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Abstract
Salvia miltiorrhiza is a traditional Chinese herbal medicine, whose quality and yield are often

affected by diseases and environmental stresses during its growing season. Salicylic acid

(SA) plays a significant role in plants responding to biotic and abiotic stresses, but the

involved regulatory factors and their signaling mechanisms are largely unknown. In order to

identify the genes involved in SA signaling, the RNA sequencing (RNA-seq) strategy was

employed to evaluate the transcriptional profiles in S.miltiorrhiza cell cultures. A total of

50,778 unigenes were assembled, in which 5,316 unigenes were differentially expressed

among 0-, 2-, and 8-h SA induction. The up-regulated genes were mainly involved in stimu-

lus response and multi-organism process. A core set of candidate novel genes coding SA

signaling component proteins was identified. Many transcription factors (e.g., WRKY, bHLH

and GRAS) and genes involved in hormone signal transduction were differentially

expressed in response to SA induction. Detailed analysis revealed that genes associated

with defense signaling, such as antioxidant system genes, cytochrome P450s and ATP-

binding cassette transporters, were significantly overexpressed, which can be used as

genetic tools to investigate disease resistance. Our transcriptome analysis will help under-

stand SA signaling and its mechanism of defense systems in S.miltiorrhiza.

Introduction
Salvia miltiorrhiza Bunge is one of the perennial herbs that is widely cultivated in East Asia. As a
famous traditional Chinese herbal medicine, its dried roots and rhizomes are used as medicinal
parts to treat cardiovascular and cerebrovascular diseases, hyperlipidemia and acute ischemic stroke
[1–3]. Both lipid-souble tanshinones, such as tanshinone I, tanshinone IIA, tanshinone IIB, crypto-
tanshinone, and water-soluble phenolic acids, including rosmarinic acid and salvianolic acids, are
bioactive components that exhibit antioxidant, antitumor, anti-inflammatory and antibacterial
functions [2,4]. However, the growth, yield and quality of S.miltiorrhiza are influenced by diseases,
insect pests and environmental stresses, such as drought, salinity and high or low temperature.

Salicylic acid (SA), a simple phenolic compound existed widely in higher plants, not only
regulates plant growth and metabolism, but also plays a leading role in plant immunity against
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diseases and environmental stresses, such as salt, cold and heavy metals [5–8]. Exogenous sup-
ply of SA can stimulate transcription of pathogenesis related (PR) genes and the development
of systemic acquired resistance (SAR) in Arabidopsis thaliana, and enhance plant resistance
[9]. Blocking SA accumulation through mutation or application of inhibitor of SA biosynthe-
sis-related enzymes enhanced the susceptibility to pathogen, yet the resistance can be restored
through exogenous SA [10]. Lots of studies have provided insights into the SA signaling in
plant immunity, of which many main components have been identified. In SA signaling, non-
expressor of pathogenesis_related protein 1 (NPR1) is a master regulator that interacts with
downstream transcription factors (TFs) and control the expression of PR genes in multiple
immune responses, including SAR [11]. NPR4 and NPR3 are two SA receptors that sense the
SA gradient and regulate NPR1 level during biotic and abiotic stresses [12]. NIM interacting
protein (NIMIN) is another NPR1-interacting protein that negtively regulates PR gene expres-
sion [13]. At the downstream of SA signaling, TGA is a key NPR1-activated regulatory TF fam-
ily, which targets glutathione S-transferases (GSTs) and PRs that involve in detoxification and
defense [14–16]. WRKY TF family was also reported to act on downstream of NPR1 mediating
SA signaling [17]. More recent studies demonstrated that Mitogen activated protein kinase
(MAPK) signaling cascade was also involved in SA signaling system [18–20]. Although SA
plays such an important role in plant immune system and so many studies on the SA signal
transduction has been reported in other plants, the SA signaling pathway remained largely
unknown in S.miltiorrhiza.

Second generation sequencing technology, also called RNA sequencing (RNA-seq), is pow-
erful for gene identification, comparative gene expression analysis and investigation of func-
tional complexity of transcriptome [21]. In recent years, RNA-seq approach has been widely
used in Chinese herbal medicine for novel genes identification and differentially expressed
genes (DEGs) analysis owing to its characteristics of “high throughput, low cost, covering a
multitude of low abundance gene sequencing depth, and high sensitivity” [21–25]. S.miltior-
rhiza is a potential model plant in the traditional Chinese medicine research field. Several tran-
scriptome analysis projects have been performed to determine the biosynthetic processes of
bioactive compounds in different S.miltiorrhiza tissues [21,25] or response to different induc-
tion [23,24]. However, to date, no systematic expression analysis of defense resistance in S.mil-
tiorrhiza is available, and expression analyses of SA signaling-related genes in immunity are
rare.

Therefore, we detected the transcriptional profiles of S.miltiorrhiza cell cultures in response
to SA induction using an Illumina HiSeq 2500. The RNA-seq data generated a mass of gene
resources of S.miltiorrhiza, and provided an opportunity for comprehensive understanding of
biological process induced by SA. A number of genes associated with defense signaling were
identified, which can be used as genetic tools to investigate disease resistance. A core set of can-
didate novel genes coding SA signaling components have also been identified. Further
researches on these identified genes will help understanding and exploring the molecular
mechanisms and genetic modulation of SA in mediating defense and stress response in S.
miltiorrhiza.

Materials and Methods

Plant materials and sample preparation
Seeds of S.miltiorrhiza were provided by Tasly Plant Pharmaceutical Co., Ltd. (Shangluo,
China). The establishment of suspension culture cell lines and SA elicitation treatment fol-
lowed the methods described in our previous study [6]. Two gram fresh weight (FW) calli cells
were inoculated in 50 ml Erlenmeyer flasks and cultured for 6 days, followed by SA induction.
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Leaf calli cells under 22.5 mg L-1SA induction for 0 h, 2 h and 8 h were frozen immediately in
liquid nitrogen after harvest, and stored at—80°C for use. Two replicates at 0 h post induction
(hpi) and three independent replicates at 2 hpi and 8 hpi were collected, respectively (each rep-
licate from individual Erlenmeyer flask).

RNA-seq and library construction
Total RNA was isolated using Trizol (Invitrogen, Carlsbad, CA, USA) and treated with RNase-
free Dnase I (TaKaRa, Japan) for removing DNA contamination. The RNA integrity was
assessed by Agilent 2100 Bioanalyzer (Santa Clara, CA, USA). The RNA-seq and construction
of the libraries were performed by the Biomarker Biotechnology Corporation (Beijing, China)
and the cDNA library was sequenced using Illumina HiSeqTM2500 with PE100. The generated
sequence dataset were submitted to the National Center for Biotechnology Information
(NCBI) in the Short Read Archive (SRA) database under accession number SRX1423774.

De novo transcriptome assembly and functional annotation
In order to obtain the clean reads, the raw reads were fitered by removing the adapter, poly-N
and low quality sequences. De novo assembly was performed using the Trinity method [26].
The K-mer and group pairs distance were set at 25 and 300, respectively, while the other
parameters were set at default levels. Based on their overlap regions, the short reads were
assembled into longer contigs, which were then clustered and further assembled into unigenes
with the paired-end information.

Unigenes were aligned to a series of protein databases using Blastx (E-value � 10−5), includ-
ing the NR, Swiss-Prot, Gene Ontology (GO), Cluster of Orthologous Groups of Proteins
(COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The open reading
frames (ORFs) were predicted by the Getorf program.

Quantification of gene expression
The clean data were mapped to the unigene library using Bowtie [27]. Then, the read count for
each gene was obtained from the mapping results by RSEM [28]. FPKM [29] for each unigene
was calculated to determine the unigene expression profiles. Differential expression analysis of
any two sample groups were analyzed using DESeq [30] with Benjamini and Hochberg False
Discovery Rate (FDR) method [31]. And here, the FDR< 0.01 and Fold Change (FC)� 2 or�
-2 were set as the threshold to identify DEGs. Cluster analysis was performed according to the
patterns of unigene differential expression across the samples.

q PCR validation
Total RNAs were extracted from S.miltiorrhiza leaf calli cell cultures and treated with RNase-
free Dnase I (TaKaRa). The reverse transcription reaction was performed by using SuperScript
III (RT kit; Invitrogen) following the manufacturer’s recommendations. qPCR analysis was
carried out on the IQ5 Mul-ticolor Real-Time PCR Detection System (BIO-RAD, Hercules,
CA) using SYBR Green PCRMaster Mix (Vazyme, Nanjing, China). Each reaction contained
10 μl 2× SYBR Green Master Mix Reagent (Vazyme), 2 μl of cDNA sample and 0.4 μl of gene-
specific primers. The total volume was 20 μl. The cycling conditions were: 95°C for 10 min, fol-
lowed by 40 cycles of 95°C for 5 s and then 59°C for 30 s. The primers for each unigene were
designed on Primer 5 software (S1 Table). SmACTB was used as internal control. The relative
expression levels were calculated by the 2-44CT method [32].
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Determination of reduced glutathione (GSH)
The GSH was extracted from 1 g FW finely ground calli by 5 mmol�L-1 EDTA-TCA and to a
constant volume of 9 mL. The reaction mixture contained 0.4 mL 1 mol�L-1 NaOH, 1.5 mL 0.1
mol L-1 K3PO4 buffer, 0.1 mL 4mmol L-1TDNB and 2 mL homogenate (pH 6.5–7.0), reacting
at room temperature for 5 min, then to a constant volume of 5 mL using distilled water. The
absorbance was determined at 412 nm and the GSH content was calculated according to the
following equation:

GSHcontent ðmg=gðFWÞÞ ¼ C � Vt

VS � Fw

(where C: GSH concentration of sample obtained from standard curve calculation; Vt: total
volume of extracts; Vs: the volume of the extraction liquid when the extraction is determined;
FW: fresh weight of sample.)

Measurement of superoxide dismutase (SOD) and peroxidase (POD)
enzyme activities
SOD activity was determined by measuring its ability to inhibit the auto-oxidation of pyrogallol
as described previously [6]. The SOD was extracted at 4°C from 1 g FW finely ground calli by
10 mL of a pre-cooled solution of 1.33 mM diethylene-triamine penta acetic acid in 50 mM of
potassium phosphate buffer (pH 7.8). After the homogenate was centrifuged twice at 4°C for
15 min at 27 000 rpm, the supernatant was retained for the SOD assay. The reaction mixture
contained 1 mL of 0.6 mM pyrogallol, 1.5 mL of 100 mM Tris–HCl buffer (pH 8.2), 0.5 mL of
6 mM EDTA and 0.1 mL of enzyme extract. The rate of pyrogallol auto-oxidation was mea-
sured from the increase in absorbance at 420 nm in a spectrophotometer after an interval of 15
s up to 2 min. One unit of SOD activity was defined as the amount of enzyme that would
inhibit 50% of pyrogallol auto-oxidation.

POD activity was measured by monitoring the increase in absorbance at 470 nm in 50 mM
of phosphate buffer (pH 5.5) containing 1 mM of guaiacol, 0.5 mM of H2O2 and 0.1 mL of
enzyme extract. One unit of POD activity was defined as the amount of enzyme that caused an
increase in absorbance of 0.01 of material per min.

Isozyme analysis
For enzyme determination, 1 g FW of calli was homogenized in 8 ml pre-cooled 0.02 mol�l-1
PBS (including 1% PVP). After the homogenate was centrifuged at 10,000 rpm for 10 min at
4°C, the supernatant was retained for isozyme analysis [33].

Vertical PAGE was used to separate isozyme for analysis. Stacking gel’s concentration was
3% and the separation gel’s was 6%. The eletrode buffer was Tris-Gly (pH = 8.3). Gels were run
at constant current of 8 mA at stacking phase and 15 mA at separation phase at 4°C. Staining
procedures of SOD and POD were in accordance with nitro-blue tetrazolium method and ace-
tic acid-amine method [34]. The electrophoretograms were analyzed with the number of
bands, relative mobility (Rf), and staining intensity. The results were recorded by digital
camera.

Statistics
Statistical analysis was carried out by using the analysis of variance (ANOVA) and SPSS 19.0
software. Differences were separated out by using the t-test at a 0.05 level.
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Results and Discussion

Illumina sequencing and de novo assembly
To gain a comprehensive overview of the transcriptional response of S.miltiorrhiza to SA induc-
tion, we carried out a transcriptomic analysis of S.miltiorrhiza cell cultures with SA induction for
0 h, 2 h and 8 h, respectively. To enhance data stability, the biological repeats of induced samples
were also prepared and their cDNA were produced. Eight libraries, including two 0 hpi libraries
(T1 and T2), three 2 hpi libraries (T3, T4 and T5) and three 8 hpi libraries (T6, T7 and T8), were
sequenced using an Illumina HiSeq™ 2500 with the production of about 100 bp paired-end reads.

After stringent data filtering and quality assessment, 16 930 116 and 16 304 238 clean
paired-end reads from T1 and T2, 17 092 890, 16 519 814 and 14 846 248 clean paired-end
reads from T3, T4 and T5, and 17 074 504, 15 929 201 and 15 182 299 clean paired-end reads
from T6, T7 and T8 were generated (S2 Table). The Q30 percentages (percentage of sequences
with sequencing error rates<1‰), and GC percents were also illustrated in S2 Table, which
showed that the Q30 percentages of these samples were not less than 86.65% (S2 Table).

Then, all the high quality clean reads, corresponding to 26.22 Gb clean data from the eight
libraries, were assembled by Trinity program [26]. We acquired 125 024 transcripts and 50 778
unigenes, with N50 of 2 105 bp and 1 618 bp and mean lengths of 1350.06 bp and 868.75 bp,
respectively (Fig 1A and 1C, S3 Table). The assembly showed high integrity. The length distri-
bution of these generated unigenes was showed in Fig 1C. There were 27 528 unigenes
(54.21%) shorter than 500 bp, 9341 unigenes (18.40%) between 500 and 1000 bp, 8203 uni-
genes (16.15%) between 1000 bp and 2000 bp, and 5706 unigenes (11.24%) longer than 2000
bp (S3 Table). In addition, ORFs were predicted by Getorf and 50 469 unigenes (99.39%) had
ORFs with a start codon (S1 Fig).

Unigene annotation and functional classification
The entire unigenes were aligned to the NR, Swiss-Prot, GO, COG, KEGG databases using
Blastx with E-value less than 1E-5 to investigate their functions. Among these 50 778 unigenes,
24 181 (47.62%) were annotated (S4 Table), but the rest 26597 were not documented. It may be
due to the technical limitation, such as read length and sequencing depth or the specificity of S.
miltiorrhiza genes to some extent [35].

Cellular component, molecular function and biological process GO terms were assigned for
unigenes to categorize their functions. A total of 17 867 unigenes (29.28%) were assigned to at
least one GO term. This categorization generated 25926 assignments to cellular component, 27
108 assignments to molecular function and 52 782 assignments to biological process (S2 Fig).
The assignments were enriched in the ‘Cell’ (GO:0005623), ‘Cell part’ (GO:0044464), ‘Binding’
(GO:0005488), ‘Catalytic activity’ (GO:0003824), ‘Cellular process’ (GO:0009987) and ‘Meta-
bolic process’ (GO:0008152) (Fig 2). The majority of GO assignments of unigenes generated
were consistent with the previous transcriptome studies of S.miltiorrhiza [23,25], which
instructed the high reliability of our data.

To detect the unigenes involved in which biochemical pathway, the pathway analysis based
on Blastx against the KEGG database was performed. All 4960 unigenes (9.77%) were anno-
tated to 137 metabolic pathways (S3 Fig). The KEGG annotation information of all these
sequences can help us better understand the biological function of these obtained unigenes.

DEG analysis and validation by qPCR analysis
The r (Pearson’s correlation coefficient) [36] among biological repeat samples can evaluate the
quality of the data and the rationality of samples selected. The results showed that r2 exceeded

Transcriptome Sequencing in Response to Salicylic Acid in Salvia miltiorrhiza

PLOSONE | DOI:10.1371/journal.pone.0147849 January 25, 2016 5 / 27



0.91 for these repeat samples of 0, 2 and 8 hpi (S5 Table), which indicated the quality of our
RNA-seq data is sufficient for subsequent DEG analysis.

FPKM [29] was calculated to determine the expression levels of these unigenes. DESeq [30]
was used to obtain DEGs with a FDR< 0.01 and FC� 2 or� -2 as cutoffs. A total of 5316
DEGs were generated, which included 3189, 1041 and 3848 unigenes differentially expressed in
response to SA induction for comparing 2 h/0 h, 8 h/0 h and 2 h/8 h, respectively (Fig 1B, S6
Table). We further grouped the 5316 DEGs into three categories according to their relative

Fig 1. mRNA profiling of SA induced S.miltiorrhiza cell cultures by RNA-seq. (a) The common and unique expression profiles among sample groups.
Numbers represent expressed unigenes in control (0 h) and SA (2 h and 8 h) treated cell cultures. (b) Number of DEGs found among different sample groups,
according to a FDR< 0.01 and FC� 2 or� -2. T1, T2 belong to control group, T3, T4 and T5 belong to treatment group of SA induction for 2 h, T6, T7 and T8
belong to treatment group of SA induction for 8 h. (c) Length distribution of the 50 778 assembled unigenes (digital details see S3 Table).

doi:10.1371/journal.pone.0147849.g001
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expression profiles following induction, which generated 1584 up-regulated, 1492 down-regu-
lated and 2240 inconsistently regulated unigenes (Fig 3A, S7 Table).

To investigate the functions of all these 5316 DEGs, we conducted a GO analysis of all
DEGs. The GO terms of ‘oxidation-reduction process’, ‘protein phosphorylation’, ‘metabolic
process’, ‘response to chitin’, ‘response to cadmium ion’ and ‘response to salt stress’ were highly
enriched within the biological process category (S8 Table). Most of genes categorized in molec-
ular function were involved in ‘catalytic activity’ and ‘binding activity’ (S8 Table). ‘Cell parts’,
‘Cells’ and ‘Organelles’ were the top three categories in cell component (S8 Table). In addition,
the GO analysis of up-regulated and down-regulated DEGs was also carried out. A majority of
up-regulated DEGs were enriched in response to stimulus and multi-organism process, while
most of down-regulated DEGs were related to the single-organism process, development and
cellular process (Fig 3B). To better understand the biological pathways of these DEGs, we
mapped all DEGs to terms in the KEGG database. A total of 532 DEGs were assigned to 104
KEGG pathways (Fig 4). Consistent with the results of GO analysis, the most abundant KEGG
pathways in our analysis are ‘Plant hormone signal transduction’ (8.64%) and ‘Plant-pathogen
interaction’ (6.58%) (Fig 4). In the ‘Plant-pathogen interaction’ pathway, the candidate genes
coding Calmodulin-binding protein, WRKY and mitogen activated protein kinase kinase 5
(MKK5) were induced by SA. Some other pathways, such as the ‘Glutathione metabolism’

(2.63%), ‘Terpenoid backbone biosynthesis’ (2.44%) and ‘Phenylpropanoid biosynthesis’
(2.26%), also had a significant portion of the DEGs with pathway annotation (Fig 4). In S.mil-
tiorrhiza, ‘Terpenoid backbone biosynthesis’ and ‘Phenylpropanoid biosynthesis’ are two main
pathways involved in the synthesis of phenolic acids and tanshinones respectively, which are
the main secondary metabolites. Our previous study has proved that SA induced the phenolic
compounds in S.miltiorrhiza [6]. The effect of SA on these two pathways was in line with the
previous study and indicated that SA may act on both the phenolic acids and tanshinones syn-
thesis to enhance the resistance of S.miltiorrhiza. Previous research of our lab showed the

Fig 2. Themost enriched GO terms (level 2) in unigenes of S.miltiorrhiza cell cultures. All 17 867 unigenes predominantly belonged to ‘Catalytic
activity’ and ‘Binding’ under Molecular function, ‘Cell part’ and ‘Cell’ under Cellular component, and ‘Metabolic process’ and ‘Cellular process’ under
Biological process. The number of unigenes belonging to each category are provided.

doi:10.1371/journal.pone.0147849.g002
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Fig 3. Functional analysis of DEGs in S.miltiorrhiza cell cultures after SA induction. (a) Hierarchically
clustered heat map for the expression profile of DEGs (reflected as log2 FC when compared to control), which
consist of 1584 up-regulated (left), 1492 down-regulated (middle) and 2240 inconsistently regulated DEGs
(right) after 8h SA induction. Blue represent repression, whereas red represent induction. (b) Analysis of
biological process category of DEGs including up-regulated (red) and down-regulated (green) in S.
miltiorrhiza cells after 8h SA induction. Enrichment was measured by comparing the number of DEGs from
each category with the total number of genes for that GO term and using Fisher’s exact test. Significance
indicated p-values below 0.01 or between 0.01 and 0.05, respectively.

doi:10.1371/journal.pone.0147849.g003
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H2O2 burst occurred at 2 h after SA induction in the S.miltiorrhiza cell culture [6]. In the
KEGG annotion, there were 9 DEGs that annotated to the ‘peroxisome’ pathway, which indi-
cated that the H2O2 metabolism may also associated with SA signal in S.miltiorrhiza.

Previous studies have showed that SA plays a vital role in response to disease and stress
[5,8,37]. In fact, there exists complex local and systemic crosstalk among SA, reactive oxygen
species (ROS, mostly in the form of H2O2) and hormone signal pathways in defense response
[38–40]. These researches suggested that SA may also play a vital role in the defense response
partly by interacting with ROS and other hormone signal in S.miltiorrhiza, which will be dis-
cussed in more detail in later sections. The annotation of DEGs provided a valuable resource to
investigate the mechanism of SA in mediating defense responses in S.miltiorrhiza.

To verify the RNA-seq data for gene differential expression at 0, 2 and 8 hpi, the expression
of 7 selected DEGs, including 1 SA-binding protein 2 (SABP2), 3 NPRs, 1 WRKY, 1 TGA and
1 POD candidate genes, were analyzed by qPCR. The trend of expression changes of these
selected genes based on qPCR was similar to those detected by RNA-seq method, which cor-
roborated the reliability and validity of the RNA-seq technology. However, the expression folds
of these genes detected by qPCR had some differences with the RNA-seq data (S4 Fig). A simi-
lar situation was also found in previous study [41].

Fig 4. KEGG classifications of the DEGs in S.miltiorrhiza cell cultures under SA induction. A total of 532 DEGs were assigned to 104 KEGG
pathways. The DEGs predominantly belonged to ‘Plant hormone signal transduction’ and ‘Plant-pathogen interaction’. The number of DEGs belonging to
each category are provided.

doi:10.1371/journal.pone.0147849.g004
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Genes involved in SA signaling in defense response
SA signal played a critical role in triggering the defense response against biotic and abiotic
stresses and activating the plant SAR [6,42,43]. The accumulation of SA up-regulated genes
related to SAR in SA signaling lead to enhanced disease resistance in plants, such as tobacco
and cucumber [42,44]. Given that there is no genetic resources available of SA signal in S.mil-
tiorrhiza, we checked the expression of genes involved in SA signaling in our RNA-seq. A total
of 32 candidate SA signaling-related genes were differentially expressed after SA induction,
including NPR1, thioredoxins (TRXs), NPR3, NIMINs, WRKYs, TGAs, SABP2, methyl ester-
ases (MESs) genes and several genes in MAPK cascade involved in pathogen resistance; RNA-
dependent RNA polymerase 1 (RDR1) and alternative oxidase (AOX) genes involved in SA sig-
naling against virus; and glutaredoxin (GRX) genes involved in SA- jasmine acid (JA) crosstalk
(Table 1).

Table 1. Fold change at each time point of candidate genes involved in SA signaling in S.miltiorrhiza under SA induction in RNA-seq.

Log2FC

Unigene ID Predicted function Gene ID (swissprot/nr) at 2 hpi at 8 hpi

c33824.graph_c0 NPR1 (Arabidopsis thaliana) sp|P93002|NPR1_ARATH 0.72 2.08

c36545.graph_c0 TRX H-type 1 (Nicotiana tabacum) sp|P29449|TRXH1_TOBAC 1.64 1.38

c28236.graph_c0 TRX-like (Arabidopsis thaliana) sp|Q8VZT6|TRL32_ARATH 2.43 0.35

c23618.graph_c0 TRX-like (Arabidopsis thaliana) sp|Q9ZUU2|AAED1_ARATH 1.08 0.55

c27090.graph_c0 TRX H2 (Arabidopsis thaliana) sp|Q38879|TRXH2_ARATH 1.81 1.15

c16843.graph_c0 NPR3 (Arabidopsis thaliana) sp|Q8L746|NPR3_ARATH 1.52 2.12

c35608.graph_c0 NPR3 (Arabidopsis thaliana) sp|Q8L746|NPR3_ARATH 0.43 0.46

c18996.graph_c0 NIMIN2c (Nicotiana tabacum) gi|116490059|gb|ABJ98930.1| -0.13 2.86

c24383.graph_c0 NIMIN-3 (Nicotiana tabacum) sp|Q9FNZ4|NIMI3_ARATH 4.97 6.38

c31850.graph_c0 WRKY50 (Arabidopsis thaliana) sp|Q8VWQ5|WRK50_ARATH 2.43 3.96

c36603.graph_c0 WRKY75 (Arabidopsis thaliana) sp|Q9FYA2|WRK75_ARATH 1.65 0.31

c31440.graph_c0 WRKY70 (Arabidopsis thaliana) sp|Q9LY00|WRK70_ARATH 3.49 2.7

c32839.graph_c0 WRKY18 (Arabidopsis thaliana) sp|Q9C5T4|WRK18_ARATH 6.88 7.63

c25919.graph_c1 WRKY21 (Arabidopsis thaliana) sp|O04336|WRK21_ARATH -1.65 -0.39

c27325.graph_c0 WRKY17 (Arabidopsis thaliana) sp|Q9SJA8|WRK17_ARATH -1.42 -0.25

c29604.graph_c0 TGA-1A (Nicotiana tabacum) sp|P14232|TGA1A_TOBAC 1.16 0.01

c26759.graph_c0 TGA5 (Arabidopsis thaliana) sp|Q39163|TGA5_ARATH 1.56 0.19

c11672.graph_c0 TGA-2.1 (Nicotiana tabacum) sp|O24160|TGA21_TOBAC 1.03 0.9

c33952.graph_c0 EDR1 (Arabidopsis thaliana) sp|Q9FPR3|EDR1_ARATH 1.27 0.52

c13200.graph_c1 MKK5 (Arabidopsis thaliana) sp|Q8RXG3|M2K5_ARATH 2.12 -0.3

c30486.graph_c0 MKK5 (Arabidopsis thaliana) sp|Q8RXG3|M2K5_ARATH 2.37 -0.44

c27615.graph_c0 MAPK7 (Arabidopsis thaliana) sp|Q39027|MPK7_ARATH 1.47 0.47

c28990.graph_c0 MAPK4 (Arabidopsis thaliana) sp|Q39024|MPK4_ARATH -0.63 -0.05

c34849.graph_c0 SABP2 (Nicotiana tabacum) sp|Q6RYA0|SABP2_TOBAC 0.43 1.1

c31368.graph_c0 MES10 (Arabidopsis thaliana) sp|Q8S9K8|MES10_ARATH 0.33 0.96

c25679.graph_c0 MES11 (Arabidopsis thaliana) sp|Q9FW03|MES11_ARATH 0.72 0.97

c24719.graph_c1 AOX1 (Nicotiana tabacum) sp|Q41224|AOX1_TOBAC 2.95 1.27

c22661.graph_c0 AOX4 (Arabidopsis thaliana) sp|Q56X52|AOX4_ARATH 1.61 0.76

c36196.graph_c0 RDR1 (Arabidopsis thaliana) sp|Q9LQV2|RDR1_ARATH 0.78 1.83

c36610.graph_c0 GRX-C9 (Arabidopsis thaliana) sp|Q9SGP6|GRXC9_ARATH 3.76 2.65

c15509.graph_c0 GRX-C9 (Arabidopsis thaliana) sp|Q9SGP6|GRXC9_ARATH 2.85 3.51

c15004.graph_c0 GRX-S9 (Arabidopsis thaliana) sp|P0C291|GRXS9_ORYSJ 3.33 1.98

doi:10.1371/journal.pone.0147849.t001
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NPR1 is a master regulator in SA signaling pathway controlling multiple immune responses
including SAR [11]. In npr1 mutant plants, SA-mediated PR gene expression and pathogen
resistance were completely abolished [45]. In the inactive state, NPR1 resides in the cytoplasm
as an oligomer bound by disulphide bonds. After induction, cytosolic TRX catalyse redox
changes in NPR1 from oligomeric to monomeric forms, then the monomeric form of NPR1
could enter nucleus and regulate the downstream TFs, such as TGA and WRKY. It was
reported that SA not only induces NPR1 expression, but also controls nuclear translocation of
NPR1 catalyzed by TRX, which is essential for maintaining its function [46]. In our RNA-seq
data, the transcription levels of one candidate NPR1 gene and four candidate TRX genes were
increased under SA induction (Table 1), which indicated that there may exist similar regulation
patten of SA effect on NPR1 activity, that is SA induced both NPR1 expression levels and
NPR1 nuclear translocation in S.miltiorrhiza.

NPR3 and NPR4, NPR1 homologs, are two adaptor proteins that facilitate or block the
NPR1 degradation by interacting with both NPR1 and Cullin 3-based E3 ligase at high or low
SA concentrations, allowing the signaling action of NPR1 in the moderate range of SA concen-
tration [12]. In A. thaliana, NPR3 was regarded as a negative regulator in immune responses,
the npr3 mutant was shown to exhibit increased basal PR1 expression and enhance resistance
to the oomycete Hyaloperonospora arabidopsidis isolate Noco [47]. Conversely, NPR4 was a
positive regulator, the npr4 mutants decreased PR gene expression and compromised resis-
tance to Pseudomonas syringe pv. tomato DC3000 [48]. In our RNA-seq data, the gene coding
NPR4 was not discovered, which may be due to its absent or low expression in S.miltiorrhiza
cells. While the transcription levels of two unigenes coding candidate NPR3s were increased in
response to SA (Table 1). NIMIN is another NPR1-interacting protein that negtively regulates
PR gene expression and suppression of NtNIMIN2a transcripts enhanced the accumulation of
PR1 protein [13]. In our RNA-seq data, the expression of two candidate NIMIN genes were
induced by SA (Table 1). These results indicated that the NPR3 homologs and NIMIN homo-
logs may play important roles in SA signaling by acting as NPR1 regulatory proteins that con-
trol NPR1 level in S.miltiorrhiza, making plants to fine-tune its defense against specific
aggressors.

TGA is a key SA-dependent and NPR1-activated regulatory TF family that target GSTs and
PRs that involved in detoxification and defense [49]. Tobacco TGA1a was the first identified
TGA member bound to as-1 elements that mediate SA-inducible transcription [14]. Further-
more, a triple-knockout mutant tga2-1 tga5-1 tga6-1 was shown to be defective in the induc-
tion of PR genes and SAR in A. thaliana, which indicated their role in disease resistance [45]. It
is noteworthy that three unigenes annotated as TGA 1a (Nicotiana tabacum), TGA 2.1 (N.
tabacum) and TGA 5 (A. thaliana) were up-regulated by SA in our RNA-seq data (Table 1),
which indicates that these three candidate TGA genes may play improtant roles in the
NPR1-dependent SA signaling function on initiation of SA-responsive genes transcription in S.
miltiorrhiza.

In addition to TGA, the WRKY TF family was also been testified to play principal positive
or negative regulatory functions in SA-dependent defense responses in plants [17]. More than
a half of ArabidopsisWRKY genes were induced or supressed when treated with SA treatment
[9]. For instance,WRKY50 andWRKY75 serve as positive regulators of SA-mediated signaling
in the activation of basal and R-mediated resistance in A. thaliana [50,51]. Some members of
the WRKY TF family were reported to act downstream of NPR1 in SA signaling [17]. For
example, AtWRKY70, acts on the downstream of NPR1, is a common regulatory element of SA
and JA signal transduction pathway [52]. Overexpression of AtWRKY70 could enhance the
resistance of the transgenic plants and the expression of some SA induced genes [53].
AtWRKY18 induced by SA positively modulated PR gene expression and resistance to the
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bacterial pathogen Pseudomonas syringae, and the potentiation of developmentally regulated
defense responses by AtWRKY18 is NPR1-dependent [54]. Our transcriptome analysis
revealed that a number of candidate WRKY transcription factors were SA-dependent regula-
tors (Table 1). Candidate genes coding WRKY 18, 50, 70 and 75 that were involved in defense
response were significantly induced by SA (Table 1), while WRKY17 and 21 were suppressed
(Table 1). The WRKY17 gene was reported to be a negative regulator ofWRKY70 [55]. These
WRKY TFs are presented for the first time to be associated with plant SA-dependent defense
responses, and their functions in S.Miltiorrhiza need to be futher identified.

MAPK was also reported to be involved in SA signaling system in plant immunity [18–20].
SA triggered the expression of enhanced disease resistance 1 (EDR1), a MAPKK Kinase
(MAPKKK) functioned at the top of the MAPK cascade, negatively regulated SA signaling sys-
tem [19]. GhMKK5 is a SA induced MAPKK protein and overexpressing GhMKK5 greatly ele-
vated the expression of NPR1 and SA signaling system-induced PR1a and PR5 in plant [20]. In
our RNA-seq data, one candidate EDR1 gene was up-regulated under SA induction, and the
transcript level of 2 candidate MKK5 genes were significantly increased at 2 hpi (Table 1),
which were showed to regulate expression of iron SOD gene under salinity stress [56]. We also
detected a slight reduction of the transcription level of candidate MAPK4 gene in response to
SA (Table 1), which has been reported to act downstream of SA and to negtively regulate SA
signaling system [18]. In addition, one unigene annotated as AtMAPK7 protein, which may be
involved in the transcription activition of PR1 gene acting in downstream of MKK3 in patho-
gen defense [57], was up-regulated by SA in our RNA-seq data (Table 1). All the response of
genes involved in MAPK cascade to SA induction indicated that MAPK may also play an
important role in the SA signaling system in S.Miltiorrhiza.

SA signal also plays an important role in SAR. The establishment of SAR require transloca-
tion of SA signal from the initial site of attack to the distant pathogen-free organs in SA-depen-
dent defenses activation [58]. Owing to SA was transported upward only in very small
amounts via xylem, MeSA as a mobile signal moved through phloem and was then converted
to active SA form by the esterase activity of SABP2 in tobacco or members of the AtMES family
in Arabidopsis in the the distant pathogen-free organs [59]. NtSABP2 is a SA-binding protein
that has a strong affinity to SA in plant, and its activity was regulated by SA [60]. Silencing
NtSABP2 inhibited the local resistance to tobacco mosaic virus and reduced the expression of
PR-1 gene induced by SA, thus hindering the development of SAR [60]. Knock-down the
expression of multiple AtMES genes also attenuated the SAR [61]. In our RNA-seq data, one
SA responsive unigene, c34849.graph_c0, coding NtSABP2 homolog was identified, and it was
induced by SA induction at 8 hpi. The expression of two unigenes coding AtMES10 and
AtMES11 homologs were increased under SA induction (Table 1), which indicated that the
proteins encoded by these three genes may also be MeSA esterase that participates in the SA
signal transduction in immune response of S.miltiorrhiza.

It was suggested that SA signal inducing resistance against viruses may be different from
those known resistance pathways, such as NPR1-dependent pathway [62]. Mitochondrial sig-
naling processes was reported to regulate some aspects of SA-induced virus resistance [63].
AOX functioned in the mitochondrial signaling processes and positively regulated SA-induced
resistance to a tobamovirus, Turnip vein clearing virus (TVCV) [64]. Small RNA-directed
RNA silencing is another potent immune surveillance system against viral pathogens [65]. The
RDR1 was implicated in small RNA-directed RNA silencing and antiviral defense, and was
also induced by SA treatment and virus infection [66]. In our RNA-seq data, two candidate
AOX genes and one candidate RDR1 gene were up-regulated (Table 1), which suggested SA
signal may enhance the efficiency of mitochondrial signaling processes and RNA silencing
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pathway in triggering immune responses against viruses by activating AOX and RDR1 in S.
miltiorrhiza, respectively.

SA-responsive antioxidant genes in S.miltiorrhiza
ROS members (mostly in the form of H2O2) are typical chemical signals, and SA promoted
H2O2 accumulation in the early stage of induction, keeping H2O2 content essential for defense
responses in plant [43]. H2O2 is an important signal involved in adaptability signaling trigger-
ing tolerance to various abiotic and biotic stresses at low concentrations, but also directly leads
to lipid peroxidation and programmed cell death at high concentrations [67]. Thus there is
antioxidant system regulating H2O2 in plant cell, including antioxidases, such as POD and
SOD, and non-enzymatic antioxidant, such as GSH [68,69]. In our previous study, the H2O2

burst occurred at 2 h after SA induction in the S.miltiorrhiza cell culture. However, the rele-
vance of this to the elicitation method was uncertain. Thus we detected the genes related to
H2O2 metabolism in our RNA-seq data, the generated SA-responsive candidate genes, includ-
ing POD, SOD, copper chaperone for superoxide dismutase (CCS) genes and glutathione
metabolism-related genes, were showed in Table 2.

Of the antioxidative enzymes, the extracellular POD is one source of H2O2 [70]. SOD con-
stitutes the first line of defense against ROS and dismutated the superoxide to produce H2O2

[71]. CCS is a helper protein that acts to insert copper and oxidize the disulfide in the matura-
tion process for SOD in eukaryotes [72]. When expressed in Saccharomyces cerevisiae, Cu/Zn-
SOD was activated by the AtCCS in Arabidopsis thaliana [73]. Many studies have emphasized
that, SA can enhance the SOD and POD activities to protect plants from damage [74,75]. Our
results also showed that three candidate POD genes, one candidate SOD gene and one candi-
date CCS gene were up-regulated at 2 hpi under SA induction (Table 2), which was in line with
our previous study that the H2O2 burst occurred after 2-h SA induction. The up-regulation of
POD, SOD and CCS genes indicated that SA enhanced the activation of Cu/Zn-SOD and tran-
scription of POD and SOD in S.miltiorrhiza. We further examined the effect of SA on

Table 2. Fold change at each time point of candidate genes involved in H2O2 burst and GSHmetabolism in S.miltiorrhiza under SA induction in
RNA-seq.

Log2FC

Unigene ID Predicted function Gene ID (swissprot/nr) at 2 hpi at 8 hpi

H2O2 burst

c27388.graph_c0 peroxidase N1 (Nicotiana tabacum) sp|Q9XIV8|PERN1_TOBAC 1.47 0.40

c26177.graph_c0 peroxidase 40 (Arabidopsis thaliana) sp|O23474|PER40_ARATH 1.40 1.03

c34235.graph_c0 peroxidase (Nicotiana sylvestris) sp|Q02200|PERX_NICSY 1.49 0.26

c26499.graph_c0 SOD [Cu-Zn] (Solidago canadensis) sp|O04997|SODCP_SOLCS 0.94 0.04

c26957.graph_c0 CCS (Arabidopsis thaliana) sp|Q9LD47|CCS_ARATH 1.24 0.67

GSH metabolism

c18218.graph_c0 GST L3 (Arabidopsis thaliana) sp|Q9LZ06|GSTL3_ARATH 1.98 2.35

c24436.graph_c0 GST APIC (Nicotiana tabacum) sp|P46440|GSTF2_TOBAC 2.57 1.61

c24433.graph_c0 GST F9 (Arabidopsis thaliana) sp|P46440|GSTF2_TOBAC 2.66 1.26

c30193.graph_c0 GST 23 (Zea mays) sp|Q9FQA3|GST23_MAIZE 1.64 1.39

c36714.graph_c0 GST (Nicotiana tabacum) sp|Q03662|GSTX1_TOBAC 1.33 1.54

c18835.graph_c0 γ-ECS (Solanum lycopersicum) sp|O22493|GSH1_SOLLC 1.35 -0.10

c33677.graph_c0 GS (Solanum lycopersicum) sp|O22494|GSHB_SOLLC 1.40 0.72

c21482.graph_c0 GR(Brassica rapa subsp. Pekinensis) sp|O04955|GSHRC_BRARP 1.91 0.62

doi:10.1371/journal.pone.0147849.t002
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isozymograms and activities of SOD and POD (Fig 5A and 5B). As shown in Fig 5A, patterns
of SOD and POD showed clear band differences after SA treatment. Four bands of each
enzyme were obtained, respectively (Fig 5A). The bands of SOD and POD in SA treatment
were wider and showed stronger intensity than that of the control (Fig 5A). Consistent with
the isozymogram analysis, the SOD and POD activities were significantly increased by 1.11-
and 1.55-fold after SA elicitation (Fig 5B). Our results indicated that the cultured cells
responded SA by stimulating the antioxidative enzymes POD and SOD to protect the plant
from any injuries and participate in the generation of H2O2 signal.

Of the non-enzymatic antioxidants, glutathione is one vital part of theredox hub [69]. H2O2

is reduced to H2O by the reaction of glutathione peroxidase with GSH, which is oxidized to
GSH disulfide (GSSG), GSSG can be reduced back to GSH by GSH reductase (GR) [76]. GSH
reacts with electrophilic group of endogenous and xenobiotic harmful substances mediated by
GST to form mixed disulfides, and plays a critical role in cellular detoxification [77]. GSH syn-
thesis requires two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione syn-
thetase (GS). γ-ECS mediates the first reaction between glutamate and cysteine to form a
dipeptide, γ-glutamyl-cysteine (γGluCys), which is the rate-limiting enzymatic step and in turn
reacts with glycine catalyzed by GS to produce GSH [76]. In our study, a total of 70 unigenes
were annotated to glutathione metabolism pathway. Among these, one candidate γ-ECS gene,
one candidate GS gene and one candidate GR gene were up-regulated at 2 hpi and maintained
high expression levels until 8 hpi except γ-ECS, in which the expression level had no significant
change at 8 hpi (Table 2). We further detected the content of GSH under SA induction in the
the S.miltiorrhiza cell culture. As expected, the content of GSH was significantly increased by
2.26-fold than that of the control after the application of SA (Fig 5C). In A. thaliana, high SA
concentration was associated with higher GSH contents [78]. Our results also indicated that
SA increased GSH levels and reducing power (ratio GSH/GSSG) by activating the transcrip-
tions of candidate γ-ECS, GS and GR candidate genes. Recent study has showed that, in parallel
to its antioxidant role, GSH acts independently of NPR1 to allow increased intracellular H2O2

to activate SA signaling [79]. The decrease in γ-ECS protein resulted in GSH deficiency and
negatively affected disease resistance [80]. Therefore, we speculated the SA-regulated GSH may
play important roles in plant resistance by acting as both antioxidant and regulatory factor of

Fig 5. Effect of SA on antioxidative enzymes and GSH in S.miltiorrhiza cell cultures. (a) Effect of SA on isozymograms of SOD (left) and POD (right). 1
represents control and 2 represents SA treatment for 2 h. a, b, c, d represents four bands of SOD and POD, respectively. (b) Effect of SA on enzyme activities
of SOD and POD. (c) Effect of SA on the content of GSH. Significance was indicated by double or single asterisks with p-values below 0.01 or between 0.01
and 0.05, respectively.

doi:10.1371/journal.pone.0147849.g005
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SA signaling in S.miltiorrhiza cells. Notably, SA obviously increased the transcription of five
candidate GST genes invloved in glutathione metabolism in our RNA-seq data (Table 2). In
addition to the detoxification function, GST have been shown to be implicated in varied stress
resistances, such as pathogen attack, oxidative stress, and heavy-metal toxicity [81]. It has been
emphasized that GSTs are the immediate-early SA-responsive genes [82]. This result indicated
that these five GSTs may play important roles in cellular detoxification, such as ROS scaveng-
ing, and SA-mediated stress resistance. The characterization of these above genes elucidated
the effect of SA on the antioxidant system in S.miltiorrhiza.

Hormone-related genes in S.miltiorrhiza in response to SA
SA significantly affected the hormone biosynthesis and signaling pathway in plant [82–85].
However, the hormone-related genes responsed to SA were unknown in S.miltiorrhiza. In this
study, a number of genes involved in hormone biosynthesis and signal transduction responsed
to SA were analyzed (Table 3). Hormone crosstalk is crucial for plant defenses against patho-
gens and insects, in which SA, JA, and ethylene (ET) play key roles [83]. Antagonism between
SA and JA signaling has been well reported in plants. In our RNA-seq data, the candidate JA
biosynthesis genes allene oxide synthase (AOS), allene oxide cyclase (AOC) and 9-lipoxygenase
(LOX) were all repressed by SA (Table 3), which was in line with the SA supression on JA bio-
synthesis genes in A. thaliana [84]. It indicated that SA may suppress JA signaling system by

Table 3. Fold change at each time point of candidate hormone-related genes in S.miltiorrhiza under SA induction in RNA-seq.

Log2FC

Unigene ID Predicted function Gene ID (swissprot/nr) at 2 hpi at 8 hpi Hormone role

c37047.graph_c0 AOS (Arabidopsis thaliana) sp|Q96242|CP74A_ARATH -1.20 -0.06 JA synthesis

c28646.graph_c1 AOS (Vitis vinifera) gi|225428606|ref|XP_002281226.1| -0.69 -1.27 JA synthesis

c14695.graph_c0 AOC (Salvia miltiorrhiza) gi|377552569|gb|AFB69864.1| -1.08 -1.02 JA synthesis

c26418.graph_c0 LOX5 (Arabidopsis thaliana) sp|Q9LUW0|LOX5_ARATH -1.63 -0.20 JA synthesis

c35963.graph_c0 LOX5 (Arabidopsis thaliana) sp|Q9LUW0|LOX5_ARATH -1.89 -1.15 JA synthesis

c32834.graph_c0 LOX1.5 (Solanum tuberosum) sp|Q43191|LOX15_SOLTU -0.05 -1.43 JA synthesis

c27417.graph_c0 MYC2 (Theobroma cacao) gi|508703788|gb|EOX95684.1| -1.69 -0.15 JA signaling

c36831.graph_c0 ERF1B (Arabidopsis thaliana) sp|Q8LDC8|ERF92_ARATH 3.05 0.55 ET signaling

c30725.graph_c0 EIN4 (Arabidopsis thaliana) sp|Q9ZTP3|EIN4_ARATH -1.02 -0.53 ET signaling

c29674.graph_c0 ETR2 (Arabidopsis thaliana) sp|Q0WPQ2|ETR2_ARATH -1.90 -0.48 ET signaling

c30435.graph_c0 NCED (Arabidopsis thaliana) sp|Q9LRR7|NCED3_ARATH 2.57 0.62 ABA synthesis

c36534.graph_c0 ADH (Camellia sinensis) gi|308943732|gb|ADO51748.1| 1.88 1.66 ABA synthesis

c36552.graph_c0 ADH (Ricinus communis) gi|255568816|ref|XP_002525379.1| 1.61 1.48 ABA synthesis

c27930.graph_c0 PYL4 (Arabidopsis thaliana) sp|O80920|PYL4_ARATH 2.10 0.15 ABA signaling

c34845.graph_c0 PP2C protein HAB1 (Arabidopsis thaliana) sp|Q9CAJ0|P2C16_ARATH -3.78 -0.60 ABA signaling

c21120.graph_c0 PP2CA (Arabidopsis thaliana) sp|P49598|P2C37_ARATH -3.78 0.02 ABA signaling

c18562.graph_c0 ARR9 (Arabidopsis thaliana) sp|O80366|ARR9_ARATH 0.30 1.15 CK signaling

c28213.graph_c0 ARR9 (Arabidopsis thaliana) sp|O80366|ARR9_ARATH 2.18 1.23 CK signaling

c35025.graph_c0 AHP6 (Arabidopsis thaliana) sp|Q9SSC9|AHP6_ARATH 1.07 0.28 CK signaling

c24922.graph_c0 LAX2 (Medicago truncatula) sp|Q9FEL7|LAX2_MEDTR -1.02 -3.12 Auxin signaling

c28766.graph_c1 LAX2 (Medicago truncatula) sp|Q9FEL7|LAX2_MEDTR -1.83 -0.40 Auxin signaling

c21632.graph_c0 LAX5 (Medicago truncatula) sp|Q8L883|LAX5_MEDTR -0.72 -2.67 Auxin signaling

c27396.graph_c0 GID2 (Arabidopsis thaliana) sp|Q9STX3|GID2_ARATH 1.40 0.41 GA signaling

c36872.graph_c0 DELLA protein GAI1 (Vitis vinifera) sp|Q8S4W7|GAI1_VITVI -1.48 -0.52 GA signaling

doi:10.1371/journal.pone.0147849.t003
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down-regulating the biosynthesis of JA in S.miltiorrhiza. In JA signaling pathway, MYC2 is a
master positive regulator that binds to cis-acting elements of JA response genes. In our RNA-
seq data, the expression level of one candidate MYC2 gene were decreased after SA induction
(Table 3), which indicated that SA may block JA signaling by depressing MYC2 expression.
Previous study showed that Arabidopsis GRX480 was a SA-induced GRX-C9 protein that
interacted with TGA factors and suppressed JA signal [86]. In our study, the similar up-regula-
tion of candidate GRX genes were also detected as well as their proteins (Table 1). Besides,
those genes coding SA signaling components NPR1, WRKY70 and TGAs have been reported
to be JA signaling repressors [52,86,87], but in our RNA-seq data, they were up-regulated
(Table 1). All these results indicated the suppression of SA on JA signaling in S.miltiorrhiza.
Unlike SA and JA signaling antagonism, SA and ET have been reported to work synergistically
in inducing resistance [85]. In Arabidopsis, ET is perceived by a family of five membrane-
bound receptors, namly Ethylene response1 (ETR1), Ethylene response sensor1 (ERS1), ethyl-
ene response 2 (ETR2), ethylene insensitive 4 (EIN4) and ERS2. These ET receptors are negi-
tive regulators of ET signaling [88]. ERF1 is a TF that positively functioned downstream in ET
signaling system [89]. In our RNA-seq data, the candidate genes coding ET receptors ETR2
and EIN4 were down-regulated, while the expression level of one candidate gene coding posi-
tive regulator ERF1B were increased (Table 3), which indicated that SA may activate ET signal-
ing and enhance ET-mediated resistance in S.miltiorrhiza. In additon to JA and ET, SA also
interacts with other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA) and
cytokinin (CK) in effective immune responses activation [82]. The antagonistic interaction
between ABA and SA signaling systems has been reported in plants, ABA suppresses inducible
innate immune responses by down-regulating SA biosynthesis and SA-mediated defenses in
Arabidopsis [90]. However, ABA synthesis in SA induction deficient2 (sid2) mutants plants was
decreased compared with that in wild-type plants under virulent Pst DC3000 infection, which
suggests that SA may be a positive regulator of ABA levels [90]. In our RNA-seq data, the
expression level of candidate genes coding ABA synthesis-related enzymes 9-cis-epoxycarote-
noid dioxygenase (NCED) and alcohol dehydrogenase (ADH) were increased under SA induc-
tion (Table 3), which indicated that SA elicitor enhanced the ABA synthesis in S.miltiorrhiza.
PYR1-like protein (PYL), protein phosphatase 2C (PP2C, a negative regulator) and SNF1-re-
lated protein kinase (SnRK2, a positive regulator) are three major components involved in the
ABA signal perception and transduction pathway. In normal plants, PP2Cs bind to SnRK2s
and dephosphorylate the SnRK2s to keep the SnRK2s in an inactive state [91]. PYL is an ABA
receptor protein that perceive accumulated ABA and disrupt the interaction between the
SnRK2s and PP2Cs, thus activating the SnRK2 kinases and resulting ABA signaling activation
[91]. In our RNA-seq data, one ABA receptor PYL4 gene was up-regulated, while the transcript
level of two candidate PP2Cs genes were decreased under SA induction (Table 3). This result
indicated that SA not only enhanced the ABA synthesis but also triggered ABA signaling in S.
miltiorrhiza. Plants have evolved auxin signaling repression mechanisms during pathogenesis
[46]. Plants overproducing SA frequently result auxin-deficient or auxin-insensitive mutants
morphological phenotypes [92]. AUXIN RESISTANT1/LIKE AUXIN RESISTANT1(AUX1/
LAX) functions both in basipetal auxin transport and in acropetal transport in a phloem-based
auxin transport stream. Three unigenes coding LAXs were down-regulated in our RNA-seq
data (Table 3), which suggesting that SA might interfere with auxin response in S.miltiorrhiza.
CK is involved in various regulatory processes throughout plant development and defense
responses. In CK phosphorelay signaling system, after percept CK signal, the CK receptors
autophosphorylate on a conserved His residue and relay this phosphoryl group to Arabidopsis
response regulators (ARRs) via an intermediate set of histidine phosphotransfer (hpt) proteins
called the Arabidopsis Hpt proteins (AHPs) [93]. There are two types of ARR transcription
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activators have been reported. Type-A ARRs are negative regulators of cytokinin signaling,
while the type-B ARR transcription factor is positive regulators of CK signaling that trigger
enhancement of defense responses [93]. Interestingly, two candidate type-A ARR9 genes (neg-
ative regulator) and one candidate AHP6 gene (positive regulator) involved in CK signaling
were all overexpressed under SA induction in our RNA-seq data (Table 3), which indicated
that the complex regulation of SA on CK signaling in S.miltiorrhiza. GA is an important plant
growth hormone involved in plant innate immunity. GA receptor insensitive dwarf 2 (GID2)
and GA-insensitive 1 (GAI1) are two key components in GA signaling pathway. GID2 is a GA
receptor that positively regulate GA signaling, and GAI1 is a DELLA protein that represses
almost all known GA-dependent processes [94]. In our RNA-seq data, we dected that the can-
didate gene coding GID2, a positive regulator, were up-regulated, while the candidate DELLA
protein GAI1 gene, a negtive regulator, was down-regulated (Table 3), which indicated that
GA signaling was induced by SA in S.miltiorrhiza. In a word, the effects of these positive and
negative regulations on other hormone-related genes suggest that SA promotes plant resis-
tance, partly by modulating the balance between SA-mediated and other hormone-mediated
defense signaling pathways.

SA-responded TFs in S.miltiorrhiza
The regulation of gene expression occurs primarily at the transcriptional level, and the most
diverse regulatory protein interacting with DNA at the transcriptional level is TF. TFs have
been proved to be involved in plant growth, development, defense and stress response [95,96].
However, the TFs associated with SA signlaing in defense and stress response have not been
identified in S.miltiorrhiza. In this study, we investigated the unigenes encoding TFs in our
RNA-seq dataset to reveal the molecular mechanisms of events that involve TFs in S.miltior-
rhiza. By comparison with the TFs in Plant TFDB, we identified a total of 1188 candidate genes
encoding 56 TF families and their distributions were evaluated (Table 4, S9 Table). Then the
candidate TF genes were grouped into two categories, including 67 up-regulated and 105
down-regulated candidate TF genes (Table 4, S9 Table). Among the differentially expressed
TFs, the NAC family (9 genes) and GRAS family (7 genes) are the most representative TF fami-
lies in the up-regulated TFs (Table 4, S9 Table). NAC and GRAS, two large plant-specific TF
families, have been reported to be involved in diverse biological processes, such as defense and
stress tolerance [97,98]. Sun et al. (2015) had implied that a host of ONAC genes showed to be
up-regulated in rice under various abiotic (salt, drought, and cold) and biotic (fungus, bacteria,
viruses and parasitic plants) stresses. And the transgenic A. thaliana plants overexpressing
GRAS showed stronger tolerance to drought and salt treatments [97]. This indicated the
important functions of the NAC and GRAS families in SA-mediated signal transduction and in
response to abiotic and biotic stresses (Table 4). By contrast, the bHLH family (12 genes) and
HD-ZIP family (7 genes) are the top two TF families among the down-regulated TFs (Table 4,
S9 Table). bHLH and HD-ZIP are TF families involved in plant growth and development regu-
lation under normal growth conditions or environmental stress [99,100]. Overexpression of
PtaHB1 (one HD-ZIP TF) in transgenic Poplar delayed the formation of primary xylem fiber
[101]. The latest research suggested that OsbHLH120 was a vital TF in root thickness and root
length under hydroponic culture in upland rice [102]. The result indicated that bHLH and
HD-ZIP family TFs may play important roles in SA-mediated regulation of plant growth and
development in S.miltiorrhiza. Furthermore, many candidate genes of ERF (57 unigenes),
bZIP (54 unigenes) and MYB (55 unigenes) families showed to be differentially expressed after
SA induction (Table 4, S9 Table). These ERF, bZIP and MYB TF families have been identified
to be involved in responses to disease and environmental stress, such as drought and salt
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stresses in many plants following different regulatory strategies [103–106]. Therefore, we spec-
ulate that these differentially expressed candidate TF genes of ERF, bZIP and MYB families
may have conserved and important functions in the positive or negative regulation of SA medi-
ated defense and stress response in S.miltiorrhiza. These results provided a detail information
on the SA-responsive TFs in S.miltiorrhiza cells.

SA-responded and defense-related cytochrome P450 (CYP450) and
ATP-binding cassette (ABC) genes in S.miltiorrhiza
CYP450 and ABC families have been reported to play important roles in defense response
[107–109]. While the relationship between them and SA signal remained largely unknown in
S.miltiorrhiza. Thus, we detected the expression of the CYP450 and ABC families genes under
SA induction in our RNA-seq data, and the results were shown in Tables 5 and 6. CYP450, one
of the biggest gene superfamilies in plant, was reported to be involved in plant resistance by
taking part in lignin and glucosinolates biosynthesis, callose deposition and cell wall reinforce-
ment, which is the primary event in the host–pathogen interaction [107]. In our RNA-seq data,
a total of 278 unigenes encoding candidate CYP450s were discovered, which contained 40 up-
regulated DEGs induced by SA (Table 5, S10 Table). The CYP71 clan was the most representa-
tive group of up-regulated CYPs (26 CYP genes) (Table 5). In this clan, genes from the CYP71
family accounted for almost half of up-regulated (Table 5). Two CYP450 enzymes of CYP71
family, CYP71B40v3 and CYP71B41v2, were likely to be involved in herbivore-induced volatile
nitrile emission in P. trichocarpa [108]. It was also reported that eight members of CYP71 clan
were probably involved in yeast extract+Ag+ induced tanshinone synthesis in S.miltiorrhiza,
three of which belonged to CYP71 family [21]. Therefore, we hypothesize that these SA-

Table 4. Transcription factors in response to SA elicitation in S.miltiorrhiza.

TF family Nunbers of unigene Up-regulated TF genes Down-regulated TF genes

AP2 16 2 2

ARF 28 1 2

B3 38 2 1

bHLH 99 3 12

bZIP 54 4 9

C2H2 64 4 5

C3H 47 0 4

ERF 57 5 9

FAR1 60 3 4

G2-like 21 2 0

GATA 27 0 5

GRAS 49 7 4

HD-ZIP 54 3 7

HSF 12 2 0

LBD 36 1 0

MYB 55 2 5

NAC 71 9 4

MYB-related 70 3 6

Trihelix 22 2 1

WRKY 66 8 6

others 242 4 19

Total 1188 67 105

doi:10.1371/journal.pone.0147849.t004
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responsive CYP71s could be associated with the SA-dependent secondary metabolism in
defense response in S.miltiorrhiza.

Studies have demonstrated the roles of ABC transporters for vacuolar transport in xenobi-
otic detoxification in plants [109]. Some ABC transporters were reported to play roles in resis-
tance to pathogens, such as fungus and barley yellow dwarf virus [110,111]. In our study, 123
unigenes coding candidate ABC transporters were detected, which included 9 up-regulated
DEGs (Table 6, S11 Table). Members from the ABC transporter B and ABC transporter C fam-
ilies annotated to ‘Defense mechanisms’ in COG database were enriched in the up-regulated
(Table 6). In addition, one candidate gene encoding ABCG25 was also up-regulated (Table 6).
ABCB family plays a dual role in polar auxin transport and drought stress tolerance in Arabi-
dopsis [112]. The members of ABCC family, AtABCC1, AtABCC2 and AtABCC3, were
involved in phytochelatin-mediated cadmium tolerance in Arabidopsis. For example, seedlings

Table 5. Summary of Up-egulated Candidate Cytochrome P450 genes in S.miltiorrhiza.

Clan Family Subfamily Mumber

CYP71 clan CYP71 CYP71A 5

CYP71D 5

CYP75 CYP75B 3

CYP76 CYP76B 2

CYP76C 1

CYP81 CYP81D 3

CYP81E 3

CYP81F 2

CYP83 CYP83B 1

CYP89 CYP89A 1

CYP72 clan CYP72 CYP72A 5

CYP714 CYP714D 1

CYP734 CYP734A 1

CYP85 clan CYP707 CYP707A 1

CYP725 CYP725A 1

CYP86 clan CYP86 CYP86B 1

CYP94 CYP94A 3

CYP704 CYP704C 1

doi:10.1371/journal.pone.0147849.t005

Table 6. Fold change at each time point of candidate only-up regulated candidate ABC transporter genes in S.miltiorrhiza under SA induction in
RNA-seq.

Log2FC

unigene ID Predicted function Gene ID(swissprot) at 2 hpi at 8 hpi

c30542.graph_c0 ABCB4 (Arabidopsis thaliana) sp|O80725|AB4B_ARATH 2.13 1.17

c34701.graph_c0 ABCB11 (Arabidopsis thaliana) sp|Q9FWX7|AB11B_ARATH 1.45 0.37

c34701.graph_c1 ABCB11 (Arabidopsis thaliana) sp|Q9FWX7|AB11B_ARATH 2.11 1.15

c15625.graph_c0 ABCB15 (Arabidopsis thaliana) sp|Q9LHD1|AB15B_ARATH 1.79 2.13

c33278.graph_c0 ABCB25 (Oryza sativa subsp. japonica) sp|Q9FNU2|AB25B_ORYSJ 1.63 1.21

c34846.graph_c0 ABCC2 (Arabidopsis thaliana) sp|Q42093|AB2C_ARATH 1.27 0.08

c27640.graph_c0 ABCC3 (Arabidopsis thaliana) sp|Q9LK64|AB3C_ARATH 3.21 1.85

c33965.graph_c0 ABCC10 (Arabidopsis thaliana) sp|Q9LYS2|AB10C_ARATH 2.24 1.45

c27749.graph_c0 ABCG25 (Arabidopsis thaliana) sp|Q84TH5|AB25G_ARATH 5.39 3.18

doi:10.1371/journal.pone.0147849.t006
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overexpressing AtABCC3 have an increased cadmium tolerance [113]. ABCG25 was involved
in ABA transport responded to cold and heat stress [114]. Therefore, the result indicated that
these up-regulated ABC transporter genes belonging to ABCB, ABCC and ABCG families may
play vital roles in cellular processes such as auxin influx transport, ABA transport and detoxifi-
cation in SA-mediated resistance. It will be of great interest to futher discuss the function of
ABC transporters since there is no available resources of ABC transporters in S.miltiorrhiza.
These results provided a valuable genetic resources of CYP450s and ABCs, which may act on
downstream of SA signaling in defense resistence.

Conclusions
S.miltiorrhiza is a potential medicinal model plant with important medicinal and economic
values in the traditional Chinese medicine research. In this study, we performed the transcrip-
tome analysis to examine the early SA responses of S.miltiorrhiza cells. A total of 50 778 uni-
genes were generated, including 5316 DEGs. qPCR validation showed that the expression
profiles of 7 selected unigenes were consistent with those detected by RNA-seq. The diversifica-
tion of the expression level of unigenes under SA induction with different time (0 h, 2 h and
8 h) reflected the complexity of the effect of SA on the transcription of S.miltiorrhiza. A num-
ber of candidate genes involved in SA signaling network in S.miltiorrhiza were discovered. In
addition, several SA-responsive candidate novel genes encoding TFs, CYP450s, ABCs and pro-
teins related to hormone crosstalk in defense have been revealed in our work. The present
work also showed that SA enhanced antioxidant system in S.miltiorrhiza. All these findings
are a valuable resource leading to a better understanding of the SA response network and the
molecular mechanism of the effect of SA on defense and stress response at transcription level
in S.miltiorrhiza. A future functional and protein interaction researches would further enable
identification of essential elements in SA signaling in defense resistance of S.miltiorrhiza.
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