
our methods to detect bacteria in low abundance. All 17 bacteria were detected in the key three
regions except Actinomyces. In order to gain more specificity down to the species level, it might
be useful to merge consecutive reads from the V2-V3-V4 regions and from the V67-V8 regions
since these reads overlap slightly (Fig 3). While doing this would likely prevent the ability to
compute bacterial abundance because of double-counting, it could give a snapshot of which
species of bacteria are in fact present or absent within a sample. An analysis like this in addition
to the analysis presented in this manuscript might give an even more clear idea of the bacterial
microbiota in clinical samples for future studies. There are several limitations to this work. To
our knowledge, besides an application note reported by the company there are no other pub-
lished studies using the primers in Ion 16S™Metagenomics Kit [30]. We used genomic DNA
from mock samples and not clinical samples which we processed, however, the next step in our
research is to use this method with clinical samples. We were unable to combine the forward
and reverse reads without compromising the data therefore we analyzed the forward and
reverse reads separately. To date we have not found a method to combine OTUs across multi-
ple variable regions, however such a method would greatly increase the efficiency of the analy-
sis especially when dealing with larger numbers of specimens. Some ideas regarding combining
data from multiple V regions will be explored in future work, since the ability to generate one
result over all regions will greatly increase the efficiency of our analysis especially when we are
dealing with larger number of specimens.

Conclusion
The results of our analysis have shown that our sequencing methods using 6 hypervariable
regions of the 16S rRNA and subsequent analysis are valid. We concluded that we still need to
examine the forward and reverse reads separately because there are differences (S2 Fig). The
V4 hypervariable region performed the best and produced the lowest Kullback-Leibler diver-
gence but V2 and V67 also yielded comparable results. A strategy for combining the results
over the multiple variable regions in order to come up with one consensus result will be sought.

Supporting Information
S1 Fig. Incidence Map of Bacterial Presence in Reverse Reads. Incidence map showing
whether bacteria was found in the reverse reads at both the family and genus (red), at the
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family only (blue) or not found at family or genus level (black X) for each of the 6 regions.
(TIF)

S2 Fig. Genus Level Bacterial Abundance Chart in Even High and Staggered High Known
and Observed Samples. (Fig A) Known Even vs. Even High mock samples at genus level, (Fig
B) Known Staggered vs. Staggered High mock samples at genus level.
(TIF)

S3 Fig. Kullback-Leibler Divergence for Family and Genus Level in Reverse Reads. Bar
graph showing family (upper) and genus (lower) level Kullback-Leibler divergence (y-axis) for
6 regions (x-axis). Known mock compared to observed mock (EvHi, purple; EvLo green; StHi
red; StLo blue) for reverse reads. The average DKL over all mock samples for each region is
shown above the bar charts for a particular region.
(TIF)

S4 Fig. Bivariate Plots of OTU counts for Forward and Reverse for V2, V4 and V6-7. Total
OTU counts for forward (y-axis) and reverse (x-axis) reads for 3 regions. (Fig A) Forward and
reverse reads for region V2 for four mock samples. (Fig B) Forward and reverse reads for
region V4 for four mock samples. (Fig C) Forward and reverse reads for region V6-7 for four
mock samples. Each panel shows, even high in the upper left. Even low in the lower left. Stag-
gered high in the upper right. Staggered low in the lower right. Red line denotes the line of
identity.
(TIF)
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