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Abstract

Enhanced production of 2-hydroxy-phenazine-1-carboxylic acid (2-OH-PCA) by the
biological control strain Pseudomonas chlororaphis 30-84 derivative 30-840* was shown
previously to promote cell adhesion and alter the three-dimensional structure of surface-
attached biofilms compared to the wild type. The current study demonstrates that produc-
tion of 2-OH-PCA promotes the release of extracellular DNA, which is correlated with the
production of structured biofilm matrix. Moreover, the essential role of the extracellular DNA
in maintaining the mass and structure of the 30-84 biofilm matrix is demonstrated. To better
understand the role of different phenazines in biofilm matrix production and gene expres-
sion, transcriptomic analyses were conducted comparing gene expression patterns of pop-
ulations of wild type, 30-840* and a derivative of 30-84 producing only PCA (30-84PCA) to
a phenazine defective mutant (30-84ZN) when grown in static cultures. RNA-Seq analyses
identified a group of 802 genes that were differentially expressed by the phenazine produc-
ing derivatives compared to 30-84ZN, including 240 genes shared by the two 2-OH-PCA
producing derivatives, the wild type and 30-840*. A gene cluster encoding a bacterio-
phage-derived pyocin and its lysis cassette was upregulated in 2-OH-PCA producing deriv-
atives. A holin encoded in this gene cluster was found to contribute to the release of eDNA
in 30—84 biofilm matrices, demonstrating that the influence of 2-OH-PCA on eDNA produc-
tion is due in part to cell autolysis as a result of pyocin production and release. The results
expand the current understanding of the functions different phenazines play in the survival
of bacteria in biofilm-forming communities.
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Introduction

Pseudomonads are well known for the production of a diversity of secondary metabolites,
including phenazines that are essential for the control of plant diseases [1]. Phenazines are of
particular interest because of their broad-spectrum antibiotic activity against diverse organisms
from bacteria to eukaryotes, but also because they serve numerous functions that affect bacte-
rial physiology and interactions with other organisms [2,3]. Phenazines comprise a large group
of nitrogen-containing heterocyclic compounds that are synthesized only by bacteria, primarily
Pseudomonas and Streptomyces species. Phenazines differ in their chemical and physical prop-
erties based on the type and position of functional groups present on the conserved three-ring
structure [2]. Bacterial strains within the same species frequently differ in the types of phena-
zines they produce and often produce more than one phenazine derivative. Ultimately, differ-
ences in the spectrum of phenazines produced may help define the ecological niche of the
producing organism via effects on bacterial physiology as well as biological interactions with
other microbes or hosts [2,3].

P. chlororaphis (aureofaciens) 30-84 was isolated for use in the management of take-all dis-
ease of wheat, and phenazine production by 30-84 is required for the inhibition of the causa-
tive agent, Gaeumannomyces graminis var. tritici [4]. P. chlororaphis 30-84 produces several
phenazines, but only two in significant abundance: phenazine-1-carboxylic acid (PCA) and
2-hydroxy-PCA (2-OH-PCA) [4]. In liquid culture these may be produced at a ratio of 10:1,
respectively [5]. In P. chlororaphis 30-84, as in most other phenazine-producing bacteria, the
enzymes for the synthesis of the core phenazine PCA are encoded by a conserved set of biosyn-
thetic genes phzXYFABCD, corresponding to the homologs named phzABCDEFG in P. fluores-
cens and P. aeruginosa [2,6]. Additionally, phzO located immediately downstream of the
phenazine biosynthetic operon encodes a monooxygenase responsible for the hydroxylation of
PCA to 2-OH-PCA [7]. Phenazine production responds to environmental conditions due to a
complex regulatory network that includes two component systems (GacS/GacA and RpeA/
RpeB), non-coding RNA (rsmZ), quorum sensing (PhzI/PhzR and Csal/CsaR), sigma factor
(RpoS) and other regulators (Pip, IopA/IopB) [8-12].

Phenazines also contribute to the ability of P. chlororaphis 3084 to persist in the wheat rhi-
zosphere [13]. Furthermore, phenazines produced by P. chlororaphis 30-84 are important for
the formation of biofilm communities. For example, Maddula et al. [14] demonstrated using
flow cell analysis that the P. chlororaphis 30-84 mutant 30-84ZN, which is deficient in phena-
zine production due to a phzB:lacZ insertion, was significantly impaired in its ability to form
surface-attached biofilms compared to wild type. However, complementation of the phenazine
defect via the introduction of the phenazine biosynthetic operon in trans resulted in extensive
surface-attached biofilm formation. Furthermore, addition of purified phenazines to the
growth medium restored biofilm formation by 30-84ZN, indicating the lack of phenazines
were responsible for the deficiency in the capacity to form surface-attached biofilms. In subse-
quent experiments, Maddula et al. [5] generated derivatives of 30-84 that produced only PCA
(30-84PCA), or overproduced 2-OH-PCA (30-840%) via the deletion of the genomic copy of
phzO or the over-expression of phzO in trans, respectively, (e.g. resulting in ratios of PCA to
2-OH-PCA in 30-84PCA, wild type and 30-840* when grown in liquid culture of 10:0, 10:1,
and 5:5, respectively). Single-pass flow cell assays showed that the 30-84 derivatives differed in
their abilities to adhere to glass surfaces (30-840* > 30-84 > 30-84PCA) and in the architec-
ture of the surface attached biofilms they formed [5], demonstrating that the two phenazines
differentially contribute to biofilm development and structure [15-17].

The biofilm matrix is composed of self-produced extracellular polymeric substances (EPS)
that embed and surround bacterial cells, provide structural stability, and largely define the
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physiochemical environment within biofilms [17,18]. How the retention of different phena-
zines within the EPS influences gene expression patterns or biofilm matrix development
remains to be determined. Recent studies showed that phenazines function in multiple ways in
terms of their effect on biofilm development. For example, pyocyanin (PYO) produced by P.
aeruginosa promotes extracellular DNA release by enhancing the generation of hydrogen per-
oxide in planktonic batch cultures [19]. The role of extracellular DNA (eDNA) as a structural
component in biofilm architecture has been eloquently demonstrated [20]. Other studies
showed that PYO binds to eDNA resulting in changes to bacterial cell surface properties [18],
enhanced electron transfer capabilities [21], and increased viscosity of biofilm supernatants
[21].

In the present study, we use a static culture assay (rather than flow cell or planktonic assays)
to study the transcriptomic consequences of producing and retaining different phenazines
within non-mixing cultures, focusing especially on genes that may be important for the genera-
tion of floating biofilm matrix, such as those potentially involved in eDNA release. Similar to
our study, previous transcriptomic studies of bacterial “biofilms” have focused on non-attached
biofilms formed during growth in static culture because a) of the difficulty in studying bacteria
in surface attached biofilms and b) the finding that similar to surface attached biofilms, the
global gene expression patterns of cells from static “biofilm” cultures are distinctly different
from those grown in stationary phase planktonic cultures [22]. Additionally, the matrix-
encased aggregates resemble surface attached biofilms in terms of their ability to protect cells
from harsh environments and in the presence of eDNA in the EPS matrix [23]. These studies
demonstrate the utility of using static biofilm-forming cultures to investigate the regulation of
genes important for the establishment of the biofilm matrix and lifestyle.

In order to gain a more complete understanding of the impacts of phenazines on bacterial
behavior and fitness, it is important to understand why strains produce more than one phena-
zine derivative and in particular how each of these contribute to the biofilm lifestyle. In the
present study, the use of isogenic derivatives of P. chlororaphis 30-84 (e.g. wild type, 30-8407,
30-84PCA, and 30-84ZN) provided the ability to examine the relative contribution of different
phenazines to the biofilm phenotypes and gene expression patterns. We show that altering the
phenazines produced by P. chlororaphis 30-84 differentially influences gene expression pat-
terns, eDNA release, and biofilm matrix production.

Materials and Methods
Bacterial strains and growth conditions

Bacterial strains and primers are listed in Table 1. Liquid AB minimal medium supplemented
with 2% casamino acids (AB + 2% CAA) (Difco, Becton Dickinson and Company, Franklin
Lakes, NJ) was used for culturing P. chlororaphis as described previously [8].

Quantification of biofilm matrix and eDNA

For biofilm cultures, bacteria were grown in plates without shaking using an established
method with modifications [22]. Pre-cultures were prepared overnight in shaking glass tubes
(200 rpm) filled with 3 mL AB + 2% CAA at 28°C. The pre-cultures then were diluted to an
ODyggo 0£ 0.05 in AB + 2% CAA and 1.5 ml per well were added to 12 wells of 24-well polysty-
rene Corning™ Costar™ cell culture plates (Corning Inc., Corning, NY, USA). The biofilm
plates were sealed with an air-permeable cover and placed in an incubator at 28°C for up to
72 h. At 48 h, non-attached aggregates began to form. At different time intervals, the entire
non-adhering 1.5 mL static cultures were transferred from the 24-well plates to Eppendorf
tubes and cells collected by centrifugation (16,000 x g for 5 min). The supernatants were
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Table 1. Bacterial strains and primers used in this study.

P. chlororaphis 30-84
30-84PCA

30-840*

30-84ZN

fliCRT1
fliCRT2
katA1

katA2

ahpCi1
ahpC2
phzO1
phz0O2

antA1

antA2

argC1

argC2

IrgA1

IrgA2

phrS1

phrS2

hol1

hol2
rpoDRT1
rpoDRT2
16SRT1
16SRT2
US-F-EcoRl
US-R-Kpnl
DS-F_Kpnl
DS-R-Hindlll
KanR-F-Kpnl
KanR-R-Kpnl
Holin300-Up-F
Holin-Dwn-R
Holin-S-F
Holin-M-F
Holin-E-R
Holin500-F-EcoRlI
Holin500-R-Hindlll

aKm® and Rif® = kanamycin and rifampin resistance.

doi:10.1371/journal.pone.0148003.1001

Relevant characteristics®

Strains
Phz*Rif? wild-type
PCA*, 2-OH-PCA’, Riff, KmRphzO::Tn5
2-OH-PCA™ overproducer
Phz RiffphzB::lacZ genomic fusion

Primers
CTGCAAATCGCTACCCGTAT
GAACAGCCAGTTCACGCATA
CCCACTTCAACCGTGAAAAC
CGCAGGAAGGTAGGAGTCTG
CCAGGGATTTCGTGATCAAT
CAGACGGCTTCATCCTTGTC
TGGACCTCATACAGCCATTG
CCGCAAGCTGCACTATTTC
AGCCCTTGTAGCTGTCGATG
AACCAGTCCACCTTCACCTG
ACCTGGACCTACGGTTTCG
GTAGTCCTTCGGCAGCAGTC
CCGAGATGCTGCTGTTCTTC
ACACCCATTCCACCGTGA
CAGGAGGCCAGTCATGTTTT
GTGCTCGTTACCGGAAAGACT
CATGCCCATCTGGCTTGT
GTCGAGACCCCACAGATCAC
ACGTCCTGAGCGGTTACATC
CTTTCGGCTTCTTCTTCGTC
ACGTCCTACGGGAGAAAGC
CGTGTCTCAGTTCCAGTGTGA
GGAATTCCTCGACGGTTCAGAGGGTTG
GGCGTCCGAGGTACCGTTTGTCATGTCACTCCTCC
ATGACAAACGGTACCTCGGACGCCTGAACAACCGCC
CCCAAGCTTGTCAGCGCCTTGACCGATG
CGCGCGCGGTACCTGTGTCTCAAAATC
CGCGCGCGGTACCTTTAGAAAAACTCATCG
CTCGACGGTTCAGAGGGTTG
CCGGCTTTGTAGAGCTC
GGAATTCCCAGGAGGAGTGACATGACAAAC
GCGTATCGATCTGGACC
CCCAAGCTTTTGTTCAGGCGTCCGAGCG
GGAATTCAGCCCATAACGCCAAAG
CCCAAGCTTTTGTTCAGGCGTCCG

Source

[24]

[24]

This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
(8]

[8l

8l

[8l

This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study

discarded and the mass of the cells and hydrated matrix were measured. The concentration of
extracellular double stranded DNA was determined quantitatively using a Qubit 2.0 Fluorome-
ter (Invitrogen Life Technologies, CA, USA). Briefly, static cultures were diluted 1:10 in water
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and vortexed to thoroughly disrupt the EPS. After centrifugation (16,000 x g for 5 min), the
supernatants were transferred to new tubes and the remaining bacterial cells were removed via
a 0.22 um filter (Millipore, MA, USA). The concentration of eDNA was quantified by mixing
10 ul of supernatant with DNA quantifying fluorescent dyes from Qubit (Invitrogen Life Tech-
nologies). The fluorescence of DNA-dye interaction was measured using a Qubit 2.0 Fluorome-
ter according to the manufacturer's instructions. The amount of eDNA was determined via
comparison to a standard curve and reported as pug/ml.

For DNase treatment, 30 units of water-dissolved DNase I (Qiagen, Venlo, Netherlands)
were added into bacterial cultures, and the mass of biofilm matrix and the amount of eDNA
release were quantified after 60 h as described in this section. Equal volumes of water were
used as a negative control.

Phenazine extraction and quantification

Phenazine extraction was performed as described previously with modifications [9]. Briefly,
triplicate 10-ml bacterial cultures of wild type and 30-84PCA were centrifuged (1,250 x g), and
the supernatants were acidified with concentrated HCL. Separation of PCA and 2-OH-PCA
were achieved by modifying the pH. Phenazines were extracted with an equal volume of ben-
zene, mixed for 1 h in the rotary shaker, and centrifuged at 1,250 x g for 15 min. Nine milliliters
of the benzene phase was transferred to new tubes, and evaporated under a stream of air. Phen-
azines were resuspended in 0.5 ml of 0.1N NaOH, and serial dilutions were quantified via
absorbance at 367 nm (PCA) and 484 nm (2-OH-PCA). The amounts of PCA and 2-OH-PCA
were determined by multiplying their absorption maxima by their standard extinction coeffi-
cients [5] and comparison to a standardized curve.

For exogenous phenazine treatment, each purified phenazine was added directly into the
medium to the final concentration of 20 pg/ml. Overnight culture of 30-84ZN were prepared
in shaking glass tubes (200 rpm) filled with 3 mL AB + 2% CAA at 28°C. The overnight cul-
tures then were diluted to an ODggg of 0.05 in AB + 2% CAA amended with or without each
phenazine and 1.5 ml per well were added to 12 wells of 24-well polystyrene Corning™
Costar™ cell culture plates. The mass of biofilm matrix and eDNA production were quantified
as described above after 72 h of growth at 28°C without shaking.

RNA preparation for transcriptomic analysis and gPCR

Two biological replicates of strains were started from single colonies grown on AB + 2% CAA
and transferred to 1.5 ml AB + 2% CAA broth. All cultures were grown at 28°C in 24-well
plates without shaking for 48 h to ODg = 1.8 as described above. This time point coincided
with the development of floating extracellular matrix in all of the derivatives tested. This
method allowed us to observe the transcriptomic consequences of producing phenazines in a
static culture and examine how each of the phenazines differentially contributes to matrix
development.

RNA extractions were performed as described previously [24] with minor modifications.
Briefly, 1 mL of the static cultures was collected and transferred to 15 ml polypropylene tubes
(BD Bioscience, San Jose, CA) containing 2 ml RNA Protect reagent (Qiagen). Cells were har-
vested at this time point because biofilm matrix was actively being produced by all derivatives,
although the amount of structured matrix formed varied among the derivatives. The cells har-
vested using this method included those in the static culture and those adhering to or embed-
ded within the floating extracellular matrix. The 3 ml mixtures were vigorously vortexed for
1 min and then incubated at room temperature for 5 min to stabilize the RNA. Cells were har-
vested by centrifugation for 10 min at 4,000 x g and RNA was extracted using the Qiagen
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RNeasy Protect Bacteria Mini as recommended by the manufacturer. On-column DNA diges-
tion was performed using Qiagen DNase. RNA was quantified using a Nano-Drop ND-100
spectrophotometer (NanoDrop Technologies; Wilmington, DE, U.S.A.) and RNA quality was
checked using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Elimina-
tion of contaminating DNA was confirmed via qPCR amplification of the rpoD and fliC genes
with SYBR green® dye on an ABI 9400HT PCR machine (Life Technologies, Carlsbad, CA).
Ribosomal RNA (rRNA) was depleted from ~5 pg of total RNA using the RiboZero rRNA
depletion kit (for Gram-negative bacteria, Epicentre Biotechnologies, Madison, WI). RNA
quantification was achieved using a GE NanoVue Plus spectrophotometer (GE Healthcare
Bio-Sciences Corp, Piscataway, NJ) and RNA quality was monitored with an Agilent 2100
Bioanalyzer (Agilent Technologies) at the Texas A&M Genomics and Technology Laboratory.

Transcriptomic data analysis

RNA-Seq analysis was performed by Otogenetics, Atlanta, GA. Strand-specific cDNA libraries
were constructed using Illumina TruSeq RNA Sample Preparation Kits. Based on gene annota-
tion information, reads were mapped to the genome resulting in a compressed binary version
of the Sequence Alignment Map (BAM files). To determine the transcriptional abundance for
each gene, the number of reads that mapped within each annotated coding sequence (CDS)
was determined. The number of reads per kb of transcript per million mapped reads (RPKM)
was used to normalize the raw data and mean RPKM values were determined [25]. The com-
plete dataset from this study has been deposited in the National Center for Biotechnology
Information Gene Expression Omnibus with the Accession No.GSE61200. The mean RPKM
values for each phenazine-producing derivative were standardized to the RPKM values of the
phenazine non-producing derivative 30-84ZN to compute a ratio of mean RPKM values for
each gene, and these were displayed by gene order from the chromosome origin of replication.
Comparisons were performed using EdgeR [26] and genes with differences in gene expression
based on the ratio were considered for further analysis when the p-value < 0.05 and the expres-
sion ratio was > 2.0 or < -2.0 (S1 Table).

Quantitative PCR Methods and Analysis

Quantitative PCR was performed as described previously [27-29] RNA was reverse-tran-
scribed using random primers (Invitrogen) and Superscript III (Invitrogen) at 50°C for 1 h and
inactivated at 75°C for 15 min. SYBR Green reactions were performed using the ABI 7900 HT
Fast System (Applied Biosystems, Foster City, CA) in 384 well optical reaction plates. Aliquots
(1 pl) of cDNA (2 ng/reaction) were used as template for qPCR reactions with Fast SYBR
Green PCR Master Mix (Applied Biosystems) and primers (500 nM final concentration).
Primer pairs katAl-katA2, ahpCl-ahpC2, phzO1-phzO2, antAl-antA2, argCl-argC2,
lrgA1-lrgA2, phrS1-phrS2, holl-hol2, fliCRT1-fliCRT2, rpoDRT1-rpoDRT2 and 16SRT1-
16SRT?2 were used to detect the expression of katA, ahpC, phzO, antA, argC, IrgA, phrS, hol,
fliC, rpoD and 16S rRNA genes, respectively (Table 1). The qPCR amplifications were carried
out at 50°C for 2 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for

1 min, and a final dissociation curve analysis step from 65°C to 95°C. Three technical replicates
of each of two biological replicates were used for each experiment. Amplification specificity for
each reaction was confirmed by the dissociation curve analysis [25]. Ct values determined by
the software were then used to calculate AACt for further analysis. The rpoD and 16S rDNA
genes were used as the reference genes to normalize samples and log-transformed relative
quantification (RQ) values were calculated for each gene with the control group as a reference
[27-29].
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Construction of a Holin Mutant

A P. chlororaphis 30-84 holin mutant was generated using Flp recombinase, as described by
Hoang et. al. [30]. The sequences 300 nt flanking the holin gene (pchl3084_1194) were
amplified by two-step PCR using the primer pairs us-F-EcoRI, us-R-Kpnl and ds-F-Kpnl, ds-
R-HindlIII, respectively (see Table 1 for primers). Using the primer pair us-F-EcoRI and ds-
R-HindIII with the contents of the previous PCR resulted in a product that contained the
upstream fragment separated from the downstream fragment by a Kpnl restriction site. This
fragment was ligated into pEX18Ap using the EcoRI and HindIII enzymes [30]. The kanamycin
resistance cassette with its promoter was then PCR amplified using the primer set, KanR-
F-Kpnl and KanR-R-Kpnl and pUC4K as the template. The product of the kanamycin cassette
PCR was digested with Kpnl using commercial instructions and ligated between the upstream
and downstream fragments in pEX18Ap. The final construct was electroporated into 30-84
and transformants were plated onto LB amended with Km. Double crossover mutants were
obtained by counter-selection with LB amended with Km and 5% sucrose and confirmed using
the PCR primers Holin300-Up-F, Holin-Dwn-R and the internal primers Holin-S-F, Holin-M,
Holin-E-R. In trans complementation of this mutation was considered lethal because no cells
expressing the construct were obtained after three attempts of cloning it into pGT2 [31] or
pUCP20Gm [32] with the primers Holin500-F and Holin500-R, likely the result of multiple
copy number.

Transmission Electron Microscopy

Transmission electron microscopy (TEM) was performed at the Microscopy and Imaging Cen-
ter at Texas A&M University. Specimens were observed on a JEOL 1200EX TEM operating at
an acceleration voltage of 100 kV. Images were recorded at calibrated magnifications by CCD
camera, and measurements were acquired using Image J software [33].

Statistical analyses

Comparisons of matrix and eDNA production between derivatives were analyzed statistically
using Analysis of Variance (ANOVA) and protected Least Significant Difference (LSD) tests
(P < 0.05) (SAS Version 9.2, SAS Institute, Cary, NC).

Results
2-OH-PCA enhances extracellular biofilm matrix and eDNA release

Liquid cultures of P. chlororaphis 30-84 wild type, 30-84ZN, 30-84PCA and 30-840* were
grown in AB + 2% CAA in 24-well plates at 28°C for up to 72 h without shaking. At 48 h, the
bacterial cultures of all 30-84 derivatives formed both surface attached and floating biofilms,
the latter composed of extracellular matrix that varied in viscosity among the 30-84 derivatives.
The entire, non-attached content of each well was transferred to an Eppendorf tube and the
extracellular matrix was collected by centrifugation (S1 Fig). Electron microscopy revealed that
bacterial cells were embedded within the extracellular matrix collected (S1 Fig), consistent with
the definition of floating or non-adherent biofilms [15]. The structured, extracellular matrix
that could be separated from the supernatant was quantified by weight (Fig 1A and 1B). The
amount of biofilm matrix (mass) produced by 30-84ZN and 30-84PCA at both 48 and 72 h
was similar. In contrast, biofilm matrix production by the two 2-OH-PCA producers, wild type
and 30-840*, was more than 5 times greater than 30-84ZN and 30-84PCA by 72 h. We
hypothesized that eDNA may be a major component of the structured matrix.

PLOS ONE | DOI:10.1371/journal.pone.0148003 January 26, 2016 7/22



@’PLOS ‘ ONE

Phenazine-Regulated Genes in P. chlororaphis

[ ]
4200 (D48 m72R
1]
E 900
X
£ 600
s
300
, -1 -1

ZIN PCA WT O*
B - ; -
¢ o v
60
c 0O48h B 72h
£ 4
Z
3
Z 20
()
0

ZIN PCA WT O*

Fig 1. Production of non-attached biofilm and eDNA by 30-84ZN (no phenazine) 30-84PCA, 30-84 wild
type, and 30-840*. (A) Bacteria were grown in AB minimal media + 2% casamino acid in static plates for up
to 72 h. Biofilm matrix production by P. chlororaphis 30—-84 and derivatives at 48 and 72 h was quantified by
weight. (B) Visualization of biofilm formed after culturing in static plates for 72 h and being collected by
centrifugation. (C) Production of eDNA by different derivatives was quantified using the double stranded DNA
quantifying fluorescent dye assay from Invitrogen. The data are the average of three biological replicates and
error bars indicate the standard deviation.

doi:10.1371/journal.pone.0148003.g001

To determine whether the production of PCA or 2-OH-PCA controlled the release of
eDNA, quantitative fluorescent assays were performed comparing eDNA production by wild
type, 30-840%, and 30-84PCA to the phenazine defective mutant 30-84ZN (Fig 1C). The
amount of eDNA produced by 30-84ZN and 30-84PCA at both 48 and 72 h was similar sug-
gesting that endogenously-produced PCA alone does not enhance eDNA production. In con-
trast, eDNA production by the wild type was more than 3 times greater than the amount
produced by 30-84ZN, especially at 72 h. This indicated that the production of 2-OH-PCA
promoted eDNA production. Consistent with this hypothesis, the amount of eDNA produced
by 30-840* was 20% more than wild type.

To further confirm the role of phenazines in eDNA release and matrix production, 30-
847N was monitored over 72 hours in the presence of exogenously-supplied PCA or 2-
OH-PCA (20 ug/ml). Addition of 2-OH-PCA to the 30-84ZN cultures increased the amount of
eDNA from 13.4 + 3.9 pg/ml to 51.1 + 8.8 pg/ml at 72 h post inoculation, whereas addition of
PCA increased the amount to 39.15 + 4.1 pg/ml. The mass of the biofilm matrix produced by
30-84ZN with 2-OH-PCA or PCA was greater than the amount produced by the 30-84ZN con-
trol (701.2 + 56.8 mg, 423.7 £+ 11.2 compared to 130.2 + 28.0 mg, respectively). These results
suggested that both exogenously-supplied PCA and 2-OH-PCA promote the production of
eDNA and structured extracellular matrix.
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eDNA is a key structural component of the biofilm matrix

To determine whether eDNA plays a major role in maintaining the structure and hence our
ability to collect and quantify the extracellular matrix, bacterial cultures of wild type, 30-84ZN,
30-84PCA and 30-840* were incubated in the presence of DNase I. As shown in Fig 2A,
growth with DNase reduced the quantity of extracellular mass that could be collected from cul-
tures of all 30-84 derivatives. Removal of eDNA by DNase I was confirmed by quantitative
fluorescent assays (Fig 2B). Together, these results demonstrate the essential roles of eDNA in
the production/structure of the P. chlororaphis biofilm matrix.

Transcriptome analysis and verification by gPCR

Transcriptomic analyses were performed to examine the regulatory effects of different phena-
zines on global gene expression patterns during biofilm matrix production. The transcriptome
profiles of static culture populations of wild type, 30-84PCA and 30-840* were compared to
those of the control, e.g. the phenazine-defective mutant 30-84ZN as ratios of the mean RPKM
values: those for which P value <0.05 and differ by more than two fold are shown in S1 Table.
Henceforth a ratio > 2 (Phenazine producer: 30-84ZN) indicates genes with enhanced

or increased expression in the presence of phenazine; similarly a ratio < -2 (30-84ZN: Phena-
zine producer, negative sign) indicates genes with reduced expression in the presence of
phenazines.

RNA-Seq analyses identified a total of 802 genes that were differentially expressed by the
phenazine producing derivatives compared to 30-84ZN. PCA production caused minimal
changes in the P. chlororaphis 30-84 transcriptome (Fig 3A). However, increasing the ratio of
2-OH-PCA had a broader impact on the bacterial transcriptome (Fig 3A). The transcript abun-
dances of a total of 66 genes were differentially expressed by 30-84PCA compared to 30-84ZN,
whereas a larger number of genes were differentially expressed by wild type and 30-840* (473
and 609 genes, respectively, Fig 3A). Of these genes, a core set of 46 genes were differentially
expressed by all phenazine producers (e.g. 30-84PCA, wild type and 30-840*, Fig 3B). These
results suggest that over-expression of 2-OH-PCA had far-reaching consequences on bacterial
gene transcription in P. chlororaphis 30-84 (S1 Table).

Two-step qRT-PCR was performed on nine genes that were differentially expressed in the
RNA-Seq analysis to validate the data. Four genes were commonly altered in 30-84PCA, wild
type and 30-840": katA (catalase), ahpC (hydrogen peroxide reductase), phzO (phenazine bio-
synthesis) and phrS (regulatory RNA). Four genes were differentially expressed in wild type
and 30-840%, but not 30-84PCA: antA (anthranilate 1,2-dioxygenase), argC (N-acetyl-gamma-
glutamyl-phosphate reductase), IrgA (regulator of cell lysis) and hol (holin). One gene was spe-
cifically altered in expression in 30-840*, but not in 30-84PCA or wild type: fliC (flagellin). For
all of the selected genes, the transcriptional fold changes measured by qRT-PCR were compara-
ble to those obtained by RNA-Seq analyses (S2 Fig).

Genes differentially expressed by all phenazine-producers

The core set of 46 genes that were differentially expressed in the matrix-forming cultures of 30-
84PCA, wild type and 30-840* (e.g. either higher or lower expression compared to 30-84ZN)
included genes annotated as being involved in oxidative stress response, phenazine biosynthe-
sis, drug resistance, and DNA repair (Table 2). We were particularly interested in the oxidative
stress response genes because phenazines are well-known to induce oxidative damage in both
prokaryotic and eukaryotic organisms [19,34]. Furthermore, phenazines are hypothesized to
contribute to extracellular DNA release by enhancing the generation of hydrogen peroxide and
thus the autolysis of cells [19]. To cope with the adverse effects of reactive oxygen species
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Fig 3. The number of differentially expressed genes in 30-84PCA, wild type and 30-840* compared
with the 30-84ZN. Differential expressed genes are those exhibiting over twofold change and a P

value < 0.05. (A) Phenazine Induced and Suppressed genes are those that are expressed in at a higher or
lower level, respectively, by the phenazine producing strains compared to 30-84ZN. (B) Venn diagram
showing the number of genes differentially expressed in 30-84PCA, wild type and 30-840* compared with
30-84ZN.

doi:10.1371/journal.pone.0148003.g003

(ROS), bacteria have evolved multiple mechanisms including the production of ROS scaveng-
ing enzymes. In Pseudomonas, the most effective ROS detoxification enzymes include the
major catalases KatA, KatB and KatG as well as the alkyl hydroperoxide reductases AhpC and
AhpF [35]. Additionally, TrxB, a thioredoxin-disulfide reductase, protects protein disulfide
bonds from oxidation [36]. Mutations in these genes greatly reduced ROS resistance and the
ability to form biofilms in various Pseudomonas species [35,36]. Compared to the low levels of
expression of these ROS-related genes in 30-84ZN (Table 2), phenazine production resulted in
significantly higher expression of ahpCF, katABG and trxB genes. Interestingly, expression of
the ROS-related genes was highest by wild type, perhaps indicating that production of both
phenazines creates a more potent or diverse redox environment.

Other genes expressed at higher levels in the phenazine-producing strains compared to 30-
84ZN included the phenazine biosynthetic genes (phzBCD and phzO), which likely is due to
disruption of phenazine biosynthesis by the phzB::lacZ mutation in 30-84ZN (Table 2). Addi-
tionally, two genes, emrA and emrB, annotated as encoding a multidrug resistance efflux sys-
tem were notably expressed (2.5-7 fold increase) in the phenazine-producing derivatives
relative to 30-84ZN (Table 2). Whether this system is functional or plays a role in antimicrobial
transport or intrinsic resistance to phenazines remains to be determined. In contrast, the
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Table 2. Selected genes that are differentially expressed by all phenazine producers: e.g. by 30-84PCA, wild type, and 30-840* compared with 30-
842ZN.

Gene ID Gene Protein description Ratio* (PCA/ZN) Ratio* (WT/ZN) Ratio* (O*/ZN)
Oxidative stress

Pchi3084_3280 ahpC alkyl hydroperoxide reductase 63.4 164.0 92.7

Pchi3084_3279 ahpF alkyl hydroperoxide reductase 92.6 212.0 104.4

Pchi3084 5293 katA catalase 8.3 18.3 10.3

Pchi3084_ 5138 katB catalase 24.9 91.4 47.7

Pchi3084_3902 katG catalase/peroxidase 6.6 15.1 8.8

Pchi3084_0942 trxB thioredoxin-disulfide reductase 6.1 9.4 6.9

Phenazine biosynthesis

Pchi3084_4955 phzB phenazine biosynthesis protein 2.0 2.54 4.0

Pchi3084_4956 phzC phenazine biosynthesis protein 289.2 351.2 605.3

Pchl3084_4957 phzD phenazine biosynthesis protein 118.3 151.7 281.0

Pchi3084_4958 phzO phenazine biosynthesis protein 42.6 119.6 216.3
Efflux pump

Pchi3084_3721 emrA multidrug resistance 2.9 7.4 5.8

Pchi3084_3720 emrB multidrug resistance 2.8 5.6 5.3
Other genes

Pchi3084_1311 phrS PhrS RNA -5.8 -6.8 -3.5

*Ratios > 2 (Mean RPKM Phenazine producer/ mean RPKM 30-84ZN) indicate genes with increased expression in the presence of phenazines. Ratios <
-2 (30-84ZN/ Phenazine producer, negative sign) indicate genes with reduced expression in the presence of phenazines.

doi:10.1371/journal.pone.0148003.t002

expression of the small RNA PhrS was notably reduced by phenazine production (3-6 fold). In
P. aeruginosa, PhrS activates the expression of pgsR, which in turn stimulates synthesis of the
quinolone signal [37]. In P. chlororaphis 30-84, the potential targets of PhrS remain unknown
since both PqsR and the quinolone signaling pathway are absent. The significance of these
gene expression changes is currently under investigation.

Genes differentially expressed by 2-OH-PCA-producing derivatives

A total of 240 genes was changed in expression (relative to 30-84ZN) only in wild type and 30-
840* biofilm matrices, e.g. may be affected specifically by 2-OH-PCA production (Fig 3B).
The expression of the majority of these genes (222) was enhanced by 2-OH-PCA production.
One group of positively regulated genes is annotated as bacteriophage-derived, R2-type pyocin
genes (Pchl3084_1194 to Pchl3084_1233). This 13 Kb gene cluster harbors genes encoding
pyocin structural proteins involved in R type pyocin assembly as well as a holin and lytic pro-
tein involved in cell lysis for pyocin release. The expression of the gene cluster was increased by
2-OH-PCA production (Table 3). These results suggest that the influence of 2-OH-PCA on
eDNA production is due in part to cell autolysis as a result of pyocin production and release.
To clarify the role of the pyocin gene cluster in eDNA release, the holin-encoding gene of
the pyocin gene cluster was replaced with a Km" cassette. Holins are small transmembrane
proteins that facilitate cell lysis during bacteriophage infection. Holins accumulate and per-
meabilize the cytoplasmic membrane, which allows the passage of a muralytic enzyme into the
periplasmic space, which degrades the peptidoglycan layer resulting in osmotic lysis [38]. We
hypothesized that if the holin in the pyocin gene cluster was a major contributor to eDNA pro-
duction, its deletion would inhibit cell lysis because the muralytic enzyme would not be able to
reach and degrade the peptidoglycan layer. Indeed, the 30-84 holin mutant released less eDNA
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Table 3. Genes annotated as R2 type pyocin genes belonging to a 13 Kb open reading frame spanning a bacteriophage-derived gene cluster from
Pchi3084_1194-1233.

Gene ID Gene Protein description Ratio* Ratio*
(WT/ZN) (O*/ZN)
R2 type pyocin genes
Pchi3084_1194 Hol pyocin R2, holin 3.1 8.7
Pchi3084_1195 N-acetylmuramoyl-L-alanine amidase domain protein 2.8 5.5
Pchi3084_1196 lIpA putidacin L1 3.0 5.7
Pchi3084_1197 hypothetical protein 2.8 5.4
Pchi3084_1198 phage baseplate assembly protein V 2.8 5.5
Pchi3084_1199 hypothetical protein 2.8 5.6
Pchi3084_1200 baseplate J family protein 25 5.3
Pchi3084_1201 phage tail protein | 2.9 5.7
Pchi3084_1202 phage tail collar domain protein 2.7 5.4
Pchl3084_1203 putative phage tail protein 2.9 5.2
Pchl3084_1204 hypothetical protein 3.0 4.9
Pchi3084_1205 putative phage tail sheath protein 2.9 4.7
Pchi3084_1206 putative phage tail tube protein 2.9 4.7
Pchi3084_1207 hypothetical protein 3.2 5.2
Pchi3084_1208 hypothetical protein 3.1 5.7
Pchi3084_1209 phage tail tape measure protein, TP901 family 2.9 5.7
Pchi3084_1210 phage protein, P2 GpU family 2.8 5.6
Pchi3084_1211 putative tail protein X 2.8 5.5
Pchi3084_1212 phage protein, late control D family 2.9 5.5
Pchi3084_1213 hypothetical protein 3.0 5.9
Pchi3084_1214 hypothetical protein 3.2 6.4
Pchi3084_1215 putative tail sheath protein 3.2 5.8
Pchi3084_1216 hypothetical protein 3.4 5.3
Pchl3084_1217 hypothetical protein 3.3 5.4
Pchi3084_1218 putative phage tail protein 3.6 5.8
Pchi3084_1219 DNA circularization, N-terminal domain protein 3.2 6.0
Pchi3084_1220 putative bacteriophage Mu P protein 3.2 6.3
Pchi3084_1221 bacteriophage Mu Gp45 protein 3.6 6.7
Pchi3084_1222 phage protein, GP46 family 3.5 6.4
Pchi3084_1223 baseplate J family protein 3.2 6.1
Pchi3084_1224 hypothetical protein 3.2 6.0
Pchi3084_1225 hypothetical protein 3.3 6.7
Pchi3084_1226 hypothetical protein 3.1 6.1
Pchl3084_ 1227 putative phage tail protein 3.2 6.8
Pchi3084_1228 putative phage tail protein 3.3 7.0
Pchi3084_1229 putative phage tail protein 3.3 7.0
Pchi3084_1230 putative phage tail protein 3.2 71
Pchi3084_1231 putative pyocin R, lytic enzyme 3.4 7.2
Pchi3084_1232 hypothetical protein 3.4 7.5
Pchi3084_1233 cinA competence/damage-inducible protein CinA 1.6 ns 2.6
Cell lysis regulation
Pchi3084_0954 IrgA regulator of cell lysis -2.4 -2.3
(Continued)
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Table 3. (Continued)

Gene ID Gene Protein description Ratio* Ratio*
(WT/ZN) (O*/ZN)
Pchi3084_0955 IrgB regulator of cell lysis -2.3 -2.5

These genes are either highly expressed in 30-840* or 30-840* and wild type, but not 30-84PCA compared with 30-84ZN. Also included are the cell lysis
regulator genes IrgAB located upstream of the cluster.

*Ratios > 2 (mean RPKM Phenazine producer/ mean RPKM 30-84ZN) indicate genes with increased expression in the presence of phenazines. Ratios <
-2 (Mean RPKM 30-84ZN/ Mean RPKM Phenazine producer, negative sign) indicate genes with reduced expression in the presence of phenazines. ns
indicates this value is not significant.

doi:10.1371/journal.pone.0148003.t003

into the biofilm matrix compared to wild type after 48 and 72 hours (Fig 4A). However, eDNA
release was not eliminated by the deletion of the holin encoded in the pyocin gene cluster, indi-
cating that 30-84 possesses other mechanisms for eDNA release (see Discussion). Interestingly,
the decrease in eDNA was not associated with a significant decrease in matrix mass (Fig 4B).
This may be because the amount of eDNA produced, although reduced, is still sufficient for
matrix formation.

RNA-Seq also revealed other genes activated by 2-OH-PCA that are involved in the produc-
tion of secondary metabolites or exoenzymes. The transcript abundances of four genes prnA,
pruB, prnC and pruD annotated as pyrrolnitrin biosynthesis genes were significantly (~3 fold
greater in biofilm matrices of the 2-OH-PCA producing derivatives, wild type and 30-840%,
compared to 30-84ZN, whereas these genes were not differentially expressed in 30-84PCA bio-
film matrices (Table 4). The expression of aprA (extracellular protease), Isc (levansucrase), and
chitinases encoding genes were higher (~2-18 fold) in wild type and 30-840* compared to 30-
847N biofilm matrices (Table 4).

Transcripts for genes encoding efflux pumps, DNA modification genes, and certain genes
involved in iron uptake also were more abundant in the biofilm matrices of the 2-OH-PCA
producing derivatives. In addition to EmrAB, two other efflux pumps were increased in expres-
sion specifically in the presence of 2-OH-PCA production. The transcript abundances of the
mexA-oprM and mexEF-oprN genes were ~2-5 fold greater in wild type and 30-840* as com-
pared to 30-84ZN (Table 4). These efflux pumps transport different antimicrobial compounds
in other pseudomonads. For example, the MexEF-OprN RND efflux pump transports fluoro-
quinolones, trimethoprim, and chloramphenicol [39], whereas the MexAB-OprM system
transports quinolones and B-lactams [40]. Transcript abundance of other ROS/DNA repair
genes also were increased (2-5 fold) in the presence of 2-OH-PCA, including recN (DNA
repair protein), lexA (lexA repressor), ligD (DNA ligase), dnaE2 (DNA polymerase), radA
(DNA repair protein), and Pchl3084_3851 (nuclease) (Table 4). Finally, the transcript abun-
dances of fecR and fecI genes were enhanced (3-4 fold) in the presence of 2-OH-PCA as well as
several FecR-controlled genes such as pvdS, efeU and TonB family genes. FecR and Fecl are
known for their role in regulating iron uptake genes [41].

The genes in the 2-OH-PCA producing derivatives wild type and 30-840* with reduced
transcript abundance (relative to 30-84ZN) are annotated as being involved in anthranilate
metabolism (Table 4). These include the antABC operon (conversion of anthranilate to cate-
chol), catAC (conversion of catechol to acetyl-CoA), trpB (conversion of anthranilate to trypto-
phan) and iaaH (conversion of tryptophan to indole acetic acid). Phenazine and anthranilate
biosynthesis compete for the metabolic pool of chorismic acid and many of the genes reduced
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Fig 4. The effect of holin mutation on eDNA and biofilm matrix production. (A) Production of eDNA by P.
chlororaphis 30-84 wild type and the holin mutant after growing 48 and 72 hr in static culture. (B) Biofilm
matrix production by 30—84 wild type and the holin mutant at 72 h. The data are the average of three
biological replicates and error bars indicate the standard deviation.

doi:10.1371/journal.pone.0148003.g004

in expression in the 2-OH-PCA producers are involved in the biosynthesis of acetyl-CoA and
IAA utilizing anthranilate as a common substrate (Fig 5).

Discussion

Many phenazine-producing strains produce more than one phenazine. P. chlororaphis 30-84
produces predominantly PCA and 2-OH-PCA. These phenazines are essential for the biologi-
cal control capabilities of 30-84, including pathogen inhibition, rhizosphere competence, and
biofilm formation. However these capabilities are influenced significantly by the ratio of the
two primary phenazines produced, suggesting the two phenazines differentially contribute to
these competencies [5]. In this study, we examined how different phenazine ratios affected
eDNA and biofilm matrix production by comparing the phenotypes of wild type and deriva-
tives 30-840%, and 30-84PCA when grown in static culture to those of the control 30-84ZN.
We also examined the transcriptomic consequences of producing different phenazines at the
48 h time point (e.g. when all derivatives were producing matrix). Although broad impacts of
phenazine production on gene expression patterns were revealed, we limit discussion to genes
that are potentially relevant to matrix production and lifestyle in the floating biofilm.
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Table 4. Selected genes that were changed in expression (relative to 30-84ZN) only in wild type and 30-840* biofilm matrices, e.g. are specifically

affected by 2-OH-PCA production.

Gene ID

Pchi3084_3146
Pchi3084_3145
Pchi3084_3144
Pchi3084_3143
Pchi3084_2021
Pchi3084_3180
Pchi3084_3127
Pchi3084_4797

Pchi3084_3193
Pchi3084_3194
Pchi3084_3195
Pchi3084_3327
Pchi3084_3329

Pchi3084_0814
Pchi3084_1932
Pchi3084_2827
Pchi3084_3586
Pchi3084_3589
Pchi3084_3851
Pchi3084_5136

Pchi3084_0982
Pchi3084_0983
Pchi3084_3208
Pchi3084_4064

Pchi3084_0747
Pchi3084_0748
Pchi3084_0749
Pchi3084_3869
Pchi3084_3870
Pchi3084_3879
Pchi3084_2275
Pchi3084_4622
Pchi3084_0036
Pchi3084_1486

Gene

prnA
prnB
prnC
prnD
chiC
chiC
aprA
Isc

mexE
mexF
oprN

oprM
mexA

recN
lexA
ligh
dnaE2
lexA2

radA

fecR
fecl

efelU
pvdS

antC
antB
antA
catA

catC
argC
argD
argO
troB

iaaH

Protein description

Exoenzymes and Secondary metabolites
tryptophan halogenase
pyrrolnitrin biosynthesis
halogenase
aminopyrrolnitrin oxidase
chitinase
chitinase
metalloprotease
levansucrase
Efflux pumps

multidrug efflux RND transporter, membrane fusion protein
multidrug efflux RND transporter, permease protein
multidrug efflux RND transporter, outer membrane factor
outer membrane efflux protein
multidrug resistance protein

DNA repair
DNA repair protein
lexA repressor
DNA ligase D
DNA polymerase
lexA repressor
DNA endonuclease
DNA repair protein

Iron uptake
sigma factor regulatory protein FecR
RNA polymerase sigma factor Fecl
ferrous iron permease
sigma-70 factor

Metabolism
dioxygenase reductase
dioxygenase
dioxygenase
catechol 1,2-dioxygenase
delta-isomerase
glutamyl-phosphate reductase
acetylornithine transaminase
arginine exporter protein
tryptophan synthase
indoleacetamide hydrolase

Ratios* (WT/ZN)

2.8
2.6
2.6
2.6
2.6
6.1
2.6
3.9

5.4
5.2
2.6
2.3
3.6

2.3
2.0
22
22
2.6
2.4
4.5

3.5
3.7
2.7
4.5

-3.8
-3.9
-4.0
2.5
-2.1
-4.7
-4.8

2.4
-2.2
2.1

Ratios* (O*/ZN)

3.4
3.0
3.0
3.6
5.5
17.6
2.6
12.0

5.6
4.6
3.1
2.4
2.4

3.8
2.7
2.4
5.2
5.1
22
2.6

4.0
4.7
4.2
6.3

-5.3
-7.2
-6.1
-4.1
2.7
-11.4
-2.5
2.4
-4.1
-6.1

*Ratios > 2 (mean RPKM Phenazine producer/ mean RPKM 30-84ZN) indicate genes with increased expression in the presence of phenazines. Ratios <
-2 (Mean RPKM 30-84ZN/ Mean RPKM Phenazine producer, negative sign) indicate genes with reduced expression in the presence of phenazines.

doi:10.1371/journal.pone.0148003.t004

The production of 2-OH-PCA by wild type and 30-840* stimulated eDNA release and
extracellular matrix production compared to the phenotypes observed for 30-84PCA and
30-84ZN. Moreover, addition of 2-OH-PCA or PCA to the growth medium of 30-84ZN
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Fig 5. Possible metabolic fates for chorismic acid in P. chlororaphis 30-84. Chorismic acid is produced
via the shikimic acid pathway and is a metabolic precursor for a number of different end products in
pseudomonads, including phenazines (indicated by solid lines). The negative symbols (-) indicate competing
pathways in which transcript levels for key genes are reduced in 2-OH-PCA producing strains compared to
30-84ZN (Table 4).

doi:10.1371/journal.pone.0148003.g005

stimulated eDNA release and extracellular matrix production by this phenazine non-producing
derivative, with eDNA production and matrix formation being greatest in the presence of

20 pg/ml of 2-OH-PCA compared to the presence of the same amount of PCA. Significantly,
we found that eDNA was an important structural component of the floating matrix as evi-
denced by the drastic reduction in the mass of matrix that could be collected following treat-
ment with DNase I.

Multiple lines of data support the hypothesis that the eDNA detected in the 30-84 biofilms
originated in part from the autolysis of a subpopulation of biofilm cells. One cause of autolysis
may be the generation of Reactive Oxygen Species (ROS) as phenazines accumulated in the
static cultures. It is well documented that phenazines are responsible for the generation of
ROS, which contribute to host virulence and the competitive inhibition of other microorgan-
isms, including plant pathogenic fungi [34]. Recently, the phenazine pyocanin produced by P.
aeruginosa was shown to contribute to eDNA release by enhancing the generation of hydrogen
peroxide, and subsequently cell lysis [19]. Consistent with phenazine-induced generation of
hydrogen peroxide and ROS, transcriptomic analysis showed that expression levels of several
ROS detoxifying enzymes as well as a number of DNA repair/modification enzymes were sig-
nificantly higher in the phenazine producing strains compared to the control 30-84ZN. These
results suggest that both PCA and 2-OH-PCA production cause oxidative stress in 30-84 bio-
film matrices. Expression of several of these genes was slightly enhanced in 2-OH-PCA strains
coincident with the enhanced eDNA production, suggesting that 2-OH-PCA may be more
potent than PCA as a determinant of ROS and hence eDNA production.

Transcriptomic analysis revealed that additional genes related to cell autolysis were highly
induced specifically by 2-OH-PCA, suggesting a linkage between phenazine production and spe-
cific cell autolysis mechanisms. Autolysis of cells in biofilm development was reported previously
in P. aeruginosa [42], where a pathway to cell autolysis is through the action of holins and their
associated muralytic enzymes [43]. Holins are phage-encoded small integral membrane proteins
that control the activity of murein hydrolases and the thus the timing of host cell lysis during bac-
teriophage replication. Holins initiate the formation of pores in the cytoplasmic membrane
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enabling cytoplasmic murein hydrolases to reach and degrade the peptidoglycan layer, causing
cell lysis and release of bacteriophage or pyocin [38,44]. In the 2- OH-PCA producing derivatives,
autolysis due to the increased expression of the holin-containing R2 pyocin gene cluster is likely
to have contributed to the large amount of eDNA observed in these biofilms. However, results
indicate this is not the only source of eDNA; other sources may be related to the presence of addi-
tional holins or other unidentified mechanisms. Analysis of the 30-84 genome revealed that it
also harbors homologs of cidA and Irg, the holin and antiholin genes found in P. aeruginosa
PAOLI. The holin CidA is hypothesized to be involved in ROS mediated cell death [38], whereas
the antiholin LrgA neutralizes the activity of CidA in PAO1 biofilms [17,45]. Although expres-
sion of the cidA homolog was unchanged by 2-OH-PCA production, expression of Irg antiholin
homolog was reduced two-fold by 2-OH-PCA production (Table 3). The potential role of these
homologs in eDNA production is currently under investigation. Consistent with 2-OH-PCA
inducing the expression of the pyocin gene cluster, preliminary results demonstrated that a bacte-
riocin capable of killing an indicator Pseudomonas species is induced under matrix-forming con-
ditions (data unpublished). Whether the bacteriocins observed in the biofilm killing assays are
the R2 type pyocin identified via transcriptomic analysis as induced by 2-OH-PCA is currently
under investigation. The results of this study provide evidence for a linkage between 2-OH-PCA
production and the induction of pyocin gene expression and eDNA release.

The transcriptomic analysis also revealed that the expression of genes encoding pathways
that compete with intermediates needed for phenazine biosynthesis were lower in phenazine-
producing derivatives, especially 2-OH-PCA-producing derivatives, relative to 30-84ZN. For
example, phenazine production was coincident with the reduced expression of genes in several
pathways involved in anthranilate metabolism, including genes involved in acetyl-CoA and
IAA biosynthesis (Fig 5). It was shown previously that the P. chlororaphis phenazine biosyn-
thetic gene phzF encodes a homolog of DAHP synthases that enhances the availability of the
key metabolic intermediate chorismic acid for phenazine biosynthesis by bypassing tryptophan
inhibition of the shikimic acid pathway [46]. Given the organization of the P. chlororaphis
phenazine operon (e.g. phzXYFABCD), 30-84ZN with its disruption of phzB has a functional
phzF, but does not produce phenazines. Lower expression of chorismate-competing anthrani-
late metabolism pathways in phenazine-producing strains compared to 30-84ZN is consistent
with the hypothesis that phenazine production channels metabolic intermediates away from
these pathways. Of note 30-84ZN mutants produce more indole acetic acid than wild type
(unpublished).

Moreover, RNA-Seq analysis revealed that phenazine production, and in particular
2-OH-PCA production, was correlated with higher transcript levels of genes involved in the
production of some exoenzymes and secondary metabolites known to be produced by 30-84
[47]. For example, the expression of aprA (extracellular protease), Isc (levansucrase), and two
genes encoding chitinases were higher in wild type and 30-840" static cultures compared to
30-84ZN. Additionally, the expression of prn genes annotated as involved in pyrrolnitrin bio-
synthesis was enhanced in 30-840". However, pyrrolnitrin production remains to be demon-
strated in 30-84, perhaps because planktonic cultures rather than static or biofilm populations
were screened for pyrrolnitrin production. The higher transcript levels associated with phena-
zine production are consistent with the hypothesis that phenazines act as signals for the coordi-
nated production of selected secondary metabolites and exoenzymes that may contribute to
ecological fitness within the biofilm niche, perhaps via activation of ROS mediated signaling
pathways. It is conceivable that the formation of biofilms limits the dispersion of many second-
ary metabolites once they are outside the cell, thereby concentrating their effectiveness while
reducing their cost in terms of loss. Thus, their coordinate regulation with phenazine
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production may be timed to coincide with the production of a structured biofilm matrix during
the switch to a sessile lifestyle.

It is now well understood that phenazines serve multiple roles in the ecological fitness of the
producing microbe and that these roles may vary according to the type (s) of phenazines pro-
duced and the environments the phenazine-producing microbes inhabit. Recent work with P.
aeruginosa indicates a previously unrecognized role for the phenazine pyocyanin in promoting
eDNA release, which likely plays an important role in shaping the biofilm environment both
structurally and functionally with relevance to infection. In the present study, we show that
phenazine production by P. chlororaphis 30-84, and 2-OH-PCA production in particular,
induces the release of eDNA and matrix production, suggesting that phenazine induction of
eDNA release and the contribution of both phenazine and eDNA to structured matrix produc-
tion may be common among phenazine-producers. In P. chlororaphis 30-84, phenazine pro-
duction is requisite for competitive persistence in the rhizosphere of plants, which likely is
contingent on the conditioning of the local environment via biofilm matrix production for sur-
vival. What is less well understood is why many phenazine producers including P. chlororaphis
30-84 and P. aeruginosa, produce more than one type of phenazine and in particular why the
different derivatives are produced in specific proportions. This study demonstrates that the
production of different phenazines by derivatives of the same organism differentially affects the
production of floating biofilm matrix as well as the associated gene expression patterns. Cur-
rently, it is unclear whether the ratio of phenazines produced by P. chlororaphis 30-84 natu-
rally varies in response to the presence of other phenazine producers or environmental factors
and how such stimuli affect the biofilm-related genes identified here. Studies to evaluate bio-
film production under these conditions are currently underway. The results of the present
study expand the current understanding of the functions different phenazines play in the
behavior and fitness of bacteria in biofilm-forming communities. Importantly, our results
reveal broad phenotypic and transcriptomic consequences related to the production of
2-OH-PCA.

Supporting Information

S1 Fig. Biofilm formation by P. chlororaphis 30-84 wild type grown in static culture. A.
Demonstration of floating biofilm matrix produced by P. chlororaphis 30-84 wild type. Bacte-
ria were grown without shaking in 24 well plates for 72 h. After brief centrifugation, the bacte-
rial aggregate was visualized using a 1 ml tip. B. Transmission electron microscopy of the
aggregate. Cells were negatively stained with 1% phosphotungstic acid (pH 7.0) and micro-
graphs were taken at an accelerating voltage of 100 kV.

(TIF)

S2 Fig. Verification of RNA-Seq data by quantitative reverse transcription polymerase
chain reaction (QRT-PCR). The relative fold change (log,) of each gene was derived from the
comparison of 30-84PCA, wild type and 30-840* to the 30-84ZN phenazine-deficient mutant.
The 16S rDNA gene was used as an endogenous control. The relative fold changes are reported
as the means of three replicates. The experiments were repeated twice with similar results.
Error bars indicate standard deviation.

(TIF)

S1 Table. Genes that are differentially expressed by at least one of the phenazine producers:
e.g. by wild type, 30-840*, or 30-84PCA compared to 30-84ZN. The gene locus tag, gene
name (if known), gene product (if known) as provided by the most recent GenBank annotation
are given. The mean RPKM values (ZN AVERAGE, WT AVERAGE, O* AVERAGE, PCA
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AVERAGE) for each strain (30-84ZN, 30-84 wild type, 30-840%, and 30-84PCA, respectively).
Ratios > 2 (Mean RPKM Phenazine producer/ mean RPKM 30-84ZN) indicate genes with
increased expression in the presence of phenazines. Ratios < -2 (30-84ZN/ Phenazine pro-
ducer, negative sign) indicate genes with reduced expression in the presence of phenazines.

P values (PValue WT:ZN, PValue O*:ZN, PValue PCA:ZN) for each statistical comparison are
provided. Genes are displayed in order from the chromosome origin of replication. Compari-
sons were performed using EdgeR [26] and genes with differences in expression were consid-
ered for further analysis when the p-value < 0.05 and the expression ratio was > 2.0 or < -2.0).
(XLSX)
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