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Abstract
Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species

have been seldom described. Clinical isolates show significant variability in their ability to

cause damage to hosts because some of them are able to modulate the host’s immune

response. In the current study, comparisons between the genomes of different clinical and

environmental strains of P. putida were done to identify genetic clusters shared by clinical

isolates that are not present in environmental isolates. We show that in clinical strains spe-

cific genes are mostly present on transposons, and that this set of genes exhibit high identity

with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in

P. putida clinical isolates, and absent in environmental isolates, are related with survival

under oxidative stress conditions, resistance against biocides, amino acid metabolism and

toxin/antitoxin (TA) systems. This set of functions have influence in colonization and sur-

vival within human tissues, since they avoid host immune response or enhance stress resis-

tance. An in depth bioinformatic analysis was also carried out to identify genetic clusters

that are exclusive to each of the clinical isolates and that correlate with phenotypical differ-

ences between them, a secretion system type III-like was found in one of these clinical

strains, a determinant of pathogenicity in Gram-negative bacteria.

Introduction
Hospital-acquired infections, also known as nosocomial infections, negatively impact patients,
place hospital staff at risk and have been increasing in frequency in recent years. In the United
States, the Centers for Disease Control and Prevention estimated that approximately 1.7 mil-
lion of these hospital-acquired infections contribute to 99,000 deaths each year [1]. In Euro-
pean hospital surveys, Gram-negative infections are estimated to account for two-thirds of the
25,000 deaths linked to hospital-acquired infections each year [2]. One example of a bacterium
that causes nosocomial infections is the opportunistic pathogen Pseudomonas aeruginosa.
Infections caused by P. aeruginosa are associated with considerable morbidity, prolonged
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hospitalization and mortality. The mortality caused by this microorganism is around 36%
(United States, 22.5%; France, 37.6%; Germany, 41.7%; Spain, 46.9%; and Italy, 46.3%) [3].
Nosocomial infections can cause severe pneumonia [4] and infections of the urinary tract [5],
bloodstream [6] and other parts of the body, such as the skin [7]. Many infections are difficult
to target with antibiotics because antibiotic resistance is spreading among to Gram-negative
bacteria. This antibiotic resistance is acquired from resistant strains, which are present in the
patient’s own flora that have emerged during antibiotic treatment, and is transferred via bacte-
rial mobile genetic determinants of resistance (plasmids and transposons), resulting in the hor-
izontal transfer of genomic traits [8, 9].

Pseudomonas putida is ubiquitous in edaphic and aquatic niches [10]. Occasionally, mem-
bers of this species have been found to colonize human tissues in immuno-depressed hospital
in-patients [9, 11, 12] bearing catheters or biliary drainage tubes [13]. Recently, the genomes of
members of this species have been sequenced and analyzed [14, 15]—the results of these analy-
ses have revealed that this species is particularly able to adapt to specific niches. Genomic anal-
yses have also shown that, evolutionarily, horizontal gene transfer played a key role in this
adaptation process because many of the niche-specific functions were found to be encoded on
defined genomic islands [16–19].

Pseudomonas putida strains are often multidrug resistant and P. putida clinical isolates are
considered to be an environmental reservoir of resistance determinants. Dissemination of
these multidrug resistance elements to human pathogenic bacteria or to other opportunistic
pathogens represents a potential threat [9, 20, 21]. The availability of the sequences of P. putida
genomes from clinical and environmental strains provides the opportunity to determine the
genetic clusters involved in the conversion of a typical environmental microorganism into one
that is capable of colonizing human tissues. This approach has been previously used with P.
aeruginosa to determine virulence traits as well as genes that may enhance fitness in the specific
environmental niches occupied by opportunistic human pathogens [22–25]. The approach has
also been used with the plant pathogen P. syringae [26] and with P. putida to study the specific
niche adaptation of environmental strains [14, 15, 27].

Because hospital isolates of P. putida have been studied in terms of their resistance to antibi-
otics (i.e., [9, 21, 28– 31]), and more recently in terms of their potential to colonize and cause
human tissue damage [32] we chose to focus on identifying genes present within P. putida clini-
cal isolates that mediate nosocomial infections and survival in hospital settings. To this end, we
choose an array of environmental strains that are able to survive in different environments and
with different living strategies. The environmental strains that we chose were: the rhizospheric
colonizer KT2440 strain [33]; the plant growth promoter BIRD-1 strain [34, 35]; the soil isolate
and toluene degrader F1 strain [14]; the water isolate and high concentration solvent tolerant
DOT-T1E strain [36, 37]; the water isolate GB-1 strain [14]; the nicotine degrader S16 strain
[38]; and the endophytic colonizer W619 strain [14]. The clinical strains that we chose to study
are P. putida isolates from the Hospital of Besancon in France, which our group has previously
studied. These are: HB13667, a strain that was isolated from an in-patient presenting a general
bacteremia, is unable to grow at 42°C, displays a pattern of antibiotic resistance similar to
KT2440 and did not exhibit any pathogenic effect [32]; H8234, a strain that was also isolated
from an in-patient presenting bacteremia and is also unable to grow at 42°C, but exhibited tetra-
cycline and gentamycin resistance [12], and had a deleterious effect in tissue cultures in vivo on
rat skin, but not in insect larvae [32]; HB4184, a strain that was isolated from fibrosis cystic spu-
tum that is able to grow at 42°C, and caused damage only ex vivo in human tissue cultures [32];
and HB3267, a strain that exhibits a broad resistance spectra, which was isolated from an in-
patient that passed away [9]. This strain caused damage in all the model systems studied [32].
All of the selected strains were initially identified as members of the P. putida species using 16S
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RNA sequences. Additional multilocus sequence analysis of gyrB, rpoD, trpF, edd and recA
genes confirmed that these clinical isolates are members of the P. putida species [9,32].

Materials and Methods
Clinical strains HB13667 (blood smear) and HB4184 (sputum culture) were isolated on Muel-
ler-Hinton agar (Bio-Rad, Marnes-La-Coquette, France) in the hematology unit of the Hospital
of Besancon (France). Antibiograms were performed using the Kirby-Bauer disk method on
the same medium. Isolation and antibiograms were performed as indicated by the French Soci-
ety for Microbiology (CA-SFM recommendations, November 2007)

Genomic DNA was purified from strains HB13667 and HB4184 using the Wizard Genomic
DNA purification kit. Whole genome sequencing was performed using the 454 pyrosequencing
strategy technology (Macrogen) and assembled using the GS de novo assembler 2.3 (Roche)
into 150 and 141 contigs (25× fold coverage). These contigs were ordered by comparison using
BLASTn and Mauve [39] with the sequences from other available P. putida genomes (accession
no. NC_002947.3, CP000712.1, CP000926.1, CP000949.1 and CP002290.1). Characteristics of
the environmental and clinical strains are summarized in Table 1.

Genomic DNA was automatically annotated using a program pipeline based on Glimmer
3.0 for gene prediction [46]. BLAST and RPS-BLAST was used for functional assignment of
open reading frames (ORFs) based on sequence similarity to sequences deposited in the NR,
SwissProt, COG, Pfam, Smart, and PRK databases [47]. Automatic annotations were manually
curated with Rapid Annotation using Subsystem Technology (RAST; http://rast.nmpdr.org)

Table 1. Strains used in this study.

Strain Size
(Mb)

G+C
%

Coding
sequences

Function
assigned

RNAs Environment Source of isolation and main characteristics References

KT2440 6.2 61.5% 5536 72,80% 43 Rhizosphere Isolated from garden, ability to use 3-methylbenzoate [40]

BIRD-1 5.7 61.7% 5209 71,60% 86 Rhizosphere Isolated from a garden soil in a culture medium without iron
and with insoluble inorganic phosphate as a source of
phosphorous

[34]

DOT-T1E 6.3 61.4% 5705 70,60% 68 Waste water Isolated from waste water treatment, degradation and
tolerance toluene

[41]

F1 6.0 61.9% 5252 73,90% 95 Soil Isolated from a polluted creek, aromatic degradation [42]

GB-1 6.1 61.9% 5410 66,88% 96 Fres water Isolated from fresh water, robust manganese (Mn2+)
oxidizer

[43]

W619 5.8 61.4% 5182 72,46% 97 Plant tissue Isolated from Populus trichocarpa deltoides cv. ‘Hoogvorst,’
endophyta

[44]

S16 6.0 62.3% 5410 70,02% 86 Rhizosphere? Isolated from a field under continuous tobacco cropping, in
medium with nicotine as C and N source

[45]

HB13667 6.3 62.4% 5817 70,00% 68 Clinical
isolate

Isolated from immuno-depressed patient with general
bacteremia, similar antibiogram profile to KT2440, unable to
grow at 42°C. No pathogenic effect described.

[32]

H8234 6.9 61.9% 6305 67,58% 86 Clinical
isolate

Isolated from blood of a immuno-depressed patient with
general bacteremia, resistance to gentamicin and
tetracycline, unable to grow at 42°C. Deleterious effects ex
vivo and in vivo tissues.

[12]

HB4184 5.9 61.7% 5466 70,12% 69 Clinical
isolate

Isolated from sputum of immuno-depressed patient with
cystic fibrosis, resistance to streptomycin, able to grow at
42°C. Only deleterious effects in ex vivo tissues.

[32]

HB3267 5.9 62.7% 5322 72,60% 91 Clinical
isolate

Isolated from blood of a deceased patient (unknown cause
of death), antibiotic multi-resistant, able to grow at 42°C.
Deleterious effects in all the tissues and insect models.

[9]

doi:10.1371/journal.pone.0147478.t001
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[48] and re-annotated and deposited in GenBank (HB13667—accession number:
LKKS00000000 and HB4184 accession number: LKKT00000000). The resulting list of genes
was realigned by bidirectional confrontation with the complete available genomes used in this
study (one by one), in order to localize possible gaps in the sequence (HB13667 and HB4184).
The ends of contigs were compared with Blastn and only small gaps (>2 Kb) were detected.

Genome sequence comparisons to determine protein homology, common genes and genetic
islands were performed using RAST software (cutoff e-20). All the genome sequences were re-
annotated using the same software (annotation scheme, ClassicRAST) and sequences were
assigned a function-based similarity to a known sequence in the KEGG Database using an e-
cutoff value<e−10. Genes present only in clinical strain genomes or found exclusively in one
clinical strain were manually compared using BLASTp—one by one—against all the sequences
available in the database. Those presenting less than 70% of sequence identity with any P.
putida environmental strain (cutoff value<e−30) were selected. Functions for these genes were
assigned manually based on sequence and domain similarity to sequences deposited in the NR,
SwissProt, COG, Pfam, Smart and PRK databases [47].

Phylogenetic studies of complete genomes were performed using Composition Vector Tree
(http://tlife.fudan.edu.cn/cvtree/). These phylogenetic studies were carried out as recom-
mended by the user manual (http://tlife.fudan.edu.cn/cvtree/help/index.html) with a K-peptide
length of 6, as recommended by the authors for prokaryote organisms [49].

For individual proteins, gene comparisons using Phylogeny based on the Multilocus
Sequence Analysis (MLSA) of gyrB, rpoD, trpF, edd and recA genes was carried out using Phy-
logeny.fr (http://www.phylogeny.fr/). This multimodal platform performs multiple alignment
sequences using the MUSCLE algorithm (full processing model), carries out alignment curation
using the Gblocks program (to eliminate poorly aligned positions and divergent regions), and
constructs phylogenetic trees using PhyML (model WAG, statistical test alr), which was gamma
distributed with invariant sites (G+I parameters) and bootstrap values. Each branch was calcu-
lated 500 times for visualizations of the phylogenetic tree using TreeDyn software [50].

For phenotype characterization, individual colonies of P. putida strains from LB medium
plates were streaked onto M8 pregrowth (M8PG) medium plates (0.1% [wt/vol] glucose, 0.1 g/
liter NH4Cl, 1 mMMgSO4, 0.6 mg/liter Fe-citrate, and micronutrients), and grown overnight
at 30°C. Growth in M8PG permitted the depletion nutrient reserves such that the subsequent
growth assays with different carbon, nitrogen, and sulfur sources were dependent on the nutri-
tional sources provided. The biomass of the overnight plates described above was recovered
from the plate and washed twice with M8PG without glucose and NH4Cl eliminate possible
nitrogen and glucose rests. Cultures were adjusted to an optical density at 660 nm (OD660) of
0.05. To test different carbon sources cells were grown in M8PG without glucose adding each
carbon source at a final concentration of 5 mM. To test different nitrogen sources cells were
grown in M8PG without NH4Cl adding each nitrogen source at a final concentration of 5 mM.
T test different sulfur sources cells were grown in M8PG medium without MgSO4 adding each
sulfur source at a final concentration of 5mM. The wells of the microplates were filled with
200 μl of the cellular suspension. Positive-control wells consisted of full minimal medium con-
taining glucose and NH4Cl; negative-control wells contained this full medium without cell
inoculum.

All data recordings were performed using a type FP-1100-C Bioscreen CMBR analyzer sys-
tem (OY Growth Curves Ab Ltd., Raisio, Finland) at 30°C, with continuous agitation. The tur-
bidity was measured using a wideband filter at 420 to 580 nm every 60 min over a 12-h period.
Each strain was assayed at least three times for each of the compounds tested, and plates were
visually examined following each assay in order to verify the results. To validate the screening
results, cultivations were also performed in 100-ml conical flacks with 20 ml of culture
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medium. Turbidities of cultures under these conditions were usually twice that seen in the
microplates, which validates the high-throughput approach. For stress experiments the strains
were inoculated into microplate wells containing LB liquid medium, diluted 1/2, with the cor-
responding stressor concentration.

Strain HB4184 forms lumps and thick biofilms in the used culture conditions for this reason
we discard this strain for phenotypical studies.

Results

P. putida clinical isolate species fall into two different clades
We were able to distinguish two different clades within the clinical strains and a third clade
that consisted of exclusively environmental strains based in multilocus sequence typing
(MLTS) analysis using gyrB, RNA polymerase sigma factor rpoD, N-(5'-phosphoribosyl)
anthranilate isomerase trpF, 6-phosphogluconate dehydratase edd and the recombinase A recA
gene/protein sequences (S1 Fig) as previously described [51]. To further gain information on
the relationship between clinical and environmental isolates, we analyzed the complete
genomes of the clinical strains and those of the environmental ones (S2 Fig). Further a compar-
ison of the global sequence average identity of the different genome-encoded proteins using
the RAST server was carrued out (Table 2).

These analyses revealed that clinically-isolated strains HB13667, HB3267 and the environ-
mental strain S16 could belong to the same clade, because they exhibit a protein identity>85%
(Table 2). One possible explanation for close relationship of S16 with the two clinical isolates of
this clade could be a common ancestor of edaphic origin for all of them. It should be noted that
P. putida POXN01, other strain isolated from rice fields [52] as S16, has high relationship with
strains clade I (S1 Fig). HB4184 and H8234 were found to be placed within a different clade,
together with the fresh water isolate GB-1; protein identities of these strains were at least
>80%. H8234 has a close relative in the water strain SJ3 [43, 53] (S1 Fig), this fact could indi-
cate that GB-1, SJ3 and H8234 in clade II could have the same origin.

The third clade only contains environmental strains (the rhizobacteria KT2440 and BIRD-
1, the “degraders” F1, ND6 and DOT-T1E). Protein identities within this group were>82%

Table 2. Average of the global identity of proteins encoded by the genomes of different P. putida strains.

KT2440 100.00

BIRD1 86.30 100.00

F1 88.26 86.99 100.00

DOT-T1E 83.10 82.70 86.04 100.00

W619 76.38 74.08 76.62 76.30 100.00

H13667 73.51 71.69 74.04 74.25 69.23 100.00

HB3267 78.49 77.23 78.72 78.11 73.67 92.27 100.00

S16 78.53 76.24 77.43 78.17 72.52 87.20 85.60 100.00

P. monteilli 79.27 77.29 79.34 80.94 73.66 88.93 87.06 92.70 100.00

GB1 80.27 78.24 80.08 80.01 73.23 79.90 78.86 78.97 79.09 100.00

H8234 71.75 70.98 72.30 73.09 68.01 72.08 70.16 71.85 72.00 82.16 100.00

HB4184 77.92 76.65 78.03 78.42 72.00 79.15 77.85 77.58 78.08 82.87 80.14 100.00

NBRC14164 78.90 78.78 78.83 79.79 72.68 78.08 78.04 77.48 77.93 82.29 85.43 81.79 100.00

KT2440 BIRD1 F1 DOT-T1E W619 H13667 HB3267 S16 P. monteilli GB1 H8234 HB4184 NBRC14164

Numbers indicate the % of sequence similarity. Bold numbers, identity sequence values >80.

doi:10.1371/journal.pone.0147478.t002
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(Table 2). The endophytic strain W619 is not closely related to any of the other P. putida
strains studied and exhibited protein identity global averages that were lower than 80%
(Table 2) [54].

Considering the above results, we propose that P. putida clinical strains are organized into
two distinct clades and that some environmental strains have significant identities at the pro-
tein level with these clinical isolates, while a third clade of strains only contains environmental
isolates.

Functional differences in P. putida clinical and environmental isolates
To determine the genetic clusters that are specific to the P. putida clinical strains, we compared
functional categories and numbers of genes between clinical and environmental strains
(Table 3). This analysis revealed that seven categories of genes are more abundant in clinical
strains, namely:

1. Genes that encode for antibiotic, antimicrobial and heavy metal resistance. These numbers
varied in clinical strains from 154 in HB13667 to 132 in HB4184 (Table 3). For environmen-
tal strains these numbers were always below 124. The degree of resistance to a range of anti-
biotics by KT2440 was compared with the resistance to the same antibiotics of the set of
clinical strains used in this study; in general, and in agreement with Fernandez et al., [32], the
clinical strains were more resistant than KT2440. Phenotypic studies performed in this study
demonstrated than clinical strains were also more resistant to some heavy metals as silver
(3 μM) and mercury (0.3 μM) than KT2440; in both cases, the optical density reached by cul-
tures of clinical strains was always at least 2-fold higher than the case of KT2440 (Fig 1).

2. Genes involved in DNA insertion events that integrate phage, prophage and transposable
elements. In clinical strains these numbers are always over 31 and in environmental strains
the maximal number found was 16 for the S16 strain (Table 3). One remarkable finding is
that the percentage of inserted DNA in strain H8234, constitutes approximately 20% of the
total DNA. We have shown in biparental mating between HB3267and KT2440 active trans-
fer of genes codifying gentamycin and streptomycin resistance to KT2440 [9]. The fre-
quency was on the order of 2x10−8 transconjugants per recipient cell what reveals that
horizontal gene transfer events are clearly linked to the spread of antibiotics markers in the
species of P. putida.

3. Genes associated with DNA metabolism, especially in HB13667 and HB4184 (Table 3).
These genes are found in clinical strains in numbers over 140, what is above the number of
these genes in environmental strains. Phenotypic studies demonstrated that clinical isolates
grew in the presence of purines as nitrogen source (adenine and inosine), while the environ-
mental strain KT2440 hardly could use these chemicals as N source (Fig 1).

4. Genes associated with the fatty acid metabolism. Here we have found that clinical strains,
with the exception of HB4184, appear to have a higher number of genes involved in phos-
pholipid metabolism than environmental strains (Table 3). Phenotypic analyses demon-
strated than clinical strains are able to growth better than the environmental strain KT2440
using short chain lipids as decanoic acid as carbon source; the optical densities reached by
cultures of clinical strains were at least 2-fold higher than KT2440 (Fig 1).

5. Genes involved in survival under stress conditions (Table 3). Genes that appear to be pre-
dominant in clinical strains compared with environmental strains are associated with han-
dling oxidative stress and osmotic stress; these include genes involved in biosynthesis and
transport of choline—betaine. (Table 3). We have tested the resistance of the clinical strains

Clinically Relevant Genes in P. putida

PLOSONE | DOI:10.1371/journal.pone.0147478 January 28, 2016 6 / 24



Table 3. Functional categories in environmental and clinical P. putida isolates.

Functional categories KT2440 BIRD-1 DOT-T1E F1 GB-1 W619 S16 HB13667 H8234 HB4184 HB3267

Cofactors, Vitamins, Prosthetic
Groups, Pigments

387 (9.6) 314
(8.4)

321 (7.9) 380
(10)

361
(10)

374
(9.9)

311
(8.2)

331 (9.5) 343 (8) 304 (7.9) 307 (7.9)

Cell Wall and Capsule 183 (4.5) 191
(5.1)

196 (4.9) 155
(4.1)

137
(3.8)

168
(4.5)

176
(4.6)

174 (5) 196
(4.6)

176 (4.6) 177 (4.6)

Resistance to biocides 124 (3.1) 88 (2.4) 111 (2.8) 86 (2.3) 29 (0.8) 94 (2.5) 103
(2.7)

154
(4.41)

152
(3.6)

132 (3.4) 137 (3.5)

*Heavy metal homeostasis and
resistance

81 (2) 46 (1.2) 59 (1.5) 64 (1.6) 14 (0.4) 69 (1.8) 65 (1.7) 112 (3.2) 110
(2.6)

94 (2.5) 89 (2.3)

Potassium metabolism 49 (1.2) 38 (1) 31 (0.8) 21 (0.6) 2 (0.1) 21 (0.6) 31 (0.8) 34 (1) 34 (0.8) 28 (0.7) 32 (0.8)

Miscellaneous 85 (2.1) 56 (1.5) 65 (1.6) 90 (2.4) 91 (2.5) 85 (2.3) 52 (1.3) 55 (1.6) 75 (1.8) 55 (1.4) 49 (1.3)

Phages, Prophages, Transposable
elements, Plasmids

3 (0.07) 5 (0.13) 11 (0.27) 1 (0.03) 0 (0) 2 (0.05) 16
(0.42)

41 (1.18) 40
(0,94)

35 (0.91) 31 (0.8)

Membrane Transport 202 (5) 158
(4.2)

225 (5.6) 145
(3.8)

145
(4.0)

167
(4.4)

162
(4.3)

196 (5.6) 236
(5.5)

209 (5.5) 183 (4.7)

*Protein secretion system, Type II 10 (0.25) 10
(0.27)

10 (0,25) 10
(0.26)

10
(0.28)

36
(0.95)

10
(026)

19 (0.54) 17 (0.4) 10 (0,26) 21 (0,54)

*Protein and nucleoprotein secretion
system, Type IV

18 (0.45) 19
(0.51)

28 (0.69) 18
(0.47)

19
(0.52)

19
(0.51)

18
(0.48)

27 (0.78) 54
(1.23)

28 (0,73) 27 (0.70)

*Secretion system type I-Fimbriae 5 (0.12) 5 (0.13) 5 (0.12) 5 (0.13) 5 (0.13) 5 (0.13) 5 (0.13) 7 (0.20) 5 (0.12) 5 (0.13) 7 (0.18)

Iron acquisition and metabolism 107 (2.7) 66 (1.8) 60 (1.5) 115
(3.0)

82 (2.3) 110
(2.9)

54 (1.4) 57 (1.6) 70 (1.6) 61 (1.6) 56 (1.4)

RNA Metabolism 251 (6.2) 132
(3.5)

138 (3.4) 209
(5.5)

206
(5.7)

213
(5.7)

154
(4.1)

152 (4.4) 140
(3.3)

148 (3.9) 149 (3.9)

Nucleosides and Nucleotides 131 (3.3) 125
(3.3)

138 (3.4) 126
(3.4)

132
(3.6)

138
(3.7)

126
(3.3)

129 (3.7) 136
(3.2)

131 (3.4) 127 (3.3)

Protein Metabolism 258 (6.4) 273
(7.3)

267 (6.6) 251
(6.6)

245
(6.8)

246
(6.6)

266
(7.0)

242 (6.9) 264
(6.2)

249 (6.5) 264 (6.8)

Cell Division and Cell Cycle 33 (0.81) 37
(1.00)

35 (0.87) 32
(0.84)

34
(0.94)

33
(0.88)

33
(0.87)

36 (1.03) 28
(0.66)

36 (0.94) 36 (0.93)

Motility and Chemotaxis 77 (1.9) 118
(3.2)

130 (3.2) 82 (2.2) 80 (2.2) 78 (2.1) 117
(3.1)

120 (3.4) 120
(2.8)

122 (3.2) 117 (3.0)

Regulation and Cell signaling 100 (2.5) 113
(3.0)

109 (2.7) 111
(2.9)

112
(3.1)

109
(2.9)

116
(3.1)

118 (3.4) 122
(2.9)

111 (2.9) 110 (2.8)

Secondary Metabolism 5 (0.12) 5 (0.13) 7 (0.17) 14
(0.37)

5 (0.13) 14
(0.37)

5 (0.13) 5 (0.14) 5 (0.12) 5 (0.13) 5 (0.13)

DNA Metabolism 139 (3.4) 125
(3.3)

140 (3.5) 133
(3.5)

127
(3.5)

130
(3.5)

140
(3.7)

154 (4.4) 140
(3.3)

151 (3.9) 143 (3.8)

Fatty Acids, Lipids, and Isoprenoids 136 (3.4) 178
(4.8)

188 (4.7) 147
(3.9)

128
(3.5)

140
(3.7)

169
(4.5)

195 (5–6) 200
(4.7)

185 (4.8) 185 (4.8)

* Phospholipids 35 (0.87) 44
(1.12)

45 (1.12) 37
(0.97)

38
(1.08)

34
(0.95)

47
(1.24)

48 (1.38) 54
(1.28)

47 (1.24) 48 (1.24)

Nitrogen Metabolism 16 (0.40) 35
(0.94)

39 (0.97) 34
(0.89)

23
(0.64)

25
(0.67)

33
(0.87)

31 (0.89) 36
(0.84)

33 (0.86) 33 (0.85)

Dormancy and Sporulation 5 (0.12) 3 (0.08) 4 (0.10) 5 (0.13) 4 (0.11) 5 (0.13) 3 (0.08) 3 (0.09) 4 (0.09) 3 (0.08) 3 (0.08)

Respiration 183 (4.5) 145
(3.9)

151 (3.8) 167
(4.4)

175
(4.8)

171
(4.6)

164
(4.3)

154 (4.4) 159
(3.7)

138 (3.6) 161 (4.1)

Stress Response 190 (4.7) 180
(4.8)

186 (4.6) 170
(4.7)

170
(4.7)

181
(4.8)

184
(4.9)

198 (5.7) 204
(5.0)

195 (5.1) 194 (5.0)

*Oxidative stress 95 (2.4) 85 (2.3) 87 (2.2) 64 (1.7) 58 (1.6) 76 (2.0) 80 (2.1) 95 (2.7) 91 (2.1) 88 (2.3) 89 (2.3)

*Osmotic stress 22 (0,54) 36
(0.96)

37 (0.92) 22
(0.58)

33
(0,91)

26
(0.69)

32
(0.84)

37 (1.06) 46
(1.08)

40 (1.04) 40 (1.04)

**Choline and Betaine Uptake and
Betaine Biosynthesis

18 (0.47) 26
(0.70)

30 (0,74) 17
(0,45)

27
(0.74)

20
(0,53)

25
(0.66)

30 (0.86) 38
(0.89)

33 (0.86) 33 (0.85)

(Continued)
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and the environmental KT2440 to different oxidative agents as oxygen peroxide and
hydroxylamine. Clinical strains grew in presence of hydroxylamine (0.5 mM), while
KT2440 did not survive at this concentration (Fig 1). Clinical isolates survived in a propor-
tion of 100% after exposition to 0.004% v/v of H2O2 (optical densities of cultures with and
without out this compound were the same, 1.2), while the survival of KT2440 was reduced
until a 70% by the presence of this compound (Fig 1). Clinical strains were able to resist bet-
ter the presence of formamide (they are able to use this molecule as the sole N source) and
ethidium bromide than the environmental KT2440 (Fig 1).

6. Genes involved in amino acid metabolism were more frequent in clinical strains than in the
environmental ones, expect for DOT-T1E that had similar numbers in this category. Genes
involved in cysteine and histidine degradation seem to be more abundant in clinical isolates
than in environmental strains what may represent an adaptation to the human body
(Table 3). Phenotypic studies demonstrated that clinical strains are able to use more effi-
ciently the amino acids and derivatives leucine, histidine, glutamine, glutamic acid, aspara-
gine, serine, amino valeric acid, amino butyric acid, glutaric acid and phenylethylamine as
carbon source more efficiently than KT2440 (Fig 1 and not shown).

7. Genes involved in metabolism of organic sulfur (Table 3); ranged between 51 in HB13667
and 86 in H8234, while environmental strain have less than 45 with the only exception
being GB-1, where 83 genes belonging to this category were identified (Table 3). In this
regard, clinical strains were able to use L-cysteine as sulfur source, while KT2440 was not
able to growth in these conditions (Fig 1).

Other phenotypical differences found in clinical strains are the capacity to grow better than
KT2440 in short carboxylic acids (acetic acid, L-lactic acid, D, and L- malic acid, malonic acid,

Table 3. (Continued)

Functional categories KT2440 BIRD-1 DOT-T1E F1 GB-1 W619 S16 HB13667 H8234 HB4184 HB3267

Metabolism of Aromatic Compounds 133 (3.3) 136
(3.6)

187 (4.6) 168
(4.4)

152
(4.2)

153
(4.1)

100
(2.6)

123 (3.5) 152
(3.6)

119 (3.1) 118 (3.1)

Amino Acids and Derivatives 614
(15.2)

616
(16.5)

646
(16.0)

563
(14.8)

555
(15.2)

571
(15.2)

629
(16.6)

636
(18.2)

689
(16.1)

635
(16.7)

647
(16.7)

*Cysteine Biosynthesis 18 (0.45) 26
(0.70)

26 (0.65) 20
(0.53)

21
(0.58)

20
(0.53)

26
(0.69)

28 (0.80) 27
(0.63)

28 (0.73) 27 (0.7)

*Glutamine, Glutamate, Aspartate and
Asparagine Biosynthesis

27 (0.67) 35
(0.93)

41 (1.01) 28
(0.73)

34
(0.94)

29
(0.77)

41
(1.08)

42 (1.20) 43
(1.01)

41 (1.07) 44 (1.13)

*Histidine Degradation 7 (0.17) 8 (0,21) 8 (0.20) 8 (0.21) 8 (0.22) 8 (0.21) 8 (0.21) 9 (0.26) 8 (0.19) 9 (0.23) 9 (0.23)

Sulfur Metabolism 79 (2.0) 67 (1.8) 83 (2.1) 81 (2.1) 122
(3.4)

69 (1.8) 82 (2.2) 91 (2.6) 127
(3.0)

89 (2.3) 93 (2.4)

*Organic sulfur assimilation 45 (1.1) 29
(0.78)

44 (1.09) 43
(1.13)

83 (2.3) 30
(0.80)

43
(1.13)

51 (1.46) 86
(2.02)

54 (1.41) 54 (1–
40)

Phosphorus Metabolism 59 (1.5) 48
(1.29)

49 (1.22) 55
(1.44)

59
(1.63)

48
(1.28)

49
(1.29)

55 (1.58) 52
(1.22)

50 (1.30) 49 (1.27)

Carbohydrates 457
(11.3)

445
(11.9)

471
(11.7)

443
(11.6)

417
(11.5)

387
(10.3)

464
(12.2)

444
(12.7)

509
(11.9)

438
(11.4)

440
(11.4)

Total genes with functional category 4029 3732 4028 3808 3618 3755 3788 3489 4261 3833 3864

Numbers indicate the number of genes involved in a given functional category. In parentheses, percentages considering the total of genes with functional

category.

doi:10.1371/journal.pone.0147478.t003
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(methyl)-pyruvate, and succinic acid); cyclic compounds and derivatives with a high antioxi-
dant power (quinic acid, benzoate, 4-hydroxybenzoate, protocatechuate); threalose, involved in
desiccation and osmotic stress, where KT2440 was not able to grow; and the detergent
Tween20 as carbon source (data not shown).

Analysis of P. putida genes from clinical isolates
To more precisely discriminate the clinically important genes of P. putida, we analyzed the
amino acid sequence identities of the ORFs found within the genomes of the clinical strains.
Specifically we looked for ORFs which were present in clinical strains but not in environmental
strains or ORFs that had an identity<70% with the environmental strains of P. putida. Genes
shared by the two clades of clinical isolates are defined here “core clinical genes”.

P. putida “core” clinical genes, not present in environmental isolates. The most relevant
characteristic of P. putida core clinical genes is that they are mostly present on transposons

Fig 1. Phenotypical array characterization of clinical strains.Graphics show the growth of the studied P. putida clinical strains and KT2440 in the
presence of heavy metals (A); oxidative and other stressors (B); DNA intermediates as the only nitrogen source (C); amino acids (D) or fatty acid (E) as the
only carbon source; and cysteine (cys) as the only sulfur (S), nitrogen (N), carbon (C) or carbon+nitrogen source (C+N). Blue bars, HB13667; red bars,
H8234; green bars, HB3267 and white bars, KT2440. Error bars indicate standard deviation from three experimental repetitions. In parentheses
concentration of stressor used, if concentration is not indicated means this was 5 mM. HB4184 was not included in this study because it forms lumps and
thick biofilms in these culture conditions.

doi:10.1371/journal.pone.0147478.g001
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(Table 4); indicating their horizontal acquisition from other microorganisms. Many of these
genes encode proteins which have a high degree of identity with proteins identified in the insect
pathogen Pseudomonas entomophila, [55], and in the opportunistic pathogen Pseudomonas
aeruginosa [56] (Table 4). The functions of the proteins encoded by genes in the transposons
are related to survival under oxidative stress conditions, resistance against biocides, amino acid
metabolism (specifically, histidine degradation) (Fig 1), and virulence (two toxin/antitoxin
(TA) systems) (Table 3).

Of note, Toxin-Antitoxin (TA) systems are not more numerous in the genome of clinical
strains compared with environmental strains; in fact, the strain with the most TA systems is
KT2440, the rhizospheric strain, with 9, while the rest of the strains possess 5 or 6 (S1 Table).
Some of the TA systems are shared by the most of the strains e.g., toxin with a RES domain/
antitoxin encoded in KT2440 by the genes PP_2433, PP_2434, was present in all the strains
with the exception of W619. Others are niche specific; i.e. “clinical TA systems” e.g., antitoxin
MazE family/hypothetical toxin encoded in HB3267 by the genes B479_25735 and
B479_25740, present in all the clinical strains with the exception of HB13667 or the RelE/RelB
TA system encoded by the genes L483_14885 -L483_14910 in H8234, present in all the clinical
strains with the exception of HB3267. Overall the so-called “clinical” TA systems were present
in most of the clinical strains but not at all in the environmental strains. “Environmental” TA
systems e.g., the RNA interferase/antitoxin MqsA encoded in KT2440 by PP_4204- PP_4204,
was present in most of the environmental strains with the exception of S16; or the TA system
hicA-1/ hicB-1 encoded by PP_1479- PP_1480 in KT2440, was present in most of the environ-
mental strains with the exception of GB-1. Therefore, some of the TA systems are specific at
the level of the strain: 3 in KT2440, 2 in W619, 1 in DOT-1E, 2 in GB-1. A similar phenomenon
is observed with other bacteriocins such as S-type pyocines (S1 Table), siderophore biosyn-
thetic genes, and O-antigen production (data not shown).

Clade I clinical genes (HB13667 and HB3267). Most of the genetic clusters shared by
HB13667 and HB3267 strains, have homologs in pathogenic bacteria, in addition to the previ-
ously mentioned P. entomophila and P. aeruginosa, these include, the plant pathogens Pseudo-
monas syringae, also described as an opportunistic human pathogen [57], and Pseudomonas
amygdali [58]; Enterobacteriaceae family; the harmful cyanobacteriaMicrocystis aeruginosa
[59]; the fish pathogen Pseudomonas plecoglossicida [60]; and the clinical isolates P. putida
NBRC 14164T [61] and Pseudomonas monteilii [62] (Table 4). These clusters encode proteins
involved in transport of ions (Mn++) or peptides across the membrane (type I, II and IV secre-
tion systems). These secretion systems, particularly type II and IV are more abundant in clini-
cal strains than in environmental strains (Table 3). Three genetic clusters encoding
bacteriocins (RelB/RelE TA system and two pyocin/immunity systems) and the genes involved
in the siderophore pyoverdine of these strains seem to be specific for this clade (Table 4).

Phenotypic studies corroborated that clade I strains were able grow in presence of manga-
nese (1μM), meanwhile clinical strains clade II and KT2440 were unable to growth at these
conditions (Fig 1). Clade I clinical strains were able to use the amino acids histidine and isoleu-
cine (Fig 1), and alternative carbon source as glycerol, D-fructose, propionic acid with more
efficiency than clade II clinical strains and KT2440 (data not shown).

Genes that are specific to HB13667. At the level of functional categories, this strain
stands out attending the number of genes involved in resistance to antibiotics and toxic com-
pounds (Table 3, S2 Table), genes involved in DNA acquisition (Table 3, S2 Table), genes that
encode proteins related with resistance of oxidative stress (sharing the first position with
KT2440), DNAmetabolism, cysteine biosynthesis (together with H8234) and polyhydroxybu-
tyrate metabolism (S2 Table). This suggests the acquisition by HB13667 of genetic traits
involved in the coping of selective pressure conditions (the presence of biocides and under
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Table 4. Core and clade specific genes in P. putida clinical isolates.

Coordinates General function Assigned function Clade I Clade 2 Closest relative found
in

Clinical core genes

Genes involved in anti-immune
response

L483_14650-L483_14665 Transposon Oxidative stress Formaldehyde degradation, nitric
oxide (NO) homeostasis

HB13667 H8234 P. aeruginosa

B479_11910-B479_11935 Transposon Amino acid
metabolism

Histidine degradation HB3267,
HB13667

HB4184 P. entomophila

Resistance to biocides

L483_14890-L483_14955 Transposon Virulence Mercury resistance HB13667 H8234 P. aeruginosa

L483_15590-L483_31960 Transposon Virulence Nickel, cobalt-zinc-cadmium and
chromate resistance

HB13667 H8234,
HB4184

P. aeruginosa

Iron uptake

L483_16595- L483_16480 Transposon Iron uptake Alternative siderophore pathway HB13667 H8234 P. alcaligenes

Bacteriocine production

L483_14885 -L483_14910 Transposon Virulence Toxin (RelE)/antitoxin gene
system

HB13667 H8234,
HB4184

P. aeruginosa

Clade I clinical genes

Genes involved in anti-immune
response

B479_12025 Transport Manganese transport, cell
invasion

HB3267,
HB13667

P. plecoglossicida

B479_16565 Signalling guanosine pentaphosphate, cell
invasion

HB3267,
HB13667

Pseudomonas sp.
URMO17WK12:I9

Host/microbe interaction
structures

B479_21275-B479_21345 Virulence Type II/IV secretion system
(T4SS)

HB3267,
HB13667

P.plecoglossicida

B479_12550-B479_12545 Virulence TolC family type I secretion HB3267,
HB13667

P. aeruginosa

Bactericide production

B479_00570-B479_00575 Virulence Toxin/antitoxin system RelE HB3267,
HB13667

P. syringae

B479_01965-B479_01960 Virulence S-type pyocin-based system HB3267,
HB13667

P. plecoglossicida

B479_22065-B479_22070 Virulence S-type pyocin-based system HB3267,
HB13667

Enterobacteriaceae

B479_10725- B479_10755 Virulence Microcystins are potent toxin HB3267,
HB13667

Microcystis aeruginosa

Tissue colonization

B479_07330- B479_07355 Virulence Type 1 pili tissue adherence,
colonization and invasion

HB3267,
HB13667

P. putida NBRC 14164T

B479_11885- B479_11910 C and aminoacid
metabolism

Alternative sugars and the use
of amino acids

HB3267,
HB13667

P. plecoglossicida

B479_19460- B479_19480 Iron uptake Siderophore biosynthesis HB3267,
HB13667

P. plecoglossicida

Clade II clinical genes

L483_11530–90 Lipid metabolism Alternative phospholipid
biosynthesis pathway

H8234,
HB4184

P. entomophila

L483_30550–60 Virulence Type IV pili H8234,
HB4184

P. monteilii

doi:10.1371/journal.pone.0147478.t004
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oxidative stress conditions) from well adapted microorganisms that have shared the same habi-
tat with this clinical isolate. Phenotypic assays corroborated that this strain was more resistant
than the other clinical strains and KT2440 to oxidant molecules as dichromate, and heavy met-
als as silver and telluric acid. (Fig 1 and data not shown). When cells were exposed to this last
compound (0,9 ug/ml) optical densities reached by HB13667 cultures were 2-fold higher than
the rest of the studied strains.

Strain HB13667 possesses 21 genetic clusters (named I to XXI in S3 Table) that are specific
for this strain (i.e., with identities lower than 70% compared to other strains). Within these
clusters are a remarkable array of equipment for the detoxification of oxidative reactive species
(e.g, genetic cluster I contains an alkylhydroperoxidase—ORF175, a catalase—ORF 244 and a
peroxidase—ORF247) and to maintain beneficial redox conditions for biomolecules via gluta-
thione metabolism; in genetic clusters I, II, X and XIV (S3 Table). Regarding the resistance of
this strain to the presence of biocides, ORF4897-4903 found in cluster XVII encode for proteins
involved in detoxification of heavy metals. Specifically, there is a transport system for cobalt/
zinc/cadmium that is found within a transposon that has high identity to sequences in P. aeru-
ginosa (S3 Table).

Genes that are specific to HB3267. This strain is the richest in genes involved in amino
acid metabolism (glutamine, glutamate, aspartate, asparagine, threonine, homoserine, histidine
and putrescine) compared with all the studied strains (S2 Table). One interesting aspect of this
strain is that it possesses a high number of genes which encode for type II protein secretion sys-
tems, only over-passed by the endophytic W619 (Table 3, S2 Table); Another significant obser-
vation is that this strain has a high number of multidrug resistance/efflux systems (S2 Table).
However, the most clear feature indicate that the major differential evolution strategy used by
this strain is related to the metabolism of certain amino acids. Phenotypic characterization of
this strain revealed that it was able to use L-cysteine as carbon, nitrogen or carbon+nitrogen
source better than the rest of the studied clinical strains and KT2440 (Fig 1).

The exclusive genetic information found in this strain is grouped into twenty one genetic
clusters on its chromosome (S3 Table). The most remarkable clusters are found within two
transposons (S3 Table). The first of which is, cluster I, containing a Tn7-like transposon
(B479_00025-B479_00140), with genes that share high identity with P. aeruginosa and P. pleco-
glossicida, for example B479_00040-B479_00065, encoding genes involved in D-amino acid
metabolism. This transposon also bears genes (B479_00070- B479_00095) involved in the trans-
port of glycine-betaine-proline which mediate survival under osmotic stress. In addition, there is
B479_00100- B479_00105, which is involved in the transport of γ-aminobutyric acid (GABA).
The second transposon (B479_25745-B479_25935, in genetic cluster XX) contains genes mainly
involved in tolerance and degradation of toxic aromatic compounds (S3 Table) (9).

Other genes of interest, not located within transposons, include a set of genes
(B479_12970-B479_13085, in genetic cluster XII) that share high identity with genes of P.
fluorescens and P. syringae that encoded proteins that are involved in the transport and degra-
dation/biosynthesis of cyclic/aromatic halogenated compounds. It should also be mentioned
three potentially secretable proteins within this cluster namely: B479_13035 (a nitrilase), and
B479_13040 and B479_13080 (two phospholipases) (S3 Table).

The phenotypic characterization of HB3267 revealed that this strain is thermo-resistant.
Although this phenotype could be due to multiple elements, it should be noted that genetic
cluster X contains a group of hypothetical proteins, one of which is a homolog to HSR1
(B479_10540) a heat shock protein.

Clade II clinical genes (H8234 and HB4184). Specific genetic clusters shared by H8234
and HB4184, and absent in other P. putida strains, encode proteins that are homologous to
those found in bacteria that are pathogens, such as, P. entomophila and microorganisms
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typically isolated from hospital environments for example members of the Enterobacteriaceae
family and P.monteilii (Table 4). These genes are involved in lipid metabolism and membrane
transport (Type IV secretion systems) (Table 4), genes which are also well represented clinical
strains (Table 3).

In addition, it is important to highlight the existence of two phospholipids biosynthesis
pathways in H8234 and HB4184; one of these (L483_11530–90) has a homolog in the entomo-
pathogen P. entomophila, while the other (L483_17350- L483_17400) is highly conserved in P.
putida strains. The presence of two phospholipid biosynthetic pathways is very common in
human pathogenic strains.

Genes that are specific to H8234. H8234 was superior to the other strains in genes of
multiple categories such as: cell wall and capsule biosynthesis (capsular and extracellular poly-
saccharides, LOS core and oligosaccharide biosynthesis), virulence, disease and defense, pro-
tein and nucleoprotein secretion system Type IV, regulation and cell signaling, metabolism of
lipids (phospholipids, fatty acids and isoprenoids), stress response (osmotic stress), amino
acids and derivatives metabolism (polyamine, arginine, ornithine, isoleucine, alanine, serine,
and glycine), sulfur metabolism (organic sulfur assimilation) and carbohydrate metabolism (S2
Table). This suggests that the evolutionary strategy of this strain was much more complex than
for the rest of the others. Comparison of the growth of clinical strains and the environment
KT2440 on different carbon and nitrogen sources demonstrated that H8234 was the most effi-
cient using as carbon source lipids, hidroxy- and keto- butiric acid, aminoacids as L-glycine.
This strain was also able to use efficiently the amino acids serine as and threonine as the only
nitrogen source and cysteine as the only sulfur source (Fig 1 and data not shown).

This strain also possesses the largest genome of the studied strains (6.9 Mb) (Table 1);
approximately 20% of this genome is the result of DNA insertions. H8234 possesses 33 exclu-
sive genetic clusters (S3 Table) (12). The largest segment of the inserted DNA are located in
clusters XVII and XVIII, which contain 345 and 138 ORFs, respectively. Both clusters are a
mosaic of modules made of transposases and other mobile elements (Fig 2). These modules
contain genes that encode proteins found in many different organisms that inhabit multiple
niches (edaphic, aquatic and clinical environments, including some pathogens), indicating a
horizontal acquisition of these modules (Fig 2). Cluster XVII, the largest, bears 11 modules that
contain genes that are important for nutrient uptake and survival under conditions of stress
(Fig 2). Of note, the presence of genes involved in steroid/aromatic/lipid (testosterone) trans-
port and degradation is remarkable.

The second largest cluster XVIII (L483_16125-L483_16885) comprises 10 modules that
contain genes for iron uptake, resistance to heavy metals, and determinants of tetracycline and
gentamycin resistance (S3 Table).

Another feature of the H8234 clusters is the abundance of genes that encode iron uptake
systems. Most of the systems are TonB-dependent (clusters VIII, XI, XV, XXII, XXIX and
XXXI). These proteins ensure the effective detection of iron (e.g, free Fe3+ or molecules such as
transferrin, lactoferrin, and hemoglobin) [63].

Genes that are specific to HB4184. This strain bears a high number of genes involved in
metabolism of amino acids (lysine, threonine, methionine, and cysteine), ABC transporter
dipeptide and DNA replication (S2 Table). These features indicate that the major differential
evolution strategy used by this strain is related to the metabolism of certain amino acids.
HB4184 possesses 34 gene clusters that are not present in any other strains (S3 Table). The
most relevant feature is the presence of a type III-like secretion system (ORF3005-15, cluster
XXII). The presence of such system has been reported before in strains that belong to the “P.
putida complex” found in blood infections [64]. In pathogenic bacteria, this needle-like struc-
ture secretes effector proteins directly from the bacterial cell into the eukaryotic (host) cell,
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where they exert a number of effects that help the pathogen to survive and to escape an
immune response [65]. One possible protein that may be injected (i.e., an effector) could be the
protein encoded by ORF3009.

Heat tolerance determinants within this strain appear to be located on a transposon in clus-
ter VI (ORF581-607). These include heat shock proteins Hsp (ORF590-2), HtpX (ORF601)
and HtrA (ORF602) that are highly homologous to proteins found in Pseudomonas pseudoal-
caligenes and P. aeruginosa. Also located in this transposon are genes involved in survival
under stress conditions, including: a thioredoxin involved in maintaining oxidative balance
(ORF597); a potassium/proton KefB (ORF598), responsible for pH homeostasis; and the phos-
phate starvation-inducible PsiE protein (ORF600), which is highly similar to proteins in Klebsi-
ella pneumoniae and P. aeruginosa.

One of the more remarkable characteristics of this strain is the abundance of genes that
encode enzymes involved in the detoxification of reactive oxidative species. These proteins are
found in cluster XX (ORF2654-2655, peroxiredoxin), XXI (ORF2683, alkyl hydroperoxide

Fig 2. Genetic modules in clusters XVII and XVIII of H8234. Lines represent the length of the modules. Represented in white, genes that have the highest
identity with other Pseudomonas environmental strains. In red, genes that do not have homology with any other strain or have homology only with pathogens,
opportunistic pathogens or clinic isolates of P. putida. In black, genes involved in transposition events. dh means dehydrogenase, red means
oxidoreductase.

doi:10.1371/journal.pone.0147478.g002
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reductase and other enzymes involved in preventing free radical damage), XXIX (ORF4572,
alkylhydroperoxidase, which offers protection against oxidative and osmotic stress) and
XXXIV (ORF5442, alkylhydroperoxidase).

Discussion
One of the mechanisms used by microbes to adapt to a new niche is the acquisition of the bio-
chemical and biophysical functions required to survive in the new environment [66]. In clinical
strains of P. putida this acquisition appears to have been achieved via horizontal gene transfer
mediated by transposons that move a number of genetic traits present in microorganisms that
inhabit the niche to be colonized. In the case of P. putidamany of the genes acquired are those
related with transposition itself and phage integration. The genetic information associated with
these transposons were genes highly homologous in sequence to those in the insect pathogen
P. entomophila, the fish pathogen P. plecoglossicida and the human opportunistic pathogen P.
aeruginosa. Horizontal gene transfer mediated by transposons has been observed in certain
clinical microorganisms, e.g., P. aeruginosa in order to colonize lungs [24, 67]. In Enterobacter
faecium the presence of this acquired information could contribute to the transition of an avir-
ulent comensal to a pathogenic form [68]. The most commonly acquired information in the P.
putida clinical strains is related to survival under osmotic and oxidative stress, facing the dele-
terious effects of biocide molecules, nutritional adaptation and modulation of the human
immune response. Below we examined these features in more detail.

Membrane composition (Phospholipids)
Phospholipids are the major component of bacterial membranes. The phospholipid composi-
tion of the membrane is crucial for bacteria to cope with environmental hazards such as extreme
pH, high osmolarity, or exposure to surfactant molecules. Moreover, phospholipids play an
important role in bacterial infection as they represent both target and barrier for antibiotics and
host defense mechanisms such as cationic antimicrobial peptides and enzymes produced by
phagocytes or epithelial cells [69]. Genes involved in phospholipid metabolism are overrepre-
sented in the P. putida clinical isolates compared with environmental strains, the clade II strains
stand out in this regard. Specifically, clade II clinical strains (H8234 and HB4184) contain two
phospholipid biosynthesis pathways; one of these (L483_11530–90) has a homolog in the ento-
mopathogen P. entomophila, while the other (L483_17350- L483_17400) is highly conserved in
P. putida strains. As noted, pathogens often have two phospholipid biosynthetic pathways.
Although we have no evidence for differential expression, other groups have reported that
expression of the additional pathway is only observed during phagocytosis [70].

Responses against oxidative stress
To successfully infect a host, pathogenic bacteria for animals should be able to overcome many
barriers. One primary defense mechanism is the production of reactive oxygen species (ROS)
by the host cells, such as, hydroxyl radical (�OH), peroxyl radical (ROO�), alkoxyl radical (RO�),
superoxide anion (�O2−), singlet oxygen (1O2), hydrogen peroxide (H2O2) and nitric oxide
(NO) [71]. To overcome the detrimental effects of oxidative stress, the invading microorganism
must bear cellular defense systems involving the production of ROS detoxification enzymes
(such as catalases, peroxiredoxins and superoxide dismutases), as well as bypass the deleterious
effect of these ROS in important biomolecules [72–75]. One of the strategies employed by the
clinical P. putida isolates studied here is to increase the number of genes involved in handling
oxidative stress compared to the environmental strains. This is especially noticeable for the
clade I strain, HB13667 where gene numbers for this functional group are similar to those
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found in KT2440. KT2440 is able to live in diverse environments and is capable of interacting
with various reactive oxygen species-inducing agents existing in numerous niches, for this, the
strain has developed a potent equipment against ROS [76].

As mentioned earlier, generation of ROS by the host can cause oxidative modification and
damage to important cellular bio-molecules such as lipids, carbohydrates, proteins and DNA
via different mechanisms. De novo synthesis of the resistance molecules is required for survival
under the oxidative conditions [77]. This could be an explanation for the overrepresentation of
genes involved in lipid (particularly in clade II, H8234 and the clade I, HB13667), amino acid
(especially H8234) and DNAmetabolism (HB13667) in P. putida clinical isolates. The dam-
aged molecules could also be restored. Glutathione plays a crucial role in the restoration of oxi-
dized lipids and proteins [78]. Biosynthetic pathways for this molecule are more frequent in
some of the clinical strains H8234 (31 genes) and HB13667 (29 genes) compared with the envi-
ronmental strains (28 for F1, highest of the environmental strains). Glutathione is a tripeptide
composed of glutamate, cysteine, and glycine [77]. Curiously, genes involved in cysteine
(HB13667, and the clade II HB4184) and glutamate biosynthetic pathways (clade I, HB3267)
are overrepresented in all of the clinical strains. The DNA damage induced by ROS is directly
involved in cell death. ROS molecules oxydize nitrogen bases and produce double-strand
breaks and single-strand breaks in DNA. The repair mechanisms employ the action of enzymes
such as DNA polymerase, helicases (Uvr proteins), and exonoucleases [78]. Genes that encode
the mechanisms for DNA repair are overrepresented in clinical isolates of P. putida (especially
in HB13667) compared to environmental strains.

Responses to the presence of antimicrobial biocides
Antimicrobial agents (antibiotic and heavy metal biocides) have been used traditionally as a
treatment or preventative for pathogenic infections. The ability of bacteria to survive in the
presence of antibiotics and soluble heavy metals is dependent on the expression of tolerance/
resistance genes [79,80]. Although these genes are widely spread in nature, they tend to be
more prevalent in clinical isolates [81]. This increased prevalence, specifically of genes involved
in heavy metal tolerance and homeostasis, was observed in the set of clinical isolates we charac-
terized when compared with environmental strains. The homology of the genes found in the
clinical isolates of this study with the genes found in pathogens and opportunistic pathogens
supports their consideration as clinical genes. In fact, genes involved in tolerance to some of
these heavy metals (e.g., copper and manganese) have been closely associated with pathogenic-
ity [82, 83]. Of the set of strains studied here, HB13667 is the clinical P. putida isolate that is
the most specialized in the survival in the presence of biocides.

Maintenance of fitness of the population
One of the mechanisms that bacterial cells use to face stress conditions (oxidative stress, pres-
ence of biocides, host defense mechanisms) is the microbial-based production of toxins in order
to establish a fit population of cells in a specific environment. Some toxins do so by negatively
selecting competing and weaker microorganisms or by acting against host defense mechanisms.
For example, toxin-antitoxin (TA) systems are genetic elements composed of a toxin gene and
its cognate antitoxin. The antitoxin, expressed by the microbe, serves to neutralize the toxin and
enables selective survival. However, under certain circumstances, such as environmental stress,
the antitoxin, which is more labile, is degraded more rapidly. As toxin levels rise, the weaker
cells undergo cell death, and only the fittest cells survive; this system inhibits the overall growth
rate and permits persistence throughout the duration of the stress situation [84]. Among the
strains that we analyzed, we found a high sequence diversity in the TA systems, specificity was
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shown at the niche level (eco-type, clinical and environmental TA systems), and the phenotype
level (found only in aromatic degrader or rhizospheric strains). Similar results were found in
Escherichia coli [85]. Two nonspecific TA systems (RES domain toxin/antitoxin and toxin addi-
tion module/toxin) that could be considered general TA systems in P. putida were also present
in most of the studied strains. The MazF/E TA system, that is involved in handling several stress
conditions and is also involved in suppression of the immune response [86] is highly diversified
in P. putida; there is a clinical ecotype of this system (i.e., only members of the clinical isolates
have homologs), in addition a second variant of this system is also found in the rhizospheric
strain, BIRD-1. The MqsR/MqsA TA system, involved in the response to several stress condi-
tions and in biofilm formation [87], appears to constitute an environmental ecotype. The HicA/
HicB system which is in involved in survival in the presence of antibiotics [88] shows high diver-
sification in P. putida, there is an environmental ecotype (present only in environmental
strains), a second “bacterial host-related” ecotype present in clinical strains and inW619. In
addition, the ChpB/S TA system which is involved in survival under oxidative stress [89] was
found in rhizospheric strains and clinical strains of clade I.

Metabolic and nutritional adaptation
The ability to acquire nutrients during infections is another important attribute in microbial
survival in human tissues. For example, amino acids are a valuable source of nitrogen if they
can be degraded by the invading organism [90]. It should be noted that histidine is not typically
metabolized by P. putida [91]; however, in the clinical strains analysed here, with the exception
of H8234, we found a histidine ABC transport system and a histidine ammonia-lyase that are
highly homologous to those found in P. entomophila. Histidine ammonia-lyase catalyzes the
first step of a major histidine degradation pathway in several organisms [92] and may serve to
target the abundant histidine-rich glycoproteins found in vertebrate plasma, and which act as a
key regulator of the immune response. Not surprisingly, it has been proposed that the degrada-
tion of these proteins may provide a source of amino acids for pathogens, while also mediating
evasion of the immune response [93]. Other amino acids, such as taurine that is present at high
concentrations in most animal tissues, constitute a good source of organic sulfur. This amino
acid has an additional role in the protection the tissue from oxidative stress and in the innate
immunity [94]. The number of genes involved in organic sulfur metabolism (including taurine
utilization genes) is higher in the clinical isolates of P. putida (especially H8234) than in envi-
ronmental strains (with exception of GB-1). Another molecule that is abundant in eukaryotes,
and forms part of the phosphatidylcholine and sphingomyelin of membrane cells, is choline.
Choline is oxidized to glycine betaine and can function as an osmoprotectant, and as a source
of carbon, and nitrogen, for human pathogens [95]. Genes involved in choline uptake and beta-
ine biosynthesis are also overrepresented in the clinical isolates of P. putida. Of note, strain
H8234 appears to have the highest metabolic potential to use not only amino acids, but also
carbohydrates and organic sulfur metabolites.

Iron uptake
In order for P. putida to colonize niches, it must ensure the availability of iron. The source of
iron in each niche varies; free Fe3+is mostly used by free-living microorganisms because this
ion is available in soil [96] and water [97]. However, in animals most of this iron forms part of
the hemoproteins [98]. This may be the basis for the acquisition of elaborate high-affinity iron
uptake systems by clinical isolates of P. putida. The main mechanism to capture iron is through
the synthesis of siderophores. In P. putida KT2440 the only siderophore that has been previ-
ously identified is pyoverdine [99]. A high level of diversity has been found in the pyoverdine
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synthesis locus in this genus and species, in fact the diversity is such that it can be used as a
good phylogenetic marker [100,101]. We have found the same diversity for this locus, as was
described earlier for TA toxin/antitoxin systems; different ecotypes could be described (L.
Molina, Z. Udaondo and J. L. Ramos, submitted). Apart from this biodiversity, additional
genes involved in pyoverdine biosynthesis or modification have also been found inserted in a
transposon in clinical strains (i.e., H8234, L483_16595- L483_16480). These genes are highly
homologous to one found in Pseudomonas alcaligenes (P. aeruginosa group). These findings
indicate a different evolution in the iron uptake mechanism in clinical P. putida strains.

Manipulation of the host environment (Secretion systems)
Pathogens and other components of the human microbiome not only react to their environ-
ment, they are also able to manipulate their surroundings and exploit whatever nutrient
sources are present by the secretion of proteins and other molecules. Human pathogens have
developed a remarkable array of sophisticated nanomachines—secretion systems—to export
proteins and DNA into the extracellular environment or into target cells. Two of these secre-
tion systems have evolved in a similar way, the type II (T2S) and type IV (T4S) secretion sys-
tems; they are multi-protein complexes spanning the envelope of Gram-negative bacteria and
dedicated to the transport of secretion substrates through the bacterial outer membrane in a
two-step process [102]. These secretion systems are widely dispersed throughout different spe-
cies of microorganisms, however, in pathogenic strains it has been shown that there is nearly
always more than one T2S or T4S secretion cluster. This appears to be the case for the P. putida
clinical isolates and the endophyte W619. T2S is involved in the degradation of biopolymers,
by changing the oxidoreductive state of iron and manganese. In addition, T2S also play an
important role during pathogenic bacterial infections by the secretion of virulence factor [103].
One additional cluster encoding a T2S system has been found in clade I strains HB13667 and
HB3267 (in HB3267 B479_21275-B479_21345) and is highly homologous to one found in P.
plecoglossicida. T4S transport a diverse array of substrates, from DNA to nucleoprotein com-
plexes and virulence effectors. T4S have been implicated in the conjugation of plasmids carry-
ing antibiotic resistance genes between pathogenic bacteria [104]. An additional T4S was
found in clade II strains HB4184 and H8234 (in H8234, L483_30550-L483_30560) and clade I
strains (HB3267, B479_07330- B479_07355). The clade I T4S appears to be involved in the
secretion of type I fimbriae. Production of fimbriae has been shown to assist human pathogenic
microorganisms in attachment to host tissues, and to each other; this attachment allows the
subsequent differentiation of the microorganism into a biofilm lifestyle [105]—a structure that
increases the resistance to antibiotics and is important for surface colonization and interacting
with host factors and the host immune system [106].

A remarkable finding of this study is the identification in the clade II strain HB4184 of
other type of nanomachine, a secretion system that can be included in type III (T3S). T3S is fre-
quent found in human and plant pathogenic Gram-negative bacteria, and plays a crucial role
in the virulence of these isolates; permitting the export of proteins/effectors into target cells.
These effector proteins are able to modulate the immune defenses of the host, producing even
cell death [65]. These T3Ss are rarely found in P. putida, the only mention in scientific reports
is a recent study that described the presence of this kind of structure in blood isolates that were
assigned to the “P. putida complex” [64].

In summary, this study describes for the first time, the genetic traits involved in the survival
of four clinical isolates of P. putida. This important genetic information appears to have been
acquired by horizontal transfer from pathogenic or opportunistic microorganisms. The newly
acquired genes are involved in coping with stress conditions (oxidative stress and presence of
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biocides traditionally used in the hospital environment), the uptake of new nutrients available
in the host tissues (C, N, S and iron sources), and modification of the host environment (abol-
ishing host defense responses). These four clinical isolates present different characteristics:
HB13667 appears to be more equipped at coping with oxidative stress and biocides, HB3267 is
a highly antibiotic resistant strain [9], HB4184 possesses a likely type III secretion system and
H8234 appears to be adapted to survive in highly differential environments, having a high met-
abolic potential. The complexity found in this last strain is due to the large amount of acquired
DNA, where approximately 20% has been received by horizontal gene transfer from other
microorganisms living in environmental and clinical environments.
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