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Abstract
Hippocampal neural systems consolidate multiple complex behaviors into memory. How-

ever, the temporal structure of neural firing supporting complex memory consolidation is

unknown. Replay of hippocampal place cells during sleep supports the view that a simple

repetitive behavior modifies sleep firing dynamics, but does not explain how multiple epi-

sodes could be integrated into associative networks for recollection during future cognition.

Here we decode sequential firing structure within spike avalanches of all pyramidal cells

recorded in sleeping rats after running in a circular track. We find that short sequences that

combine into multiple long sequences capture the majority of the sequential structure during

sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized

for maximally producing the behavior-enriched episode. Thus behavioral programming of

sequential correlations occurs at the level of short-range interactions, not whole behavioral

sequences and these short sequences are assembled into a large and complex milieu that

could support complex memory consolidation.

Introduction
Previous work has identified a remarkable phenomenon called sleep replay, in which hippo-
campal place cells fire in sequences during sleep that recapitulate sequences of firing that were
repeated during repetitive behavior [1,2]. In addition to sleep replay, there have been multiple
reports of sequential firing structure (temporal coding) in the awake state during resting peri-
ods while navigating. These observations include ‘forward replay’ [3] where a sequence of firing
from previous navigation is reactivated during rest in the same order, ‘reverse replay’ [4],
where a sequence is reactivated in the reverse order from previous navigation, as well as reacti-
vations that represent novel trajectories through the environment, which include a bias toward
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goal-oriented trajectories [5]. These phenomena provide evidence that neuronal firing
sequences during burst activity in sleep are biased by observed, largely repetitive, behaviors
during wake. However, normal awake experience is extremely complex and highly variable but
nevertheless this complex behavior is consolidated into memory. The structure of a neural sys-
tem that is flexible enough to encode complex experiences, and the systems level mechanisms
that underpin this flexibility, remains unknown.

An interesting observation about replay is that the sequences are not always the same (e.g.
there is some jitter about the replayed sequence). This could simply be an effect of noise or could
be necessary for complex memory consolidation. If every time a neuron fired it were participating
in a perfect reactivation of a behavioral firing sequence, then there would be no opportunity for
that neuron to participate in any other firing sequence. It is already known that neurons partici-
pate in multiple sequences as evidenced by remapping of place cells when environments change
(remapping). Because multiple environmental representations are multiplexed in the hippocam-
pus, we hypothesize that sleep replay must be a complex mixture of sequences. We suggest that a
network that can flexibly construct hi-fidelity, but not perfect, replay of a measured behavior can
also construct sequences reflecting unmeasured behavior. To explore this possibility, we statisti-
cally characterize the structure of sequential firing during sleep and then establish that expected,
behaviorally related sequences can be identified within this structure. This lends support to the
idea that other sequences may also be behaviorally relevant. Specifically, we use a novel decoding
strategy based on variable length Markov chains (VLMCs) to characterize the sequential firing of
cells during sleep after rodents repetitively ran in a circular track. By modeling the bursting of
neurons during sleep as Markov chains we make no explicit assumptions about the relationship
between these cells firing activity during behavior and sleep. The Markov chain model character-
izes the sequential correlations between cells during sleep and we then inspect the fitted model
for behaviorally relevant sequential firing.

We report three key findings. First, we find that short-range temporal correlations between
neural bursts are sufficient to explain the correlations in long sequences, indicating that the
ensemble is structured in short sequences that are built into longer and more complex
sequences, some of which are related to the expected replay sequence. Second, the sequential
structures represented by the fitted Markov models are not ‘noisy cascades’ that prefer one or a
few distinguished sequences, but rather they support a tremendous number of distinct
sequences. Third, we see significant sequential correlations between pyramidal cells that had
strong place-specific firing during the behavioral task and hence have clear behavioral
sequences and other pyramidal cells that did not.

We suggest that at the system-level our results indicate that the brain is replaying fragments
of experience and the dynamics of the ensemble mix these fragments together in a huge variety
of ways to consolidate the memory of a huge variety of behaviors.

Results
Single unit activity from the CA1 region of the hippocampus was recorded from adult rats run-
ning in a circular track for 20 minutes (RUN) following which they slept for up to 1 hour
(POST). We recorded 5 sessions in 3 animals and retained all pyramidal cells for analysis
(Table 1). Analyses were performed on data collected during the entire motionless period after
RUN.

Spike avalanches in neural activity during sleep
Prior to an analysis of temporal structure during burst firing activity it is important to establish
that there is burst firing of pyramidal cells during sleep. Across all of the sessions and animals
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the distribution of log-interspike intervals (ISIs) is bimodal, with a rapid firing regime
(ISI< 50ms) and a ‘long wait’ regime (ISI> 50ms). Each pyramidal cell had a bimodal (log)
ISI distribution and the average distribution across all cells shows a clear separation of time
scales (Fig 1A). We define single unit bursts as sets of action potentials that are separated by
less than maxISI = 50ms (c.f. Lee et al. [2]).

Across the neuronal ensembles, these bursts are correlated with each other in time, corre-
sponding to spike avalanches where many neurons become simultaneously active [6,7]. We
binned the spike trains and found spike avalanches, defined as consecutive time bins with at
least one cell firing flanked by time bins with no activity from any cell (Fig 1B; see Materials
and Methods and [7]). The timescale for binning was selected by computing the average wait-
ing time for a spike from any cell in the ensemble; a spike avalanche therefore is a set of action
potentials preceded and succeeded by a longer than average wait for an action potential from
some neuron. These ‘rate-normalized’ time bins are data set dependent and allow for compar-
ing recordings of different numbers of cell and action potentials, as for a fixed time bin record-
ings with more (fewer) action potentials would have a systematic shift toward larger (smaller)
avalanches (c.f. [7,8]). The ‘size’ of a spike avalanche is defined as the number of spikes within
the avalanche. Consistent with earlier reports [7], we find that the size distribution of spike ava-
lanches is universal across rats and sessions and has a heavy tail relative to a null distribution of
spike trains generated by independently randomizing interspike intervals (Fig 1C). ‘Universal-
ity’means that the distribution of avalanche sizes is the same across all rats and sessions. The
‘heavy tail’ of the distribution means that large avalanches are much more common in the real
data than in surrogate data of uncorrelated spike trains; action potentials happen in ‘clumps’
whose sizes are not predictable from what is expected of uncorrelated neurons, even after
accounting for the ‘burstiness’ of individual neurons (ISI randomization). To quantify this dif-
ference in tails, we defined a large avalanche as an avalanche whose size exceeds 99% of all sizes
in the null data. All of the measured distributions had significantly more large avalanches than
expected under the null model (all p< 10−13, binomial test; see Table 2).

Previous studies of episodic reactivation during sleep have focused on short (~150ms)
epochs called ‘sharp-wave ripples’ (SWRs) during which the local field potential (LFP) has
high power in the ‘ripple band’ (>150Hz). Many neurons become active during SWRs result-
ing in long sequences, but it is known that every neuron is also active outside of SWRs [2].
Indeed, there is a smooth gradation between avalanches with few spikes to those with many
spikes (Fig 1C), indicating that there is not a categorical difference between the small and large
avalanches. Furthermore, the SWR signal in the LFP is in part due to the activity of many cells
firing at once and may serve as only a marker for large avalanches, but not their cause. Thus,
avalanches are a unit of analysis that is conceptually distinct from firing activity only during
SWRs. We note that other authors have used single unit criteria for identifying SWR periods
that are essentially equivalent to looking for large spike avalanches (c.f. [2]).

It is known that the firing order of neurons within SWRs contains information about behav-
ior prior to sleep [2]. The time-ordered collection of single neuron bursts within an avalanche
is a discrete sequence that describes the ensemble activity during these events (Fig 1B). We
parsed each spike avalanche into ‘words’ using a method adapted from Lee et al. [2].

Table 1. Classical place cell and other pyramidal cell numbers. Previous reports have indicated that
approximately 30–50% of hippocampal pyramidal cells are place cells in any given spatial context. In our
cohort we measured between 20% and 50%, in accordance with previous reports.

Rat (session) 1 (1) 1 (2) 2 3 (1) 3 (2)

# Classical place cells (# cells) 4 (10) 3 (12) 7 (15) 3 (6) 1 (6)

doi:10.1371/journal.pone.0147708.t001
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Fig 1. Burst structure of single units and spike avalanches. (A) The distribution of log-interspike intervals
during sleep for a representative example (rat 1, session 1) is bimodal demonstrating a fast spiking regime
with long gaps (bursting). The distributions for individual pyramidal cells from the session are shown in gray
and the population average is in blue. Interspike intervals < 50ms (red line) indicate that two spikes belong to
the same burst event. (B) Single unit bursts are correlated in time to produce ‘spike avalanches’ with many
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Specifically, for a single neuron we considered spikes separated by less than 50 ms (maxISI) to
be a single interval of activity represented by its initial spike time. We encode these activity
intervals as symbols, e.g. ‘1’ for neuron 1 and so on. The sequential behavior of the full ensemble
is then represented as a sequence of symbols, each with a corresponding initial timestamp. To
preserve the spike avalanche structure of the ensemble, we only parsed neurons into bursts
within an avalanche. Between avalanches, we add a new symbol ‘0’ for each empty time bin to
indicate these silent periods in the ensemble activity. The parsed data are a sequence of burst
words separated by ‘0’s. We call this full sequence the burst sequence (Fig 1B). The burst
sequence representation of the spiking dynamics is a coarse-graining of the spiking behavior
where we ignore the fast timescale rate modulations of the spiking but we capture the latency
to first spike for each neuron in the succession of bursts across the ensemble. This allows us to
distinguish rate coding from temporal coding. We note that the burst sequence parsing
depends on both the bin size for defining avalanches and the maxISI for defining a burst; differ-
ent choices of these parameters will result in different sequences. However, our choices are nat-
ural and data-driven. The universality of avalanche distributions (Fig 1C) results from the rate-
normalized time bins (as described above) indicating that an avalanche is a meaningful unit of
ensemble activity and by extension that the binning timescale is meaningful. The choice of
maxISI is dictated by the burstiness of pyramidal cells, which have a clear bimodal distribution
of log-ISIs with maxISI = 50 ms splitting the two modes (Fig 1A).

We define the length of a burst word as the number of symbols (with repeats) in the word.
In addition to the avalanche size distribution, the length distribution of burst words is also
heavy-tailed relative to the null distribution. Analogous to large avalanches, we define long
words as words with length exceeding 99% of the null distribution. Long words are generated
by the true ensemble significantly more often than in null data (all p< 10−6, binomial test; see
Table 2). Thus, large avalanches are composed of more bursts, not just more spikes per burst.

Second order sequential structure in spike avalanches
The burst sequence does not, in principle, have to have any statistical structure, i.e. bursts
could happen independently according to their burst rates without any preference for neurons

units active in a short period of time. An avalanche is defined as a sequence of time bins with spikes from
some cell in the ensemble flanked by empty time bins. An example of parsing the burst activity within an
avalanche into a discrete sequence is shown below. The boxed sequence is a ‘large avalanche’ that contains
a subsequence that is a length-4 match to the RUN sequence (in red). (C) Rank-frequency plots of spike
avalanche sizes (blue, population average over sessions in bold) compared to ISI-randomized data (black,
average over sessions in bold) show that large avalanches are more common in the observed data than
expected at random (all p < 10−13, Table 2).

doi:10.1371/journal.pone.0147708.g001

Table 2. Statistics of avalanche sizes and word lengths. The average number of spikes in a spike avalanche (size) is larger than expected from ISI-ran-
domized null data. The number of large avalanches (>0.99-quantile of the null size distribution; see Materials and Methods) is significantly higher than
expected in null data (binomial test). The average number of neural bursts (word length) is also larger than expected in the null distribution. Likewise, the num-
ber of long words is significantly larger than expected in null data.

Rat
(session)

Mean avalanche size (null
mean ± std. err.)

# large avalanches (null
expectation, p-value)

Mean word length (null
mean ± std. err.)

# long words (null
expectation; p-value)

1 (1) 4.81 (4.51±0.02) 345 (105; 3.6e-66) 2.76 (2.60±0.01) 318 (110; 9.8e-60)

1 (2) 4.59 (4.35±0.02) 172 (67; 4.9e-17) 3.33 (3.16±0.02) 158 (67; 8.7e-22)

2 4.96 (4.42±0.02) 713 (255; 1.1e-84) 2.91 (2.60±0.01) 947 (293; 5.2e-205)

3 (1) 5.29 (4.59±0.05) 69 (20; 5.7e-14) 3.49 (3.02±0.03) 68 (22; 1.2e-15)

3 (2) 5.03 (4.67±0.04) 138 (51; 1.2e-16) 3.65 (3.39±0.03) 140 (59; 8.0e-20)

doi:10.1371/journal.pone.0147708.t002
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to fire in particular sequences. To determine if the burst sequence had nontrivial sequential
structure, we fit variable length Markov chains (VLMCs) of varying maximum depth to the
burst sequence (see Materials and Methods).

A VLMC is a type of Markov chain, a class of stochastic models of discrete sequences that
predict the symbols of a sequence as a function of history of the sequence. A Markov chain is
parametrized by a matrix of transition probabilities with rows indexed by an exhaustive set of
possible sequence histories (contexts) and columns indexed by the possible upcoming symbols
(alphabet). The probability of occurrence of each upcoming symbol therefore depends on the
context. For example, the probability of seeing a ‘2’ in the sequence depends on which symbols
are immediately preceding. Howmuch of the history is relevant and how these histories modify
the symbol probabilities are learned from the data [9]. The maximum context length is called
the depth of the model.

Unlike fixed order Markov models, VLMCs allow the lengths of the contexts to vary. In a
dth-order Markov model for an alphabet of size A, one has to estimate the transition probabili-
ties for each of the Ad possible histories, resulting in a model with A � Ad = Ad+1 free parame-
ters. This makes high order models impractical for sequences with even modest alphabet size.
The central insight of VLMCs is that not every possible history is equally relevant for describ-
ing the sequential structure of the data. Some (potentially long) contexts frequently occur and
are highly predictive of the future of the sequence, while others might not contribute predictive
power over shorter contexts that generalize them. For example, does knowing that a ‘1’ instead
of a ‘2’ happened 6 bursts ago appreciably modify our predictions about the next element of
the sequence over and above the prediction we would make knowing only the last 5 bursts? For
a general sequence, the answer to this question is nontrivial. VLMC learning algorithms iden-
tify the relevant contexts and learn transition parameters for them, solving this problem in a
purely data-driven manner. We stress that this context learning is conceptually important even
if (as we will see below) the optimal models are low depth; a priori a structured sequence could
be structured through short- or long-range interactions. Identifying these interactions is critical
to understanding the data sequence. Thus, VLMCmodels can, in principle, capture long con-
texts, say length 5, without the burden of having to fit a full 5th-order Markov chain [9] and are
therefore highly flexible models for sequential data.

We used 10-fold cross-validation to avoid overfitting to the burst sequence and to assess the
maximum depth at which the statistical structure is captured. We define the normalized infor-
mation, NI, as the fraction of total sequential information available in the data sequence cap-
tured by the depth-d models (see Materials and Methods for mathematical definitions). NI has
a value of zero if a model has no sequential structure at all (i.e. independent random sampling)
and has a value of one if it is the optimal model. We see that across all rats and sessions the
VLMCmodels saturate at depth 2 meaning that the best prediction of the upcoming symbol in
the sequence depends most strongly on the previous two symbols. On average, first-order Mar-
kov chains captured around 90% of the sequential information and the second order structure
captured a further 10% (Fig 2A). This saturation at depth 2 is potentially a feature of the mea-
suring a small subset of neurons in the full hippocampus and it may be that measuring larger
ensembles would reveal longer-range sequential structure. Indeed, the probabilities in the
VLMCmodels are an estimation of the sequential correlations between the measured neurons
and these correlations are certainly a function of the firing of other, unmeasured neurons. Nev-
ertheless, a statistical description of a superset of the measured ensemble will have to produce
the observed sequential correlations in the measured ensemble, but interleaved with bursts
from other unmeasured cells. Cross-validation allows us to tune the fitted model to the robust
correlations in the measured ensemble without overfitting.

Short-Range Temporal Interactions in Sleep
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The above shows that the burst sequence is sequentially structured, but there are two types
of symbol in the sequence, symbols representing bursts (e.g. ‘1’, ‘2’, ‘3’, etc.) and the symbol
representing silence (‘0’). To see if the fitted model contains nontrivial structure between neural
bursts and not just structure related to the population bursting of avalanches, we scrambled the
burst sequence by randomly permuting the bursts within the sequence but fixing the ‘0’s. This
preserves the burst rates of each neuron and all of the temporal structure between silence and
bursting, but reduces all sequential correlations between bursts to noise. We fit VLMCs to
these scrambled sequences. The models fitted on the scrambled sequences achieve only a frac-
tion of the normalized information of the true data sequence (Fig 2A, inset). We emphasize
that the scrambled sequences are structured; they have significant correlations due to the ava-
lanche structure of the burst sequence, but those correlations alone do not account for all of the
sequential information learned by the fitted models on the true data sequence. For subsequent
analyses we used VLMCs of maximum depth 2 and we refer to this model as the fitted model.
Note that because VLMCs learn the relevant contexts, which have variable length, they are
buffered against model misspecification, e.g. while fitting a depth-2 model on first-order data
the algorithm ‘prunes’ the contexts back to first-order (for a detailed discussion of VLMC
model learning see Begleiter et al. [9]).

The VLMCmodels make predictions of the rates of occurrence of subsequences within the
burst sequence [9]. To visually assess the model fit, we computed the expected number of
occurrences of each unique observed burst word under the fitted model and compared the

Fig 2. Second order statistical structure in population bursts. (A) Cross-validation of VLMCmodels demonstrates that the optimal memory depth for
predicting the future of the burst sequence is d = 2, where the normalized sequential information (NI) approaches it asymptote of 1. Blue curves show NI as a
function of model depth for each rat and session. The red curve shows the population average. Note that ~90% of the sequential structure is captured at
depth d = 1 (first-order Markov model) with an improvement (~10%) at depth d = 2, after which point the VLMCmodels saturate. (Inset) NI as a function of
depth for the fitted model (blue, Rat 1, session; all sessions are similar) compared to models fitted on ‘null sequences’ that have had neural bursts randomly
permuted (black) shows that that sequential structure between neurons is a significant feature of the burst sequences. The null sequences preserve the
avalanche structure, which is captured as a first-order Markov chain, but the null models saturate significantly below NI = 1 (error bars show the min and max
NI for 100 permutations of the burst sequence). (B) The VLMCmodels predict the frequency of occurrence of each distinct burst word in the burst sequence.
Log-log plots of observed versus predicted frequencies for a representative example (Rat 2) of the burst words demonstrate that the fitted VLMCmodel
outperforms the uncorrelated model. Each point corresponds to a unique word from sleep and the color corresponds to the fitted model (blue) or independent
model (green). A perfect match between the predicted and observed frequencies would correspond to points along the black line (y = x). Note that at the low
frequency end the sampling error results in larger deviations in the graph from the identity line.

doi:10.1371/journal.pone.0147708.g002
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predicted frequencies to the observed frequencies of the words (Fig 2B, blue points). The inde-
pendent model, which assumes the same symbol frequencies but no sequential correlations,
makes much larger errors in predicting the word frequencies (Fig 2B, green points) demon-
strating that sequential correlations are significant features of observed burst sequence. Thus,
the VLMCmodels are capturing the longer-range sequential structure within the burst
sequence, even though they only explicitly account for interactions across three consecutive let-
ters (second order model). In other words, the short-range temporal interactions of the ensem-
ble are sufficient to describe the long-range sequential structure.

Replay of behavioral sequences
Prior to sleep, the rats ran in a circular track for a food reward. During behavior the firing rates
of pyramidal cells vary as a function of the rats’ position. The position-dependent firing can be
highly localized in a single firing field or more diffuse with multiple firing fields (Fig 3 and S1–
S4 Figs; Table 1). We call these two pyramidal cell subtypes classical place cells and other pyra-
midal cells respectively. It is unknown what hippocampal inputs are relevant for determining
the spatial firing rates of individual pyramidal cells, but it is known that these rates depend on
position, experimental context [10–12], and the cell assemblies to which the cell belongs [13].
Classical place cells fire in sequences during spatial navigation and repetitive behavior leads to
repetitive activation of particular sequences, which allows us to define a behavioral ‘RUN
sequence’ associated to the experimental behavior (Fig 3 and S1–S4 Figs). We define the RUN
sequence as the sequence of classical place cells ordered by their firing order as the rat traverses
the track; in Fig 3 the RUN sequence is 1-2-3-4-5-6-7. We note that the RUN sequence is
defined exclusively from behavior and is completely independent of our analysis of firing dur-
ing sleep.

The firing sequence of classical place cells during behavior is known to be related to the
burst activity during sleep as it has been shown that sequential firing during sleep is biased to
produce partial matches to the RUN sequence. Furthermore, sleep replay has been observed
with similar numbers of recorded cells as in the current study [2]. Four of five sessions repre-
senting all three rats had multiple place fields allowing for defining a RUN sequence and look-
ing for RUN sequence enrichment during sleep.

Consistent with reports of hippocampal replay, we find that the RUN sequence observed in
each rat and session is more probable under the fitted model (Tables 3 and 4) than under a
comparator model, the avalanche independent model (AIM), that has no sequential correla-
tions between neurons but does preserve the burst rates and avalanche structure (see Materials
and Methods). We define the likelihood ratio of a sequence as the ratio of the probability of the
sequence under the fitted model to the probability under the AIM. When the likelihood ratio
exceeds 1 the sequence is enriched, otherwise it is depleted. The likelihood ratio quantifies the
extent to which the sequential structure of the fitted model is biased to produce the particular
sequence relative to the AIM. A likelihood ratio of 2 indicates that the correlations in the data
make the appearance of that sequence twice as likely as would be expected in sequentially
uncorrelated data. The likelihood ratio for the RUN sequence was greater than one for all ses-
sions, indicating that the RUN sequence is enriched in the sequential structure of sleep firing.

However, the likelihood ratios, as well as the computed RUN sequence probabilities under
the Markov models, are functions of the training burst sequences, which inevitably have sam-
pling noise. We can assess statistical significance of a likelihood ratio by considering the ‘jitter’
in the model fitting during cross-validation. We assign z-scores and p-values to sequences
based on the variance of the ratios when some training data is held out (see Materials and
Methods). Note that p-values for different sequences are correlated; so multiple hypothesis
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testing corrections are likely to be conservative. The z-scores for 3 out of 4 sessions represent-
ing each of the rats were statistically significant.

In addition the RUN sequence, we define RUN-order sequences as sequences of place cells
that occur in the behavior order but with gaps. For example, 1-3-4 is a RUN-order sequence
for the RUN sequence 1-2-3-4-5-6-7 in Fig 3. These sequences allow us to ask whether partial

Fig 3. Spatial variation of pyramidal cells firing during RUN.During behavior rats ran in a 1m diameter circular track for 20 minutes for food reward.
Raster plots of pyramidal cell firing show the spatial rate modulation for the measured cells. Angular position along the track is binned into 200 bins (~16cm of
arc). Each cell has a color and spatial bins are colored by whether or not the cell spiked within that bin during a trial. Trials are stacked on top of each other by
cell, so each set of rows of one color represents the spiking of a single cell over all trials. We only display data from trials in one direction around the track (the
direction with the most turns in the session) and only cells that had > 50 spikes for such trials. The firing rate of measured pyramidal cells varied as a function
of angular position along the track (Rat 2, but all sessions are similar). Some cells had single place fields indicating a strong place preference for firing
(classical place cells, blue bar at right). Other cells showed firing rate variation as a function of angular position, but with multiple firing peaks (other pyramidal
cells, green bar at right). The ‘RUN sequence’ is defined as the order of firing of the classical place cells along the direction of the track. In this case, the RUN
sequence is 1-2-3-4-5-6-7, as the first seven cells are classical place cells that fire in that order as the rat runs along the track. The classical place cells have
largely nonoverlapping place fields, while the other pyramidal cells cofire with multiple place cell and each other and do not provide obvious sequential
episodes during behavior like the classical place cells.

doi:10.1371/journal.pone.0147708.g003
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reactivations of the RUN sequence are enriched as well as the full sequence. Analyzing RUN-
order sequences also allows us to answer whether we would have been able to identify RUN
enrichment if we had not measured all of the cells we did measure. Conceptually this is an
important positive control because every experiment is limited in how much of the system it
measures.

We computed z-scores for all RUN-order sequences. For all sessions approximately 50% of
all RUN-order sequences were significantly enriched (p< 0.05 Bonferroni correction for mul-
tiple hypothesis testing; Table 3). As described above, these significant enrichments include the
full RUN sequence in three out of four sessions. (Rat 1, session 2 had a 3 cell RUN sequence,
two length-2 subsequences of which are significantly enriched.) The histogram of z-scores for
the 120 RUN-order sequences for Rat 2 shows that many (55/120) of those sequences as signifi-
cantly enriched in the fitted models (Fig 4A). Note that there are also significantly depleted
sequences in Fig 4A (large negative z-scores), indicating that the enrichment of the RUN-order
sequences is not due to a general up-regulation of arbitrary place cell firing sequences.

The enrichment of the RUN-order sequences shows that the sequential structure during
sleep produces the RUN-order sequence at rates higher than would be expected if the neuronal
bursts within an avalanche were completely uncorrelated. Rat 2 had a long sequence of classical
place cells (7/15 cells) that could be used to further explore the enrichment of the RUN
sequence. We computed the enrichment of all 5040 permutations of the length-7 RUN
sequence. (Note that these 5040 sequences are a tiny subset of all 157 = 170,859,375 possible

Table 3. Replay of RUN-order sequences. During behavior place cells fire in sequences that are replayed
during sleep. The fitted VLMCmodels encode the sequential correlations between cells during sleep and pre-
dict the probabilities of the RUN sequences and their subsequences (RUN-order sequences). The majority of
these likelihood ratios indicate that they are enriched relative to avalanche independent model. However, the
raw likelihood ratios do not directly attest to the statistical significance of this enrichment. We assessed signifi-
cance using the z-score of the likelihood ratio computed using the values from 10-fold cross validation. These
z-scores incorporate the ‘jitter’ in the model fitting and provide a strong signature of statistical significance of
the likelihood ratio. The significance level was set at p < 0.05 after Bonferroni correction for multiple hypothe-
sis testing. However, we note that the likelihood ratios for all sequences are correlated, so this significance
level is stringent. The full RUN sequence was significantly enriched in 3 of 4 sessions (representing all three
rats).

Rat
(session)

# Enriched (Significant) RUN-order sequences
(/ Total)

Full RUN sequence enriched
(significant)?

1 (1) 9 (5 / 11) Yes (Yes)

1 (2) 4 (2 / 4) Yes (No)

2 91 (55 / 120) Yes (Yes)

3 (1) 4 (2 / 4) Yes (Yes)

doi:10.1371/journal.pone.0147708.t003

Table 4. Enrichment of the RUN sequence during spike avalanches. The RUN sequence occurs at different rates in different Markov chain models (ava-
lanche independent, true, and RUN-optimized; columns 2–4 respectively). In the fitted model the RUN sequence occurs at a rate between 1.3- and 2.2-fold
higher than under the temporally unstructured avalanche independent model demonstrating that there is a statistical enrichment for the RUN sequence in the
burst sequence (column 5). The true enrichment is only a small fraction of the amount possible given the burst rates. Under the RUN-optimized model, the
RUN sequence occurs at rates between 60- and 2x108-fold over the avalanche independent model (column 6). This demonstrates that the fitted model is not
producing the RUN sequence close to the theoretical maximum rate.

Rat (session) Independent rate, rAIM
(occurrences per symbol)

Fitted rate, rfit
(occurrences per symbol)

Maximal rate, rmax

(occurrences per symbol)
rfit / rAIM rmax / rAIM

1 (1) 1.68e-07 2.49e-07 1.04e-03 1.48e+00 6.18e+03

1 (2) 7.11e-07 9.34e-07 3.04e-03 1.31e+00 4.27e+03

2 4.03e-13 8.71e-13 6.87e-05 2.16e+00 1.70e+08

3 (1) 1.92e-04 2.98e-04 1.15e-02 1.55e+00 5.97e+01

doi:10.1371/journal.pone.0147708.t004
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length-7 sequences from the 15 measured cells.) The RUN sequence is in the top 9% of likeli-
hood ratios for the permuted sequences showing that it is among the most strongly enriched
sequences that can be built out of the 7 place cells (Fig 4B). Note that this distribution of likeli-
hood ratios for permutations of the RUN sequence does not constitute a null distribution nor
does the 0.09 quantile of the RUN sequence within this distribution constitute a p-value. The
null model is the AIM and the RUN sequence as well as many of the permuted sequences has a
likelihood ratio exceeding one, indicating enrichment. Also note that, as with Fig 4A, there are
many likelihood ratios below 1, indicating depletion of certain sequences. Thus, the up-regula-
tion of the RUN sequence and many permutations of it cannot be ascribed to a general up-reg-
ulation of all place cell sequences.

RUN optimal Markov chains
The trained behavior of running in a circular track for food is clearly a salient experience for
the rats and the RUN sequence is enriched during sleep, but it is only one of many such
sequences. Thus, the RUN sequence is not occurring at the theoretically maximum rate. It
remains unclear, however, what that maximum rate would be and how the true rate compares
to this maximum rate.

We constructed first-order Markov chains that maximized the rate of occurrence of the
RUN sequence subject to the constraint that the burst rates of each neuron are equal to the
observed rates. In effect, we identified the Markov chains that produce the maximum amount
of RUN sequence possible given the burst rates. This optimized model allows us to characterize
the capacity of a hypothetical ensemble with the measured burst rates and avalanche structure

Fig 4. Enrichment of behavior related sequences. (A) The histogram of standardized log-likelihood ratios of all ‘RUN-order’ sequences for Rat 2 shows
enrichment of subsequeces of the RUN word. The RUN sequence for Rat 2 was 1-2-3-4-5-6-7 (see Fig 3), and RUN-order sequences are any sequence in
which cells fire in this order, but with gaps (e.g. 1-3-5-7). There are 120 such sequences and 55 of them are significantly enriched (see Table 3) indicating
significant enrichment for sequences in RUN-order. The vertical red line indicates the significance level p < 0.05 with a Bonferroni correction for multiple
hypothesis testing. (B) The histogram of likelihood ratios of all 5040 permutations of the RUN sequence for Rat 2 shows that the RUN sequence has a
likelihood ratio in the 9th-percentile of this distribution (vertical red line), indicating that it is strongly enriched relative to other comparable sequences in the
ensemble firing. Note that this distribution shows both up- and down-regulation of place cells sequences in the fitted model indicating that the sequential
structure in the fitted model does prefer for place cells to fire in certain orders and not others. Thus, the enrichment of the RUN sequence cannot be attributed
to a general up-regulation of arbitrary sequences of these place cells.

doi:10.1371/journal.pone.0147708.g004
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to produce the RUN sequence. This model describes the scenario where a particular spatial
memory is prioritized over all other memory encoded by these cells and sleep is constrained to
rigidly generating that specific cascade whenever any place cell fires. We compared this maxi-
mum rate (rmax) to the rate under the fitted model (rfit) and the AIM rate (rAIM) and we note
that, while in all cases the RUN sequence appears more often under the fitted model than
under the AIM, the fitted model produces the RUN sequence at only a tiny fraction of the rate
possible for the measured burst rates (Table 4).

Note that the rates predicted by the models are inversely related to the length of the
sequence and these rates are expected to go to zero as the sequence size grows. This is because
for a larger number of cells there are more options for transitions. Thus we expect the discrep-
ancy between the fitted rate for any sequence and the model optimized for that sequence to
grow with the number of cells. Nevertheless, the RUN-optimal models characterize the capac-
ity for the ensembles to produce the RUN sequence and provide a check for how well the fitted
models approximate the perfect RUN cascades. These rates demonstrate that the ensembles are
not simply ‘noisy’ RUN sequence generators during sleep and the place cells participate in
many sequences other than the RUN sequence.

Sequential structure between classical place cells and other pyramidal
cells
Pyramidal cells that are not classical place cells are typically removed from sequence-based analy-
ses of sleep replay because of their complex spatial structure, whereas classical place cells yield
distinct sequences of firing that can be expected as replay events [2]. Moreover, their distinction
during behavior suggests that other pyramidal cells may play a fundamentally different func-
tional role from classical place cells. Nevertheless, all pyramidal cells are bursty during sleep (Fig
1A). The sequential structure during sleep indicates that digrams (2-symbol sequences) of firing
history are predictive of the upcoming neuron to fire. These digrams contain both classical place
cells and other pyramidal cells, but they do not all appear with equal frequency. Some digrams
are relatively common, while others are rare. We computed log-likelihood ratios for digrams
under the fitted model and the AIM. Normalizing by the AIM allows for determining which
digrams were enriched purely by the temporal structure between neurons in the fitted model and
not because of the background firing rates of the neurons, which vary over two orders of magni-
tude (data not shown). If place cells preferentially fired in sequences with place cells, then we
would see a rightward skew in the distributions of the place-place density relative to the place-
other density, and likewise for other pyramidal cells. However the three densities are statistically
indistinguishable (Fig 5A, all p> 0.05, Kolmogorov-Smirnov statistic for 1000 random permuta-
tions of cell labels). Indeed, the sequential structure is mixed between both types of cell. Because
a digram can only be enriched if that transition occurs more often in the true data than under the
AIM, this demonstrates that classical place cells and other pyramidal cells are predictive of each
other’s bursting within an avalanche and therefore correlated.

Networks and enriched sequences
The VLMCmodels encode the temporal structure of the burst sequence as a set of transition
probabilities from each context (digram) to each possible next burst. We compared the transi-
tion probabilities of the fitted models to the AIM by taking log ratio of each transition probabil-
ity in the fitted model to the corresponding probability in the AIM. This yields a rectangular
conditional log-likelihood matrix, R, which encodes how each context (indexing a row) up- or
down-regulates the burst rates of each neuron relative to the uncorrelated AIM (see Materials
and Methods). Analogous to the likelihood ratios for sequences, a transition for which this log
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ratio exceeds 0 is an enriched transition otherwise it is a depleted transition. These values vary
from 16-fold below background (i.e. some contexts suppress the firing of some neurons) to
4-fold above background with typical values lying between ±2-fold over background (Fig 5B).

Fig 5. Interactions between classical place cells and other pyramidal cells. (A) The densities of likelihood ratios for place-place, place-other, and other-
other digrams (2-element sequences) qualitatively show no preference for classical place cells to fire with other classical place cells (blue density) or other
pyramidal cells with to fire with other pyramidal cells (green density) versus firing together (magenta density). Permutation testing shows that none of the
distributions is significantly different (all p > 0.05, Kolmogorov-Smirnov statistic for 1000 random permutations of cell labels). Densities are shown for
likelihood ratios pooled for all rats and sessions. (B) The histogram of conditional log-likelihood ratios for the fitted models (pooled for all rats and sessions)
shows that the historical context of the burst sequence modulates the bursting rates of the other neurons in the ensemble between 64-fold below and 8-fold
above background with typical values between ±2-fold of background. (C) The set of enriched transitions in the first-order Markov chain fit to the burst
sequence can be viewed as a network of transitions between cells, where an arc is placed from one cell to another if the bursting of the source cell up-
regulates the firing rate of the target cell. This network is directed; left-handed arcs from a node represent paths leading away from a node. Paths in this
network represent sequence of transitions that are enriched in the temporal structure of the burst sequence. We show the network for Rat 2 for varying
thresholds within the rate modulation distribution (see panel B; node labeling corresponds to Fig 3). All rats and sessions look similar. Note that the full
network of enriched transitions is densely interconnected (a ‘hairball’) indicating that each transition is part of a complex milieu of possibilities that generates
a tremendous variety of sequences during sleep. Furthermore, consistent with (A), classical place cells and other pyramidal cells are highly interconnected
with each other. We highlighted the RUN-order transitions (red arcs). Many of these enriched transitions occur in the top 50% of all enriched transitions, but
the network highlights graphically the extent of the sequence diversity that is enriched in the fitted model.

doi:10.1371/journal.pone.0147708.g005
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The set of enriched transitions can be viewed as a network where nodes are states of the
Markov chain and edges represent enriched transitions. This ‘enriched network’ encodes all
enriched sequences; by construction every path in this network represents a sequence of transi-
tions that occurs more often under the fitted model than the AIM. Fig 5C shows a representa-
tive example (Rat 2), however all sessions are similar. For clarity of display, we have used the
first-order Markov model so that nodes represent neurons. It is immediately clear that the net-
work is highly interconnected, with a tremendous number of edges indicating that each burst
from a neuron modulates the immediate firing propensities of many other neurons in the
ensemble. In addition, edges exist between both classical place cells (blue nodes) and other
pyramidal cells (green nodes) indicating that these cells are functionally interacting to produce
the observed burst sequence. While classical place cells and other pyramidal cells have poten-
tially distinct functional roles, there is very little distinction between them in the networks of
enriched transitions. In particular, the distribution of weighted node degree for the two classes
of cells is not significantly different (data not shown). This suggests that each class of neuron is
interacting with a similar fraction of the network.

As expected from the enrichment of RUN-order sequences, many of the RUN-order transi-
tions between classical place cells are enriched transitions in the fitted VLMCmodels. We have
highlighted these transitions within the network (Fig 5C, red arcs). Thus, many links from the
behavior sequence are enriched during sleep, but each transition takes place within a large
milieu of enriched transitions demonstrating that the RUN sequence is among many other
sequences enriched during sleep. The RUN sequence is therefore privileged in the sense that it
is enriched over the background firing rates, but it is only one of many such sequences.

Clustered contexts and the next element of the sequence
The second order structure in the Markov chains indicates that the history of bursting, i.e. the
previous digram, is the relevant context for predicting the next neuron to burst in the sequence.
For example, suppose that the two most recent bursts are the sequence σ = 1–2. The VLMC
model encodes the probability for the ensemble to transition to the next symbol given that the
history, Pfit(s|σ). This conditional probability encodes how the firing history of the ensemble
modulates the firing rates of neurons. We can compare these rates to the AIM, which has no
sequential structure between neurons, to quantify the up- or down-regulation of a transition in
the fitted model relative to the baseline firing rates. Specifically, we compute conditional log-
likelihoods for each transition, which are naturally structured as a rectangular matrix with con-
texts (digrams) indexing rows and symbols indexing columns (see Materials and Methods for
mathematical formulae). We denote these matrices by R.

Heatmaps of the R matrices show that the contexts cluster into groups according to how
they predict the future bursting of the ensemble, i.e. how they modulate the instantaneous fir-
ing rates of the neurons in the ensemble. Fig 6A shows a representative example, but all ses-
sions are similar (S5–S8 Figs). Two contexts are considered similar if they similarly regulate the
ensemble (i.e. if their corresponding rows in R are similar). We quantify this similarity by com-
puting the cosine of the angle between the row vectors or R corresponding to each pair of con-
texts (cosine similarity, see Materials and Methods). Hierarchical clustering shows that these
pairwise similarities between the rows of R have distinct clusters of contexts that similarly mod-
ulate the ensemble (Fig 6B). This clustering indicates that these multiple histories share similar
futures, in that within a cluster each context is making similar predictions about which neurons
are more or less likely to be the next to burst. This clustering is akin to how hippocampal net-
works are theorized to partition themselves into functional groups called cell assemblies [13–
15], or groups of neurons with structured coactivation that potentially encode memory. In this
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case, different sequential contexts precede futures with similar patterns of enrichment and
depletion of particular neural bursts. Independent of the mechanisms by which cell assemblies
are formed and activated, the fitted models show that measured ensembles are structured in
such a way that certain cells preferentially fire after certain contexts, while the context cluster-
ing shows that multiple contexts share their preferences, indicating an robust evolution toward
particular patterns of coactivation. This suggests that the sequential structure in the burst
sequence is, in part, related to the functional organization of the hippocampus.

Discussion

Behavior, memory, and the criticality hypothesis
Sleep replay is postulated to be a phenomenon at the center of memory consolidation [16–19]
and appears to be a single unit correlate of the reactivation of episodic memory that is subjec-
tively experienced by humans during sleep [20]. The complexity of daily behavior that is
encoded into memory requires a neural system that can capture regularities across disparate
environmental exposures encoded by the same set of cells and can integrate those exposures
with each other into coherent memories and useful insights that link the memories. A model of
this consolidation process is that temporally structured, ‘episodic’, sequences of neural firing
get ‘imprinted’ into the system during behavior and those sequences are repeated during sleep
to either strengthen the connections within the hippocampus that encode that memory or to
transmit a high fidelity copy of the memory to downstream cortical stores of long-term

Fig 6. Clustering of VLMC contexts. The historical context of firing modulates the probability of firing for the cells in the ensemble. The strength of this
modulation can be measured as a ‘conditional log-likelihood ratio’ comparing the fitted model to the avalanche independent model. These ratios can be
organized into rectangular matrices, denoted by R, with contexts in rows and symbols in columns (see Materials and Methods). (A) Heatmap of the R matrix
of a representative example (Rat 1, session 2) has clusters of contexts that similarly modulate the ensemble (black lines). The color scale represents the log-
likelihood ratio between the fitted model and the AIM; red indicated up-regulation, blue indicates down-regulation. We have set the color scale between -1
(2-fold down-regulation) and +1 (2-fold up-regulation) to clarify the clustering structure, but note that these values have greater variation (Fig 5B). In Rat 1,
session 2, clusters 1 and 2 strongly differentially regulate cells 1,3 7, and 9. This indicates that the cells represented in the contexts from different clusters
form cell assemblies of coactivating cells. Note however that there is wide variation within each cluster indicating that each context indeed uniquely
modulates the ensemble. (B) To visualize the clustering, we computed the cosine similarity matrices between pairs of contexts in the R matrices. These
similarity matrices encode how similarly two contexts modulate the ensemble. A value of 1 indicates that the contexts make identical predictions about the
upcoming neuron to fire, while a value of 0 indicates that the contexts are extremely dissimilar. The similarity matrices have clear block structure indicating
that the clustering in (A) is a strong feature of the R matrices (labels of four prominent clusters shown at the top of the similarity matrix).

doi:10.1371/journal.pone.0147708.g006
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memory. However, work in humans and rodents has shown that memory consolidation does
not function simply to strengthen memory, but rather to integrate memory into preexisting
associative networks by extracting the ‘gist’ of the experience and to generate insight across
multiple experiences [20]. It is unknown how the hippocampus manages the trade-off between
high fidelity reactivation of distinct episodes and generalization across similar, but not identi-
cal, episodes. We provide evidence that, at the system level, short-range interactions are biased
by behavior and that these short-range interactions are summed into long sequences, some of
which are behaviorally relevant.

In principle, sequential correlations between bursts within an avalanche could have been
trivial. Instead, we see enrichment for certain transitions, including those that generate replay
sequences related to the RUN sequence (Figs 4 and 5C). We also observe depletion of other
transitions. Our analysis shows that, in the ensembles measured, the optimum depth for
modeling burst sequences during sleep is two, meaning that each burst can only directly influ-
ence the bursting of a cell at most two bursts in the future. Mathematically however, a depth-2
model can have a variety of dynamical properties. They can be strict cascades, where the previ-
ous two bursts strictly determine the future, or they can evolve with high probability to many
possible symbols from each context. The fitted VLMCs are the latter (Figs 5C and 6). Thus, we
provide direct evidence that ensemble activity during sleep is a complex mixture of sequential
activity that is largely constructed out of short sequences, fragments of experience, that are
pieced together, analogous to a language in which letters are joined in coherent ways to make
words. This augments the observation of replay by placing replay events within a complex con-
text of multiple enriched sequences.

The structure of avalanches in neural networks has been studied extensively in connection
to the criticality hypothesis of neural dynamics [6]. At criticality, a neural network displays ava-
lanches that span many orders of magnitude in size and duration. We show that spike ava-
lanches in the hippocampus during sleep are distinguished from null data both in their size
(number of spikes) and in the lengths of the burst words contained within them (Table 2). The
existence of large avalanches and long words raises the question of whether it is adaptive for
the brain to produce these long words. In our experiments, the long words in the burst
sequence each appear only once during the entire sleep session. Meanwhile, the short-range
statistics of these words are enriched for behavior. This suggests that the diversity of sequences
generated by the avalanche dynamics during sleep is functioning to integrate all of these short
sequences together in novel ways. This may be related to insight generation, the process of
combining disparate pieces of information into a unified framework, a process known to be
sleep-reinforced in humans [20]. Thus, the short-time interactions within the neural sequences
appears as a mechanism for mediating the tradeoff between needing to imprint specific
sequences (memory strengthening) and generating novel associations between memories
(insight); behavior enriches certain short sequences, while the avalanche dynamics mix these
pieces together in long events. More often than expected at random these mixtures will decode
to RUN replay event. Although the only behaviorally relevant sequence that we have formally
studied is the RUN sequence, inspection of the enriched networks shows that reverse replay
transitions are also enriched in our models (Fig 5C).

Classical place cells vs. other pyramidal cells
Under the classic criteria [21], a cell is a ‘place cell’ if it has 1) a visually identifiable place field,
2) the place field contains at least 9 contiguous spatial pixels and 3) the spatial coherence is
greater than 0.3. These cells are typically selected for sequence-based replay analyses, while
cells with low spatial coherence or multiple place fields are discarded, as single firing field place
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cells yield clear ‘episode sequences’ during behavior that can be identified as replay during
sleep. The Markov chains we constructed, in contrast, are composed of bursts from all pyrami-
dal cells measured during behavior. Nearly all pyramidal cells showed rate modulation as a
function of position (Fig 3 and S1–S4 Figs), but most (63%) did not localize strongly in a single
firing peak (Table 1). Thus, their firing is position dependent, but not to the extent of the dis-
tinct single field classical place cells. While other pyramidal cells do not show spatially localized
firing during behavior, they are bursty during sleep (bimodal log-ISI distributions; Fig 1A) and
become active in concert with the other cells in the measured ensemble. Thus, even though
these cells do not undergo simple sequential firing during the experimentally measured behav-
ior, they do fire within spike avalanches during sleep and are surely involved in behavioral
encoding.

The hippocampal spatial code is a population code, i.e. the neural representation of position
is distributed across multiple place cells. Standard tools for analyzing place cell ensembles are
Bayesian decoding techniques that predict the location of the rat based on the ensemble firing
pattern of place cells by inverting the spatial encoding using Bayes’ rule [22,23]. The trained
decoding model is then used to interpret the sleep firing of the same ensemble and various
properties of the decoded patterns are observed [24,25]. Bayesian decoding methods do work
for pyramidal cells with multiple place fields (our ‘other pyramidal cells’); indeed, any spatial
modulation of the firing rate of a cell provides some information about where the rat is. How-
ever, Bayesian decoding methods are supervised techniques and cannot be used in situations
where it is unknown what features, e.g. a location in space, the neurons represent. Indeed, it is
known that pyramidal cells that have high spatial coherence in one arena are often not classical
place cells in other arenas [10–12]. Pyramidal cell ensembles therefore likely retain multiple
features of the rat’s awake experience, presumably even features that are not under experimen-
tal control. If sleep replay of awake experience is a generic phenomenon used for all hippocam-
pus-dependent memory consolidation it must be a complex milieu of memories supported on
a shared neural substrate. Sequences that are coherent reactivations of traversing one enclosure
could look nonsensical when interpreted as possible reactivations of sequential firing in
another enclosure.

One of the virtues of sequence-based decoding of sleep replay is that it works with relatively
modest numbers of measured cells as in the experiments reported here (c.f. [2]). If a set of
place cells fires in a particular order during a repetitive behavior, then that sequence serves as a
template for the reactivation of those episodes in sleep. During replay these cells will still fire in
the same relative order independent of the number of measured cells. We augment this
approach using phenomenological models (Markov chains) that describe the temporal statis-
tics of the spike avalanches without explicit recourse to how these cells fire during behavior (i.e.
independent of the behavioral encoding). These models yield three important observations.
First, pyramidal cells are significantly sequentially correlated during sleep and those correla-
tions are enriched for behavior-related sequential firing. Second, these sequential correlations
exist between classical place cells (where behavioral sequences are clearly defined) and other
pyramidal cells. Third, the sequential structure of bursts during sleep is not simply a ‘noisy’
replay of a singular experience, even in a case where that experience is highly repetitive and
salient. Several authors have made similar points before [2,26,27]. We add to this observation
by showing that, in fact, the sequential structure of firing during sleep produces many burst
words that vary in frequency over several orders of magnitude and including a greater than
expected number of long words (Fig 1C, Table 2). The structure of firing during sleep in this
way resembles a full language more than a simple mixture of a few noisily repeated patterns. It
is an open question for future research behavior modulates this large set of enriched sequences.
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Conclusions
The paradigm of behavioral neuroscience is to relate patterns of neural firing to outcomes in
behavioral experiments. Systems neuroscience augments this approach by considering the cor-
related firing of neuronal ensembles per se to gain insight into how behavior shapes neural
dynamics and the magnitude of that effect. Using a systems neuroscience approach, we find
that repetitive running in a circular track enriches short sequential firing patterns that sum
into large sequences of hippocampal pyramidal cells but that these behavior-related patterns
are embedded in a much larger network of such short sequences. These sequences include
pyramidal cells for which sequential episodic encoding is less straightforward. This shows that
sleep replay is fragmented. It coexists and is potentially integrated with many other firing pat-
terns that are likely also to be replay of experiences other than the measured running behavior.

Materials and Methods

Animals
3 Sprague Dawley male rats (300–350 g) were used in the study. All behavioral, pharmacologi-
cal, and surgical procedures were done in accordance with National Institutes of Health guide-
lines and approved by the Dartmouth College Institutional Care and Use Committee.

Electrode preparation
32-channel electrode arrays manufactured in the late Robert U. Muller’s Laboratory (State Uni-
versity of New York, Downstate Medical Center, Brooklyn, NY) were used. Seven indepen-
dently-drivable tetrodes consisting of bundles of 25 μm nichrome wire (A-M Systems, Sequim,
WA) were individually inserted into polymicrotubing (Neuralynx, Bozeman, MT). Two addi-
tional 100 μmwires (California Fine Wire, Grover Beach, CA) were also included in the elec-
trode array, one used to measure local LFPs and one inserted into the cerebellum as a
reference. Two additional stainless steel wires (0.25mm) were soldered to 0.025 cm-thick wire
and used for EMG (Plastics One, Roanoke, VA). Tetrodes were connected to a Mill-Max
connector (Mill-Max, Oyster Bay, NY) and gold-plated to reduce impedences below 300kO.

Surgery
Rats were anesthetized with isoflurane (2% in O2) until unresponsive to a tail pinch. An inci-
sion was made in the scalp, skull was exposed and five small holes were drilled. Three skull
screws were affixed above the left parietal and left frontal cortex and the cerebellum. The
ground wire was soldered to the cerebellar screw and the reference wire was inserted between
the skull and the cerebellar parenchyma. The tetrode array was lowered so that the tip of the
bundle was above the CA1 pyramidal cell layer (-3.8mm A/P, -2.0mmM/L, -1.8mm D/V).
EMG wires were inserted bilaterally into the nuchal muscles. The entire complex was secured
to the skull with dental cement. Animals were allowed to recover for a week prior to screening.

Screening and Data Acquisition
Tetrode assemblies were advanced 50μm three times per day with 4hr between recordings until
waveforms of 100μV or larger were detected. The signal from the electrodes was preamplified
directly from the rat's head by operational amplifiers and transmitted via a custom cable
attached to a rotating commutator connected to a Neuralynx recording system (Neuralynx,
Bozeman, MT). Tetrode signal was recorded at 32kHz. EEG was band-pass filtered 0.1-30Hz
and EMG signal was filtered at 10-50Hz. Recordings were performed in an open arena placed
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in a sound proof custom designed Faraday cage. The location of the rat was recorded and
tracked using an LED attached to the preamplifier attached to the head of the rat.

Behavioral Task
Rats (N = 3) were trained to run in a familiar circular track in one direction. The diameter of
the circular environment was 1 m, with a 10cm wide path and 60cm high walls. Rats were food
restricted and rewarded with a food pellet when turning in the same direction to reinforce the
behavior. Sessions where the rat did not turn in the same direction or did not complete the
turn were not rewarded and considered incorrect. Animals were required to complete 20 or
more correct turns in 15min. Once animals met this criterion, single units and LFPs were
recorded during each 20 min session (RUN). After each session, animals were placed back in
their home cages and single unit, LFP, and EMG were recorded for 1hr.

Sleep Scoring
Local EEG data were collected from the hippocampal electrodes and EMG data were collected
from leads implanted in the nuchal muscles. EEG was filtered 1–35 Hz and EMG was filtered
at 1050 Hz. Theta (4-12Hz) and delta (1-4Hz) power in the EEG signals was calculated. Behav-
ioral states were determined using 10s time windows of EEG and EMG data; awake states were
periods of movement on the EMG with a low delta/theta ratio, while sleep states were periods
with loss of muscle tone and no activity on the EMG.

Offline Data Analysis
Action potentials (spikes) were clustered using Neuralynx Spike Sort 3D software (Bozeman,
MT). We only retained cells that fired during both RUN and POST. We applied two firing rate
filters to select cells for study. First, we only retained cells that fired more than 50 spikes during
RUN. Second, to remove interneurons we selected only cells with firing rate less than 10 Hz
during POST. Once cells had been selected, firing rate maps were computed in Matlab (Math-
Works, Natick, MA) showing action potentials firing per pixel. Rate maps were established by
dividing the firing map by the time the animal spent in each pixel. The rate maps showed the
number of spikes per pixel per unit time [9,21,28]. Place cells were defined by the spatial locali-
zation of their firing fields by two criteria: coherence and concentration of spiking in angular
coordinates of the circular track. First, place cell candidates were putative pyramidal cells that
had a place field that was more than nine contiguous pixels and a firing rate three or more
times greater than the session average [9,21]. Two-dimensional nearest-neighbor autocorrela-
tion of each place cell’s firing rate within a 1x1 cm pixel with its eight nearest neighbors was
defined as ‘spatial coherence’ [9,21]. Spatial coherence measures were used as an estimate of
the spatial fidelity of cell firing within a place field [9,29]. Second, angular concentration was
defined as having> 70% of spikes within a contiguous 40% of the angular distance around the
track. Place cells were defined as putative pyramidal cell having coherence> 0.3 and being con-
centrated in angle as above.

To avoid recording the same cells twice, the tetrodes were advanced at least 25 μm at the
end of each recording session. Thus, the neurons sampled in the animals with more than 1
recording were different.

Spike avalanches and burst word parsing
Spike avalanches are a phenomenon in neural systems where groups of action potentials are
fired in bursts and the system becomes quiescent again [7,10–12]. To define the beginning and
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end of spike avalanches, we first binned the spike trains of the ensemble during sleep. Spike
avalanches were then defined as a set of consecutive time bins in which at least one cell had an
action potential flanked by time bins during which no cell had an action potential. Because the
ensembles varied in numbers of cells, we used a data-driven choice for bin size; the bin size was
computed as the mean interspike interval (ISI) for the entire ensemble, i.e. all timestamps for
all action potentials of all cells were pooled together [7,13].

The sequence of firing within an avalanche was further parsed into a burst word in two
steps. First, for a single cell all spikes separated by less than maxISI = 50ms were grouped into a
single unit burst represented by the timestamp of the initial spike (c.f. [2]). Next, these time-
ordered bursts were converted into a discrete sequence of integers (symbols) representing the
order of cell firing within the avalanche [2]. We concatenated the words associated with each
avalanche by inserting one ‘0’ for each empty time bin between avalanches. This results in a
single burst sequence of non-negative integers that encodes the sequential behavior of ensemble
firing during POST.

Spike randomization for avalanche null distributions
We computed uncorrelated spike data for use as a null model by independently permuting the
interspike intervals (ISIs) for each neuron separately. Specifically, for each neuron we built a
random spike train by starting at zero and sampling from the ISI distribution for that neuron
without replacement. We then placed a spike at that interval from the previous one and
stopped when the ISI distribution was exhausted. Note that this choice of null model by con-
struction preserves the firing rates and ISI distributions (burstiness) of each neuron but breaks
all nontrivial correlations between neurons. We performed 100 ISI-randomizations to compute
the mean and standard error for the null avalanche size and word length distributions.

We computed the statistical significance of the difference in tails between the null and
observed avalanche size distribution using a binomial test. Specifically, we pooled the null size
distributions from the 100 ISI-randomizations and defined the large avalanche threshold as the
0.99-quantile of the pooled null. We then counted the number of observed avalanches with size
exceeding the threshold and computed the p-value using the binomial cumulative density func-
tion. Because the size distribution is discrete, the quantiles jump at each integer. We set the
threshold as the last integer to have quantile q< 0.99 and used the corresponding value 1–q as
the probability for the binomial test. The test for the word length tails was identical.

Fitting variable length Markov chains
Below we describe variable length Markov chains (VLMCs) in brief to provide relevant mathe-
matical formulae. For a detailed account of the relevant background and inference algorithms,
see Begleiter et al. [9].

Let S = {0,1,2,. . .,C} be the set of symbols representing each of C cells and the silence charac-

ter in the burst sequence and let s!¼ s1s2 . . . sN be a sequence of length N. For any Markov
chain over the alphabet S, the probability of the sequence s is given by

PMð s!Þ ¼
YN
i¼1

PMðsijs1s2 . . . si�1Þ;

i.e. the probability of the upcoming symbol si is a function of the history of the sequence. Typi-
cally these conditional probabilities only depend explicitly on the most recent symbols and the
amount of relevant memory can vary in length (see below and [9] for an extended discussion).
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The log-loss of a model M in predicting a sequence s is given by

LMð s!Þ ¼ � 1

N

XN
i¼1

log2ðPMðsijs1s2 . . . si�1ÞÞ

The model M is a good fit for the sequence s if the log-loss is small; the log-loss is small if
the probability of each symbol is high given the context. The log-loss function is a goodness-of-
fit measure for Markov chain models. Log-loss is measured in bits.

We fit variable length Markov chain models (VLMCs) to the burst sequence using the
Matlab software provided by Begleiter et al. as a companion to the paper [9]. Specifically, we
used the Probabilistic Suffix Tree (PST) algorithm. In brief, the PST algorithm fits a VLMC
model in two stages: first it filters possible contexts (up to a given maximum depth) by occur-
rence frequency in the data, then it tests how informative the contexts by iteratively considering
the predictive power of longer contexts relative to shorter contexts contained within, i.e. it sta-
tistically compares the difference in predictive power of longer contexts compared to shorter
ones.

The PST algorithm has 4 user parameters. Most importantly, the maximum depth parame-
ter, d, defines the maximum amount of sequential memory used for predicting the future, i.e.
the maximum context length allowed by the VLMCmodel. We fit VLMC models for depths
d = 0, 1,. . .,5 and chose d by 10-fold cross validation selecting the value of d that produced the
lowest average log-loss over the 10 testing folds (Fig 2A).

In addition to the maximum depth, the PST algorithm has hyperparameters defining the fil-
tering stages of context identification. The PST algorithm only considers contexts that occur
above a (small) minimum frequency, Pmin, within the data. Furthermore, for a each context, σ,
there must exist a possible future symbol, s, for which the probability of transitioning to that
symbol, P(s|σ), exceeds a (small) user-defined threshold, γ. In addition, letting σ’ be the suffix
of σ obtained by shortening by one symbol, the PST algorithm requires that the ratio of proba-
bilities P(s|σ) / P(s|σ’) (or its inverse) exceed a user-defined threshold r> 1. These last two
parameters are used to prune the context tree and they ensure that the algorithm is only learn-
ing contexts that are relevant in the training data. We set Pmin = 0.006, γ = 0.001, and r = 1.05.
Manual tuning showed that the results were relatively robust to these choices.

Sequential information and normalization
We fit depth-d models to each burst sequence for d = 0,. . .,5. Let Ld be the average log-loss of
the depth-d model over the 10 cross-validation rounds and let Lopt the minimum average log-
loss over all tested values of d. The difference, Id = L0 − Ld, between the unstructured 0th-order
model and the depth-d model is a measure of the amount of sequential structure captured by
the depth d model. We call Id the sequential information. We define Iopt analogously. Like log-
loss, Id is measured in bits. To make comparisons between animals and sessions, we define the

normalized sequential information, NId ¼ Id
Iopt
. NI varies between 0, for a model with no learned

sequential structure, and 1, for the optimal model.

The avalanche independent model and sequence likelihood ratios
A sequence can either be enriched or depleted by the temporal structure of the fitted VLMC
model meaning that it occurs at a rate higher or lower than in a ‘background model’. An obvious
choice for background model is to use the fully independent model of independent, identically
distributed random draws from the set of symbols in the data sequence. This model has no
sequential structure at all and therefore breaks the avalanche structure of the burst sequence,
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which produces longer words and longer periods of silence than expected under the fully inde-
pendent model. An alternative background model we call the avalanche independent model,
AIM, has no sequential correlations between neurons, but does preserve the avalanche structure.

We define the AIM to be the first-order Markov chain that preserves the rates of transition
between silence and bursting but has no other structure. Specifically, we compute rates of tran-
sitions from silence to silence (0–0 in the sequence), silence to bursting (0-i, for some cell i),
bursting to silence (i-0), and bursting to bursting (i-j). Denote these by P00, P0b, Pb0, and Pbb
respectively. Furthermore, let P1, P2,. . ., PC be the burst rates of each cell normalized by the
total number of bursts. The transition matrix of the burst independent model is then given by

PAIð0j0Þ ¼ P00

PAIðij0Þ ¼ P0bPi

PAIð0jiÞ ¼ Pb0

PAIðijjÞ ¼ Pi

Note in particular that there is no sequential structure between bursts (last line). The ava-
lanche independent model serves as a comparator for sequentially structured models that have
the same transition rates to and from silence.

We define the likelihood ratio for a sequence s! as the ratio

Lð s!Þ ¼ Pð s!Þ
PAIð s!Þ ;

where P is the fitted model. Let lð s!Þ ¼ log2ðLð s!ÞÞ denote the log-likelihood ratio.
Because we cross-validated when we fit P, we compute statistical significance of likelihood

ratios by standardizing the log-likelihood ratios. Let s! be a sequence (e.g. a RUN sequence)

and let lið s!Þ be the log-likelihood ratio for the ith cross-validation fold. Let h�i denote averag-
ing over i = 1,. . .,10. We define the z-score of a sequence as

zð s!Þ ¼ hlið s!Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hlið s!Þ2i � hlið s!Þi2

q ;

i.e. the mean log-likelihood divided the standard deviation over the 10 cross-validation folds.
We then compute a p-value by comparing the z-score to the standard normal distribution.

Conditional log-likelihood ratios and enriched transitions
AMarkov chain is a conditional probability table. It defines transition probabilities given the
current context. We wish to compare transition probabilities between two models, the fitted
model and the AIM to discern which transitions occur more/less than expected in the fitted
model. To do this, we define conditional log-likelihood ratios.

Let S = {σ1, σ2,. . .,σK} be the set of contexts for the fitted VLMCmodel. We define the condi-
tional log-likelihood matrix R as

Rðsi; jÞ ¼ log2
PðjjsiÞ
PAIðjjsiÞ

� �

The matrix R is rectangular with rows indexed by the contexts of the fitted VLMCmodel
and columns indexed by cells (and ‘0’). R encodes the up- and down-regulation of the back-
ground bursting rates as a function of context. The logarithm treats up- and down-regulation
on the same scale.
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To visually inspect the structure of these matrices, we clustered R using cosine similarity
and average linkage hierarchical clustering using the Matlab function ‘linkage’. We drew cluster
boundaries (Fig 6, black lines) using greedy modularity maximization[30]. We note that these
cluster boundaries are only for visualization.

RUN-optimal Markov chains
To assess the capacity of the measured burst rates to produce the RUN sequence, we con-
structed first-order Markov chains that produced this word at the highest rate possible given
the measured burst rates. We computed a RUN-optimal Markov chain by optimizing the tran-
sition probabilities of the chain to maximize the rate of producing the RUN sequence. The sta-
tionary distribution of the chain equal the long-run burst rates measured in the data and these
are a function of all transition probabilities, not just those in the RUN sequence. We con-
strained the optimization so that the solution would have the measured burst rates. To preserve
the avalanche structure of the data, we constrained the silence-to-silence transition rate to
equal that measured in the data sequence (as we did with the AIM above). These are linear con-
straints on the transition matrix. We used the nonlinear optimization function ‘fmincon’ in
Matlab to perform the optimization.
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