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Abstract

Optimizing aquaculture production requires better knowledge of growth regulation and
improvement in diet formulation. A great effort has been made to replace fish meal for plant
protein sources in aquafeeds, making necessary the supplementation of such diets with
crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine
and Leucine are limiting essential AA in fish, and it has been demonstrated that supplemen-
tation with them improves growth in different species. However, the specific effects of AA
deficiencies in myogenesis are completely unknown and have only been studied at the
level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional
and hormonal signals to regulate protein synthesis and cell proliferation, to finally control
muscle growth, a process also coordinated by the expression of myogenic regulatory fac-
tors (MRFs). This study aimed to provide new information on the impact of Lysine and Leu-
cine deficiencies in gilthead sea bream cultured myocytes examining their development
and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules
involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant
differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial
in IGFs regulation, decreasing significantly IGF-I, IGF-Il and IGF-IRb mRNA levels. This
treatment also down-regulated the gene expression of different MRFs, including Myf5, Myo-
genin and MyoD2. These changes were also corroborated by a significant decrease in pro-
liferation and differentiation markers in the Lysine-deficient treatment. Moreover, both
Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expres-
sion, which deserves further investigation. We believe that these results will be relevant for
the production of a species as appreciated for human consumption as it is gilthead sea
bream and demonstrates the importance of an adequate level of Lysine in fishmeal diet for-
mulation for optimum growth.
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Introduction

Gilthead sea bream (Sparus aurata L.) is a subtropical species very important for aquaculture
production, being in the Mediterranean one of the main species cultured. However, optimiza-
tion of its production requires a better knowledge of growth regulation and improvement in
diet formulation, looking for best performance and the sustainability of aquaculture. For this
purpose, in the last years, scientists have made great efforts to replace fish meal for plant pro-
tein formulations in the aquafeeds for this species [1-3]. One of the key points to take into
account on these replacements is the different amino acids (AA) profile between plant proteins
and fish meal. These profile differences may cause changes in absorption, modifying the AA
plasma levels and increasing the endogenous protein mobilization through proteolysis or alter-
ing the hepatic metabolism [4]. These problems can be solved by supplementing feeds with
crystalline AA to cover the nutritional requirements for each species [5]. In a study in rainbow
trout, Snyder et al. [6] found that feeding a diet based in plant protein and supplemented with
crystalline AA, differentially induced changes in muscle gene expression, suggesting a myo-
genic reduced potential due to plant protein AA profile. In this sense, Lysine and Methionine
seem to be among the most important limiting essential AA in fish, as it has been demonstrated
that supplementation with Lysine improves growth in rainbow trout [7, 8], and other species
such as yellow perch [9]. On the contrary, diets with imbalanced Lysine to Arginine ratios
reduced growth performance in juvenile cobia [10]. The case of Methionine has been well stud-
ied, and supplementation with this AA also improves growth in rainbow trout [11, 12]. Fur-
thermore another essential AA, Leucine and its catabolites participate in disease protection
[13] but an excess of Leucine can also have toxic effects affecting body composition and growth
in rainbow trout [14].

In addition to nutritional signals, hormones are also key regulators of muscle growth, where
the growth hormone (GH)—insulin-like growth factors (IGFs) axis plays a major role [15-18].
The IGFs act as systemic and paracrine/autocrine factors to promote tissue growth [19-22].
These effects could be modulated by controlling availability and activity of IGFs through differ-
ent IGF binding proteins (IGFBPs 1-6), by means of the IGF-I receptors (IGF-IRs) [23, 24], or
via several transduction pathways [25-28]. The target of rapamycin (TOR) is the link between
the hormonal signaling (IGFs) and AA, which are important nutrients stimulating protein syn-
thesis by activating TOR [29, 30]. In mammals it is well-known that Leucine supplementation
stimulates protein synthesis trough TOR in skeletal muscle [31], while Leucine starvation pro-
vokes changes in gene expression including inhibition of TOR [32]. In rainbow trout, also
TOR gene expression is increased in parallel to different levels of dietary Methionine, as well as
the GH-IGFs axis is regulated [12]. In contrast, Wacyk et al. [4] found no differences in TOR
expression in rainbow trout muscle in an experiment of fish meal replacement for plant pro-
tein, whereas the expression of red-1, a gene known to repress TOR function, was increased in
the fish fed the plant based diet.

Using in vitro models, Averous et al. [33] investigated particularly how Leucine limitation
regulates myogenic factors expression in mice primary satellite cells. In teleosts, similar studies
using a cocktail of AA have highlighted an essential role for them in the cellular events required
during myocyte development [34-39]. Although so far, most studies in fish on specific AA
requirements have focused on their effects at hepatic levels, as is the case of Lysine and Leucine
in rainbow trout hepatocytes [40].

A gilthead sea bream in vitro model of myocyte cells has been developed by our group as a
way to investigate specific physiological conditions affecting myogenesis and at the same time
saving on sacrifices of bigger fish and avoiding the stressful conditions that an experimental in
vivo treatment may cause [27]. Furthermore, this model has the advantage of analyzing just the
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specific effect of the AA studied, without influences of appetite changes, reduction on feed
intake and subsequently, weight gain and growth rate, as it has been related in some experi-
ments [4, 6, 41, 42]. Studies by our group [28, 43, 44] showed the metabolic effects of IGFs on
AA metabolism, correlation between IGFs system with AA signal and eventually stimulation of
growth. Recently, Vélez et al. [39] have demonstrated the effects of AA supplementation on the
TOR signaling pathway at both gene and protein levels in myocytes, and recently Azizi et al.
[45] have characterized the two IGF-I receptors in gilthead sea bream, and also analyzed the
effects of IGFs stimulation on the GH-IGFs axis-related genes, myogenic regulatory factors
(MREFs) expression and TOR pathway. However, the effects of AA deficiencies in these mole-
cules are completely unknown.

Thus, this study aimed to provide new information on the specific effects of Lysine and Leu-
cine deficiencies in gilthead sea bream myocytes cultured in vitro, examining through their
development, the response of IGF system and MRFs genes, as well as the expression of key
molecules involved on muscle function like TOR. We believe that these results will be relevant
in a species as appreciated for human consumption and aquaculture as it is gilthead sea bream.

Material and Methods
2.1. Experimental animals and ethical statement

Juvenile gilthead sea bream (Sparus aurata L.) obtained from a commercial hatchery in the
north of Spain were maintained in the facilities of the Faculty of Biology at the University of
Barcelona with a sea water recirculation system at a temperature of 21+1°C under 12:12 h light
cycle. Fish were fed ad libitum twice a day with a commercial diet (Skretting, Burgos, Spain).
Food was held for 24 h before sampling. All procedures were approved by the Ethics and Ani-
mal Care Committee of the University of Barcelona following the European Union, Spanish
and Catalan Governments-assigned principles and legislations (permit numbers CEEA 168/14
and DAAM 7749).

2.2. Myocyte primary cell culture and treatments

Juveniles of gilthead sea bream with body weight ranging from 5 to 15 g were sacrificed by a
blow to the head and satellite cells were isolated as described previously [27]. Isolated cells
from 4 independent cultures were plated at a density of 1.5-2-10° cells/cm” into 6-well plates
for gene expression analyses, and in 12-well plates with or without coverslips for the prolifera-
tion or immunocytochemistry assays, respectively. Then, cells were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 0.11% NaCl, 10% fetal bovine serum
(FBS) and 1% antibiotic/antimycotic solution at 23°C. All tissue culture reagents, unless noted
otherwise were purchased from Sigma-Aldrich (Tres Cantos, Spain) and all plastic ware was
from Nunc (Labclinics, Barcelona, Spain).

For the Lysine and Leucine deficiency experiments we prepared 3 different media: control,
without Lysine (Lys) and without Leucine (Leu). All were made from DMEM/F12HAM
(3.15 g/l glucose) (D9785, Sigma-Aldrich, Tres Cantos, Spain) devoid of Lysine and Leucine as
a base media. Then, each experimental medium was prepared adding the corresponding AA,
Lysine, Leucine or both according to the manufacturer’s indications plus 10% FBS and 1% anti-
biotic/antimycotic solution. The final concentration of each AA of interest was measured in
both, the FBS and the different media by cation-exchange chromatography followed by post-
column derivatization with ninhydrin and UV detection using a Biochrom 30 analyzer at the
Scientific and Technological Centers of the University of Barcelona. In the case of the control
condition, there was a 398.0 uM concentration of Lysine and a 389.6 pM of Leucine. In the
respective experimental media conditions, concentration of Lysine was 24.7 uM, and for
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Leucine 24.2 uM provided by the 10% FBS, representing a reduction of 93.8% on each case
respect to the control condition. For the proliferation experiments, the media was changed one
day after plating. Then, the myocytes were maintained on each corresponding media and sam-
pled at days 2, 4 or 8 of culture development for proliferation MTT assay and at days 4 and 8
for proliferating cell nuclear antigen (PCNA) immunocytochemistry. For the gene expression
analyses the media was changed at day 1 after plating for the samplings at days 2 and 4 and at
day 7 of culture for the sampling at day 8. Cultures development was monitored daily using an
Axiovert 40C inverted microscope (Zeiss, Germany) and images were captured with a Canon
EOS 1000D digital camera.

2.3. Real-time quantitative PCR (qPCR)

To obtain RNA samples cells were recovered from 2 wells per condition with 1 mL TRI reagent
solution (Applied Biosystems, Alcobendas, Spain) and the RNA was extracted according to the
manufacturer’s protocol. Total RNA quantification and quality assessment were done using a
NanoDrop 2000 (Thermo Scientific, Alcobendas, Spain) and running a 1% agarose gel electro-
phoresis. Then, 500 ng of total RNA were treated with DNase I (Life Technologies, Alcobendas,
Spain) and reverse transcribed with the Transcriptor First Strand cDNA synthesis Kit (Roche,
Sant Cugat del Valles, Spain) following the manufacturer’s recommendations. Next, gqPCR
analyses including all the negative controls and preliminary tests (e.g. to determine primer
specificity or absence of primer-dimer formation) were performed as described previously [39,
46, 47] using a CFX384™ Real-Time System (Bio-Rad, El Prat de Llobregat, Spain). Primer
sequences and specific annealing temperatures are presented in Table 1. Primers for CHOP
and AS were designed using Net primer (http://www.premierbiosoft.com/netprimer/) with the
nucleotide sequences retrieved from the Nutrigroup-IATS gilthead sea bream nucleotide data-
base at www.nutrigroup-iats.org/seabreamdb [48]. Transcript abundance based on the Pfaffl
method was calculated relative to the geometric mean of the reference genes elongation factor
lo (EF1o) and ribosomal protein S18 (RPS18) as they were both stably expressed.

2.4. Proliferation assay: MTT

Metabolically active cells reduce yellow methylthiazolyldiphenyl-tetrazolium bromide (MTT)
by function of mitochondrial dehydrogenase enzymes producing purple formazan that can be
quantified by a spectrophotometer as a reliable way to examine cell proliferation. MTT was
added to each well for the last 14 h of treatment before sampling and then, cells were washed,
the formazan crystals resuspended and the absorbance reads and calculations performed as
previously described using fish cells [49].

2.5. Immunocytochemistry

Cell proliferation was analyzed by immunostaining using a commercial PCNA staining kit
(Cat. No. 93-1143, Life Technologies, Alcobendas, Spain) as related before [39]. Briefly, cells
were washed and fixed at room temperature with 4% paraformaldehyde and postfixed with
ethanol. Later, following the suggested manufacturer’s protocol, coverslips were blocked and
incubated with anti-PCNA primary antibody and a biotinylated secondary antibody. Finally,
cells were dehydrated in a graded alcohol series and mounted with histomount. The amount of
PCNA-positive cells was calculated by dividing the PCNA-positive stained cells by the total
number of nuclei in 14 images per coverslip containing a total of 400-1300 cells using the Ima-
geJ software (National Institutes of Health, Bethesda, MD, USA). Digital images were acquired
with a CC2 camera coupled to a microscope at 40X using analySIS (Soft Imaging System) soft-
ware. All images were analyzed by the same researcher.
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Table 1. Primers used in the qPCR analyses.

Gene Primer sequences (5’-3’) Ta (°C) Accession No.
EF1a F:CTTCAACGCTCAGGTCATCAT R:GCACAGCGAAACGACCAAGGGGA 60 AF184170
RPL27 F:AAGAGGAACACAACTCACTGCCCCAC R:GCTTGCCTTTGCCCAGAACTTTGTAG 68 AY 188520
RPS18 F:GGGTGTTGGCAGACGTTAC R:CTTCTGCCTGTTGAGGAACCA 60 AM490061.1
IGF-1 F:ACAGAATGTAGGGACGGAGCGAATGGAC R:TTCGGACCATTGTTAGCCTCCTCTCTG 60 AY996779 EF688015 EF688016
IGF-II F:TGGGATCGTAGAGGAGTGTTGT R:CTGTAGAGAGGTGGCCGACA 60 AY996778
IGF-IRa F:AGCATCAAAGACGAACTGG R:CTCCTCGCTGTAGAAGAAGC 55 KT156846
IGF-IRb F:GCTAATGCGAATGTGTTGG R:CGTCCTTTATGCTGCTGATG 55 KT156847
IGFBP-4 F:TCCACAAACCAGAGAAGCAA R:GGGTATGGGGATTGTGAAGA 60 F5T95CD02JMZ9K
IGFBP-5 F:TTTCTCTCTCGGTGTGC R:TCAAGTATCGGCTCCAG 60 AM963285
Pax7 F:ATGAACACTGTCGGCAACG R:AGGCTGTCCACACTCTTGATG 64 JN034418
Myf5 F:CTACGAGAGCAGGTGGAGAACT R:TGTCTTATCGCCCAAAGTGTC 64 JN034420
Myogenin  F:CAGAGGCTGCCCAAGGTCGAG R:CAGGTGCTGCCCGAACTGGGCTCG 68 EF462191
MRF4 F:CATCCCACAGCTTTAAAGGCA R:GAGGACGCCGAAGATTCACT 60 JN034421
MyoD1 F:TTTGAGGACCTGGACCC R:CTTCTGCGTGGTGATGGA 60 AF478568.1
MyoD2 F:CACTACAGCGGGGATTCAGAC R:CGTTTGCTTCTCCTGGACTC 60 AF478569
PCNA F:TGTTTGAGGCACGTCTGGTT R:TGGCTAGGTTTCTGTCGC 58 NM_131404.2
MHC F:AGCAGATCAAGAGGAACAGCC R:GACTCAGAAGCCTGGCGATT 58 AY550963.1
AKT2 F:GCTCACCCCACTCTTCAGAC R:AAATTGGGAAATGTGCTTGC 60 ERA047531
ERK2 F:AAAGCTCTGGACCTGTTGGA R:TCATCCAGCTCCATGTCAAA 60 ERA047531
TOR F:CAGACTGACGAGGATGCTGA R:AGTTGAGCAGCGGGTCATAG 60 ---

FOXO03 F:CAGCAGCCTGGAGTGTGATA R:CCAGCTCTGAGAGGTCTGCT 60 ---

4EBP1 F:CCAACCTGCGACTCATCTCT R:GTTCCTCTCATCCTCCCACA 60 ==l

70S6K F:GCACCAGAAAGGCATCATCT R:AAGGTGTGGGTCACTGTTCC 60 ==l

ATF4 F:TCGCTCGATTTGCCGAAATG R:TGGCTGGATGCACTGTTTTG 60 JQ308824.1
AS F:ACTGCTGTTTTGGCTTCCAC R:ACTTCTTGATGCGCAAAGGC 58 ---

CHOP F:AAGAAGTCGGTGGACAGGTTC R:AGTTGCGCATCTTGGCTTTG 58 ---

F: forward; R: reverse; Ta: annealing temperature.

doi:10.1371/journal.pone.0147618.1001

2.6. Statistical analysis

All statistical analyses were performed using the package IBM SPSS statistics v.20 (IBM, Chi-
cago, IL, USA). Data was tested for normality using the Shapiro-Wilk test and for homogeneity
of variances by Levene’s test. Differences through time within treatments were analyzed by a
One-way ANOVA. Differences between experimental treatments at each time respect to the
control condition were assessed by a Student’s t-test. When normality was not observed the
non-parametric tests Kruskal-Wallis followed by Mann-Whitney U test were applied. In all
cases results were considered statistically significant at p<0.05.

Results

First of all, the gene expression of several AA limitation markers was studied. The results
showed that the mRNA levels of the activating transcription factor 4 (ATF4) were increased at
days 2 and 8 of culture with Lysine deficiency, but not at day 4 (Fig 1A). Regarding asparagine
synthetase (AS), data showed a significant increase in gene expression at days 2, 4 and 8 in
Lysine deficient medium, while the increase observed with Leucine deficiency was not signifi-
cant (Fig 1B). Moreover, the CCAAT/enhancer-binding homology protein (CHOP) gene
expression also increased at day 2 in response to both Lysine and Leucine deficiencies and at
day 8 only in the case of Leucine (Fig 1C).
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Fig 1. Effects of Lysine or Leucine deficient media on several AA limitation markers gene expression
in gilthead sea bream cultured muscle cells. Quantitative relative expression of (A) ATF4, (B) AS, (C)
CHOP normalized to the geometric mean of EF1a and RPS18 in myocytes at days 2, 4 or 8 after incubation
with a growth medium control or deficient in Lys or Leu. Data are shown as means + SEM (n = 3—4). Asterisks
indicate significant differences compared to the control at each time (p<0.05). Different letters indicate
differences for each group throughout the culture (p<0.05).

doi:10.1371/journal.pone.0147618.g001
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3.1. IGF system

IGF-I and IGF-II gene expression profiles through myocyte development were inverse,
decreasing IGF-I expression and increasing IGF-II expression significantly in control condi-
tions (Fig 2A and 2B). Similar patterns were observed in AA deficient media although IGF-I
mRNA levels were significantly diminished with respect to the control condition at days 4 and
8 with the Lysine deficient medium. IGF-II expression did not reflect the deficiencies with the
exception of Lysine at day 8 of culture that showed a significant lower transcript level com-
pared to the control.

Regarding IGF-I receptors, both isoforms presented a decreasing profile in their gene
expression during myocytes culture, although it was significant in all conditions for IGF-IRa
but only significant in the cells cultured with Lys deficient medium in the case of IGF-IRb (Fig
2C and 2D). However, no effects were observed as a consequence of AA deficiencies, with the
exception of Lysine that provoked a significant decrease of IGF-IRb at day 8.

Finally, IGFBP-4 and IGFBP-5 mRNA levels showed a parallel profile with significant
increases at day 8 of culture compared to days 2 and 4 in all cases with the exception of the
cells in Lysine deficient medium (Fig 2E and 2F).

3.2. MRFs and other markers (PCNA and MHC)

In the control condition, gene expression of Pax 7 did not present differences through culture
development; while Myogenin expression was significantly higher at day 8 compared to days 2
and 4 in all conditions (Fig 3A and 3C). Myf5, MRF4 and MyoD2 showed highest mRNA levels
at day 4 and then remained stable or decreased at day 8 showing significant differences only in
some conditions (Fig 3B, 3D and 3F). MyoD1 significantly decreased trough the culture with
the AA deficient media although it remained stable in the control condition (Fig 3E). Overall,
AA deficiencies provoked in general a decrease of the MRFs gene expression compared to the
control, more evident at day 4 and day 8 and, with stronger significant effects in Lysine defi-
cient medium for Myf5, Myogenin and MyoD2.

The proliferation marker (PCNA) gene expression decreased during culture development
with significantly lower values at day 8 compared to day 2 in the medium deficient in Lysine,
which resulted in significant differences when compared to the control condition (Fig 4A). The
same results were obtained for PCNA protein expression analyzed by quantifying the percent-
age of PCNA-positive cells by immunocytochemistry. In this case, both Lysine and Leucine
deficient media showed significantly reduced levels compared to the control condition at both
day 4 and day 8 (Fig 4B). Moreover, the gene expression of the differentiation marker, myosin
heavy chain (MHC) increased trough the culture significantly with maximum levels at day 8 in
all conditions; however, Lysine deficient medium showed significantly lower levels of expres-
sion than the control (Fig 5A). Furthermore, when looking at culture development by means of
MTT assay, that increased significantly during culture in control and Leucine deficient condi-
tions but not with Lysine deficiency supporting the previous data (Fig 5B).

Representative images of the cultures also showed evidence of a significantly reduced num-
ber of myocytes present in the Lysine deficient medium, whereas cells without Leucine
appeared very similar to control cells (Fig 5C).

3.3. Signaling pathways

In control conditions, the majority of the signaling molecules analyzed in this study, AKT2,
ERK?2, 4EBP1 and 70S6K, decreased their gene expression through the myocytes culture and
significant lowest levels of mRNA were observed at day 8 (Fig 6A, 6B, 6E and 6F). On the other
hand, TOR gene expression was constant, while FOXO3 showed a significant increase with
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Fig 2. Effects of Lysine or Leucine deficient media on the IGF system genes expression in gilthead sea bream cultured muscle cells. Quantitative
relative expression of (A) IGF-I, (B) IGF-II, (C) IGF-IRa, (D) IGF-IRb, (E) IGFBP-4 and (F) IGFBP-5 normalized to the geometric mean of EF1a and RPS18in
myocytes at days 2, 4 or 8 after incubation with a growth medium control or deficient in Lys or Leu. Data are shown as means + SEM (n = 3—4). Asterisks
indicate significant differences compared to the control at each time (p<0.05). Different letters indicate differences for each group throughout the culture
(p<0.05).

doi:10.1371/journal.pone.0147618.9002

Leucine limitation medium at day 8 (Fig 6C and 6D). AA deficiencies resulted in general in a
decrease of gene expression parallel to that observed in control groups, highlighting the
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Fig 3. Effects of Lysine or Leucine deficient media on the MRFs genes expression in gilthead sea bream cultured muscle cells. Quantitative relative
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significant differences compared to the control at each time (p<0.05). Different letters indicate differences for each group throughout the culture (p<0.05).

doi:10.1371/journal.pone.0147618.9003

significant decrease observed at day 2 both in Lysine and Leucine deficient media with regards
to FOXO3 when compared to the control.
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differences compared to the control at each time (p<0.05). Different letters indicate differences for each group throughout the culture (p<0.05).

doi:10.1371/journal.pone.0147618.9004

Discussion

The analysis of Lysine and Leucine final concentration in the media used in the present experi-
ments have demonstrated that the deficiencies of both AA are comparable and remarkable
respect to the control condition (i.e. 93.8%). Furthermore, the gene expression data of several
AA limitation markers [33, 50-53] have indicated that the experimental conditions used
resulted in important AA deficiencies affecting the status of the cells, although the effect of
Lysine appeared to be more pronounced. Overall, this information permits to validate the
experimental model used of Lysine and Leucine deficient media in order to further explore
their effects in the development of gilthead sea bream muscle cells in culture.

4 1. 1GF system during culture development and effects of AA
deficiencies

In control conditions IGFs presented an inverse profile, with IGF-I showing a decrease and
IGF-II an increase in gene expression through culture development. Jiménez-Amilburu et al.
[46] described a similar profile of IGFs expression in the same species in a more detailed study,
where IGF-I maintained high levels up to day 4 of culture to then decrease until day 12. IGF-II
on the other hand, showed a second peak at day 10 of culture, suggesting that both growth fac-
tors may play different and complementary functions during myogenesis, as previously pro-
posed [54].

The expression profile of IGF-I receptors and binding proteins in cultured growing myo-
cytes in gilthead sea bream have not been previously reported. IGF-I receptors showed a gene
expression profile similar to that of IGF-I, decreasing during culture, mainly for IGF-I-Ra. A
similar pattern was found for IGF-IR1b in Atlantic salmon myocytes development, although
the IGF-IR1a and IGF-IR2 isoforms showed a clear increase in their expression [36]. Receptor
binding studies provide complementary information and Castillo et al. [55] and Monserrat
etal. [27] found an increase in IGF-I binding during myocytes culture in rainbow trout and
gilthead sea bream respectively, while Rosenthal et al. [56] reported a decrease in IGF-I binding
when myoblast cells developed into myotubes on the mouse BC3H-1 muscle cell line. Never-
theless, binding reflects the interaction of the ligand with all receptor isoforms, which can per-
haps respond in different directions. In fact, treatment of gilthead sea bream muscle cells with
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Fig 5. Effects of Lysine or Leucine deficient media on proliferation and differentiation markers expression in gilthead sea bream cultured muscle
cells. Quantitative relative expression of (A) MHC normalized to the geometric mean of EF1a and RPS18, and proliferation measured by means of (B) MTT
assay in myocytes at days 2, 4 and 8 after incubation with a growth medium control or deficient in Lys or Leu. Data are shown as means + SEM (n = 3—4).
Asterisks indicate significant differences compared to the control at each time (p<0.05). Different letters indicate differences for each group throughout the
culture (p<0.05). (C) Representative images of gilthead sea bream cultured myocytes at days 2, 4 and 8 after incubation with a growth medium control or
deficient in Lys or Leu. Objective: 10x. Scale bar: 50 ym.

doi:10.1371/journal.pone.0147618.g005

IGF-I provoked down-regulation in both isoforms expression, while IGF-II up-regulated
IGF-IRD [45]. Differential responses between IGF-IR isoforms expression have been also
reported by Chauvigné et al. [57] and Montserrat et al. [58] in fasting and refeeding conditions
or by Gabillard et al. [59] by temperature treatments in rainbow trout. Such variance could
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Fig 6. Effects of Lysine or Leucine deficient media on the signaling pathways genes expression in gilthead sea bream cultured muscle cells.
Quantitative relative expression of (A) AKT2, (B) ERK2, (C) TOR, (D) FOXO3, (E) 4EBP1 and (F) 70S6K normalized to the geometric mean of EF1a and
RPS18in myocytes at days 2, 4 or 8 after incubation with a growth medium control or deficient in Lys or Leu. Data are shown as means + SEM (n = 3—4).
Asterisks indicate significant differences compared to the control at each time (p<0.05). Different letters indicate differences for each group throughout the
culture (p<0.05).

doi:10.1371/journal.pone.0147618.9g006

thus suggest different roles for each isoform to allow amplifying the regulatory capacity of the
tish muscle depending on the physiological situation.
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Regarding IGFBPs, in our study mRNA profiles of IGFBP-4 and IGFBP-5 were similar,
increasing significantly through culture development except in the case of Lysine deficiency for
IGFBP-5. In agreement with our data, in murine C2 myoblasts it is well-known that IGFBP-5
transcription is highly activated during myoblast differentiation [60, 61]. Moreover, Bower and
Johnston [36] found that IGFBP-4 showed a significant increase during Atlantic salmon myo-
cytes growth with a peak at day 8 of culture, as that found in our model. However, in their
study both IGFBP-5 isoforms showed maximal levels at day 2 to then decrease to very low lev-
els at day 8 that were maintained up to day 20. In a previous study, Azizi et al. [45] found in
gilthead sea bream myocytes that IGFBP-5 expression (but not IGFBP-4) increased when cells
were treated with IGF-II. This response could explain that in the present study the maximum
level of IGFBP-5 coincides with the peak of IGF-II at day 8. This agrees with the recognized
stimulatory function and cross-regulation of IGFBP-5 with IGF-II during myogenesis as previ-
ously described [24, 62].

Respect to the impacts of AA deficiencies on IGF system members gene expression, the
main effect observed was the decrease of IGF-I expression at days 4 and 8 and that of IGF-II at
day 8 with Lysine deficiency. IGF-IRb gene expression also decreased significantly at day 8 in
the absence of Lysine. Overall this indicates that Lysine deficiency seems to be compromising
the function of IGFs in these muscle cells.

In fish, there is very little information about the effects of AA deficiencies over the IGF sys-
tem. As far as we know, this is the first study that checks the effects of Lysine or Leucine defi-
ciencies on fish muscle cells cultured in vitro. Most of the studies up to date were based on the
effects of AA supplementation or deficiency in fish diets in vivo, where several studies have
shown the importance of keeping a required level depending on the species of the different
essential AA in the aquafeeds for adequate growth and health [7, 10, 13, 63, 64]. Very recently,
Rolland et al. [12] have shown that the transcript levels of IGF-I but not IGF-II in liver
increased linearly with the rise of dietary Methionine in rainbow trout and a similar result was
observed in Atlantic salmon with increasing dietary Lysine [65]. In vitro, Lansard et al. [40]
analyzed the effects of Leucine, Methionine and Lysine stimulation in the regulation of inter-
mediary metabolism-related genes expression in rainbow trout hepatocytes and reported that
Leucine had effects similar to a pool of AA while Lysine only had limited effects. Regarding
muscle in vivo, Hevroy et al. [65] observed that high Lysine intake resulted in a 7-fold up-regu-
lation of muscle IGF-II mRNA levels in Atlantic salmon. Contrary, low Lysine intake decreased
the nitrogen deposition and muscle protein accretion and significantly down-regulated muscle
IGF-11, as well as IGF-I expression is reduced in fasted fish [58, 66]. IGFs provide a mean of
controlling cell proliferation and differentiation and have a biological effect on muscle growth
[27, 39, 46, 54]. These findings together with our results fit in the notion that Lysine seems to
be an important local anabolic regulator of muscle tissue development in gilthead sea bream.

Muscle IGFBP-4 and IGFBP-5 were not affected by Lysine or Leucine deficiencies in our
study. Hevroy et al. [65] found that liver IGFBP-1b was down-regulated in response to low
Lysine intake, which may be linked to the catabolic status of the fish. On the other hand, after
AA stimulation, Bower and Johnston [36] reported increased expression of both IGFBP-5 iso-
forms indicating the promotion of an anabolic situation. In the study of Hevroy et al. [65],
mRNA levels of muscle IGF-IR were not affected by Lysine intake, while in our experiment
only the gene expression of IGF-IRD in day 8 cells was decreased by the deficiency of the same
AA, suggesting differential effects for both IGF-IRs in response to Lysine limitation in myo-
cytes. All this points out that the deficiency of a single AA, either Lysine or Leucine, is not
enough to determine significant changes on the gene expression of IGFBPs and IGF-IRa in
these cells and that a more dramatic limitation such as complete suppression of AA like during
fasting might be required.
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4.2. Effects of AA deficiencies in MRFs, PCNA and MHC

The gene expression profile observed in control conditions for MRFs and other myogenic
markers is basically in agreement with previous studies in in vitro muscle cells development in
the same species by our group [66] or other species like Atlantic salmon [67]. In fact, MyoD1
and PCNA showed highest gene expression at the beginning of myocytes development, while
Myogenin increased with the progression of the culture in parallel with the structural compo-
nent, also used as a marker of myocytes differentiation, MHC. The little differences observed
on some profiles, like Myf5 and MRF4, can be consequence of the variability of cultures, the
slightly different media used at some points or the characteristic physiological stage of the fish
utilized to obtain the satellite cells among the different studies.

AA deficiencies provoked a clear effect on myocytes development, especially in the case of
Lysine. A clear down-regulation in gene expression for MyoD2 at day 4 and Myf5, Myogenin,
PCNA and MHC at day 8 in the absence of Lysine is observed, and although lack of Leucine
did not show significant differences, it presented similar trends. Lysine and Leucine deficiencies
appear to retard cell proliferation and muscle differentiation, as supported by the observed sig-
nificant decrease in PCNA protein expression. In fact, in a recent study by our group [39], AA
treatment alone or in combination with IGF-I determined an increase in PCNA and Myogenin
gene expression in gilthead sea bream cultured myocytes in agreement with these results.
Moreover, although the results were not significantly different, the proliferation assay (MTT)
indicated decreased proliferation also in the condition without Lysine. In this sense, also the
different representative images of the status of the culture clearly show reduced number of cells
in the condition without Lysine. Moreover, Lysine deficiency also clearly affected myocyte differ-
entiation, as indicated by the minor increase in Myogenin gene expression during development.
Myogenin has been described to show a peak on gene expression at day 8 of culture coinciding
with the process of myocyte differentiation and fusion into myotubes [66]. Therefore, the signifi-
cant differences observed at this point between the control and the Lysine deficient medium
make sense as this would be the most critical time with regards to Myogenin activation and cor-
roborate an important role for this AA also in differentiation. On the other hand, the fact that
Leucine did not affect the expression of any gene analyzed as well as did not show clear evidence
of reduced myogenesis in the photographs of the cultures, indicates that the importance and
mechanism of action of both AA is different. Thus, Leucine may have minor effects acting at a
post-transcriptional level to regulate myocytes proliferation, whereas Lysine that affected the
transcription factors gene expression could be also at the same time altering other important
myogenic genes expression; therefore, provoking a stronger effect on muscle growth.

Bower and Johnston [67] observed in fasted salmon myocytes, lower levels of MyoD paralogs
in comparison to AA-treated cells. Averous et al. [33] reported also an up-regulation of Myf5
mRNA and protein level and a decrease of MyoD protein level but not mRNA during Leucine
starvation in C2C12 myoblasts. A similar effect on MyoD1 and MyoD2 was observed in our
study with a gene expression decrease in AA deficient media. In that same study with murine
cells, MHC protein expression was induced during differentiation in the presence of Leucine,
whereas during Leucine starvation MHC protein expression was absent. However in our study, it
is noticeable that Lysine affected more importantly than Leucine to myocytes development with
diminution on the expression of Myf5, Myogenin, PCNA and MHC genes expression. This
could be a particular response of gilthead sea bream to Lysine deficiency and stimulates future
research with regards to the requirements of this particular AA in the diets of this species.

All that points out the important effects of AA in myocytes function and it agrees with the
in vivo study in rainbow trout by Alami-Durante et al. [68], which demonstrates that changes
in dietary essential AA have significant effects in fish myogenesis.
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4.3. Signaling pathways molecules during culture development and
effects of AA deficiencies

Similar gene expression profiles were found in the present study for both AKT2 and ERK2,
decreasing through the culture very closely to that observed for IGF-I, which makes sense con-
sidering that IGF-I transduces its signal mainly through these two pathways. TOR gene expres-
sion was stable but its downstream effectors, 4EPB1 and 70S6K, showed significantly lower
gene expression either at day 4 or at day 8 compared to day 2. There is no information in fish
muscle cells regarding these profiles but in mammals is well characterized the significant role
of TOR at the beginning of the myogenesis [69]. Finally, FOXO3 in control conditions was sta-
ble through the culture. We have not found FOXO3 data describing its profile in cultured fish
muscle cells, but in mammalian C2C12 cells (at the protein level), the increase of FOXO iso-
forms phosphorylation in the stage of myotubes respect to myocytes has been well described
[70]. Moreover, these data are concordant with the decrease of AKT2 during culture, a well-
known inhibitor of FOXO3 activation.

Regarding the treatments, AKT2, ERK2 and TOR genes expression was not affected by AA
deficiencies in this study. Vélez et al. [39] observed in the same model that a treatment with a
cocktail of AA increased TOR gene expression and phosphorylation and similar results were
obtained in Atlantic salmon myoblasts [71]. Certainly, it is well recognized the key role of TOR
regulating protein synthesis according to AA levels [34]. Leucine stimulates protein synthesis
in muscle by up-regulating TOR signaling and S6K1 phosphorylation [72]. Averous et al. [33]
found also in C2C12 myoblasts that Leucine starvation mimicked the effects observed with
rapamycin treatment on TOR, showing a decrease in phosphorylation in the downstream mol-
ecules of this signaling system. In a different study with diabetic-induced rats, Leucine did not
affect TOR signaling through 4EBP1 or 706SK phosphorylation although protein synthesis was
stimulated [73]. The authors suggested that Leucine also participates in the activation of pro-
tein synthesis via an insulin-independent mechanism that remains unknown. In rainbow trout
hepatocytes, Lansard et al. [40] showed that single AA do not have the capacity to increase nei-
ther AKT nor TOR phosphorylation. In this sense, the absence of a response of TOR, 4EBP1
and 70S6K genes expression detected in gilthead sea bream could be related to the well-known
resistance of fish to starvation compared to mammals. Although we could also consider that
the effects on AKT2, ERK2 and TOR gene expression require more dramatic or prolonged defi-
ciencies than those used in the present study; regulation at the level of protein phosphorylation
cannot be excluded. As observed, it seems that the IGF system members or the MRFs gene
expression respond to the treatment; therefore, a different time might be necessary to detect
changes in the gene expression of signaling pathways molecules in response to AA deficiencies
in fish cells or perhaps these changes might be occurring at a post-transcriptional level and, it
would be very interesting to verify whether changes in AKT and TOR phosphorylation occur
as a consequence of a single AA deficiency in gilthead sea bream.

FOXO3 gene expression responded to Lysine and Leucine deficiencies in gilthead sea bream
myocytes showing a decrease, mainly at day 2. It is well-known in mammals that FOXO1 and
FOXO3 are downstream targets of the IGF-AKT pathway. They can enhance autophagy-
related genes in muscle, being sufficient to activate this process causing muscle degradation
[74,75]. In a catabolic situation like nutrient starvation, we would expect an increase in
FOXO3 phosphorylation and therefore an increase in the autophagy flux. In the last years Sei-
liez et al. [35, 76] have demonstrated that starvation enhances the expression of autophagy-
related genes in both in vivo muscle and in vitro cultured myocytes of rainbow trout. In these
works, the authors have also shown that FOXO system is not involved in the regulation of
autophagy activation in muscle of rainbow trout as an effect of AA availability. Altogether
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these and our results suggest a differential role for FOXO in fish muscle that has not been
completely elucidated.

Conclusions

In summary, we can conclude that AA deficiencies affect several important components of IGF
system and myogenesis regulators and especially Lysine seems to present a significant role in
gilthead sea bream muscle growth. Consequently, new diets formulation should take into
account the requirement of this AA in this species. At the same time, this model brings new
insights into the role of IGFs, MRFs, FOXO3 and TOR pathways regulating fish myocytes
growth.
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