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Abstract
A newmethod is presented to determine the retinal spectral sensitivity function S(λ) using
the electroretinogram (ERG). S(λ)s were assessed in three different species of myomorph

rodents, Gerbils (Meriones unguiculatus), Wistar rats (Ratus norvegicus), and mice (Mus
musculus). The method, called AC Constant Method, is based on a computerized automatic

feedback system that adjusts light intensity to maintain a constant-response amplitude to a

flickering stimulus throughout the spectrum, as it is scanned from 300 to 700 nm, and back.

The results are presented as the reciprocal of the intensity at each wavelength required to

maintain a constant peak to peak response amplitude. The resulting S(λ) had two peaks in

all three rodent species, corresponding to ultraviolet and M cones, respectively: 359 nm and

511 nm for mice, 362 nm and 493 nm for gerbils, and 362 nm and 502 nm for rats. Results

for mouse and gerbil were similar to literature reports of S(λ) functions obtained with other

methods, confirming that the ERG associated to the AC Constant-Response Method was

effective to obtain reliable S(λ) functions. In addition, due to its fast data collection time, the

AC Constant Response Method has the advantage of keeping the eye in a constant light

adapted state.

Introduction
There are several studies in vision that require knowledge of the wavelength range within
which the retina is able to function. In fact, determining this range by spectral sensitivity func-
tions S(λ) for a given species is the core of any experiment that utilizes visual stimulation to
obtain either behavioral or physiological parameters. The S(λ) gives information that might
suggest different types of retinal processing as well as clues about behavioral priorities when
the animal is in its natural environment. Classically, one can determine the photoreceptor S(λ)
directly from measurements performed in outer segment of the photoreceptor cell through
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microspectrophotometry [1–10] or indirectly from behavioral methods [11–18]. There are also
a number of electrophysiological methods to determine photoreceptor spectral sensitivity
(reviewed in [19]). De Souza et al.[20], developed an efficient apparatus to make measurements
of S(λ) functions from intracellular recordings of retinal cells called AC Constant Response
Method (AC method). This was a modification of previous procedures used in photoreceptor
measurements of S(λ), that relied on the cell’s steady response to light (DC methods) [21].

The DC constant-response method adjusts the intensity of a steady light to keep the response
amplitude constant as wavelength is swept from one end to the other end of the spectrum. This
method is applicable to photoreceptor cell responses, whose amplitude remain constant to a
light stimulus of constant intensity. In the DC constant response method a computer steps the
spectrum from ultraviolet to red or vice-versa. After each wavelength change, the response may
increase or decrease in amplitude. The computer is programmed to step a neutral density wedge
up or down to correct for this amplitude change, until the photoreceptor response crosses a con-
stant criterion value [19, 21].

De Souza et al.[20] were interested in being able to determine S(λ) of other cell types, such
as bipolar cells, whose response to light decreases over time, rather than being a step change, as
in the photoreceptor. They thus devised a method in which an intermittent stimulus replaces
the steady light which is presented in the DC method. When using the AC method the cell is
stimulated with a flickering light, the computer then measures the peak-to-peak amplitude of
the cell response and adjusts the intensity of the light to keep this response amplitude matched
to a predetermined criterion. As in the DC method, this is effected by automatically controlling
the position of a neural density filter to decrease or increase light intensity.

Ventura et al. [22,23] used the AC method to indirectly estimate S(λ) of UV cones in the
turtle (Trachemys scripta elegans) by recording it from horizontal cells and comparing different
chromatic adaptations. The UV function thus obtained had its maximum sensitivity at 372
nm mdash;a result exactly confirmed by concomitant investigation using microspetrophoto-
metry (MSP) [6]. The coincidence of S(λ) peaks obtained with MSP and electrophysiology rati-
fied the reliability of the AC method as a valuable tool to measure spectral sensitivity functions.

The ERG has also been extensively used for measurements of S(λ) in a variety of species
[11–15,17,18,24–32]. One important approach using ERGs was the determination of S(λ)
curves by flicker photometry developed by Jacobs et al. [33]. This was the color substitution
method in which light from two beams, a flickering test and a reference beam, are interleaved
and the intensity of the test beam is varied until the responses to the two beams are equated. To
determine S(λ) the procedure is repeated for different wavelengths in the test beam.

In the present study, we used a modified version of the AC Constant Response Method to
measure spectral sensitivity from mouse, rat, and gerbil using ERG. S(λ)measured with ERG
contains pooled contributions of different photoreceptor types summed with the contribution
of other cells in the retinal network, rather than the output of single photoreceptors or horizon-
tal cells as in the previous studies that used this method to measure S(λ) through intracellular
recordings in the eyes of bees and turtles [19,20,22,23]. The main advantages of using ERG as
information source are that it is a simple procedure to implement in comparison with intracel-
lular recordings and that it is a non invasive method. As such, it allows easy adaptation to other
mammalian species.

Materials and Methods

Subjects
Experiments were performed on three rodent species: albino Wistar rat (Rattus norvegicus),
gerbil (Meriones unguiculatus), and mouse (Mus musculus). The animals, all adults at the time
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of testing (about 3 months old), were housed in cages measuring 41 x 34 x 16 cm, two animals
per cage, food and water ad libitum, and kept on a 12h light / 12h dark cycle with ambient
light. Animal handling and care complied with the Society for Neuroscience guidelines, also
recommended by the Brazilian Society for Neuroscience and Behavior. The procedure was
approved by the Ethic Commission for Research with Animals, Psychology Institute, Univer-
sity of São Paulo, protocol #07/56844/-1, 19th March 2008.

The animals were anesthetized with an intramuscular injection of a mixture of xylazine
hydrochloride (21 mg/kg) and ketamine hydrochloride (108 mg/kg). The pupil was dilated
with atropine sulfate (0.04%) eye drops (about 30 min before start of measurements). The ani-
mals were positioned in a head restraint apparatus and aligned with the optical system. ERGs
were recorded with DTL electrodes (Diagnosys LLC, Lowell, MA, USA) placed over the corneal
surface after applying drops of 1% methylcellulose. Ground (Grass E5 disc electrode; Grass-
Telefactor, West Warwick, RI, USA) and reference electrodes (Grass-Telefactor) were placed
on the forehead and external canthi, respectively. Retinal electrical potentials were amplified
(Grass-Telefactor) with a band-pass set between 0.3–100 Hz, monitored on an oscilloscope
(TDS 210; Tektronix, Richardson, TX, USA), and continuously digitized at a rate of 1 kHz by a
computer equipped with a data-acquisition board (National Instruments, Austin, TX, USA).
Before cone ERGs were recorded, the animals were light adapted for 10 min to assure maximal
cone output and moreover the recordings were made in a room illuminated by ceiling-
mounted fluorescent lamps (150 lx). This procedure was used in previous studies that aimed to
have measured cone responses without rod influence [17,33].

Apparatus
The determination of S(λ) was made using the equipment and general procedures described
earlier [22,34]. In brief, an intermittent stimulus was delivered from an optical system, the out-
put of which was presented in Maxwellian view (circular field 57° in diameter). A beam of
monochromatic light originating from a monochromator (38-86-79; Bausch & Lomb, Tampa,
FL, USA) equipped with a 75-W xenon arc lamp was used. A circular 4 log-unit neutral-density
wedge was used to adjust light intensity (maximum intensity about 4.6 x 1016 quanta/s/cm2).
In the pupil plane, the optical system spectral output was calibrated with a radiometer (IL 1700
with modelED033 photodetector; International Light Technologies, Peabody, MA, USA) at all
combinations of wavelength and position of the neutral-density wedge.

Software
The Spectral Analysis software, written in Visual Basic programming language (Microsoft,
Redmond, WA, USA), had a number of windows that allowed the experimenter to set up and
run spectral scans. The software controlled the flicker frequency via either a shutter or current
modulation of the xenon lamp. It controlled the monochromator, advancing it in regular nm
steps (usually 4 nm, but the step size could be set by the experimenter). A preset value of crite-
rion amplitude was used by a comparator in the software to send a command to drive the neu-
tral density wedge up or down, every time there was an amplitude change, resulting from a
wavelength change. A spectral scan consisted of a run from 300 to 700 nm, i.e., there were 100
measurements of the wedge position necessary to keep constant the peak to peak amplitude of
the response to the flickering light. Results of the spectral scans were plotted on-line as S(λ)
plots and were automatically saved to disk. S(λ) curves could also be averaged and saved. In
order to calculate S(λ) each of the 100 wedge positions determined in a spectral run was trans-
lated into a quantum flux value. These values were found in a calibration table of relative quan-
tum flux determined for each monochromator-wedge combination, i.e., 101 monochromator
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positions times 256 wedge positions = 25856 values. Relative quanta were determined with a
separate program that stepped the monochromator and wedge to each of the 25,856 combina-
tions, The radiance input at the position of the eye was measured with an International Light
IL700 radiometer with a PMD271D photomultiplier detector and converted to quantum
fluxes.

Functional Description
The preparation was kept in a Faraday cage. We initially ran a spectral series consisting of
monochromatic light flashes (at -1.5 log below the maximum intensity) from 340 to 560nm
with intervals of 20 nm between flashes and then we proceeded to the determination of the S
(λ) with the AC Constant Response method [19,20]. In this method, a flickering light was pro-
duced by a shutter (100% modulation). The resulting ERG was periodic and varied in ampli-
tude across the light spectrum. The system measured the peak-to-peak response voltage (PPV)
at a given wavelength and compared it to a pre-set criterion value. At each wavelength the peri-
odic response to the flickering stimulus was digitized at 1000 samples/s and smoothed by aver-
aging 16 consecutive samples; the peak-to-peak amplitudes of the smoothed samples were
found and compared to the previously set criterion. If they were unequal, the wedge was
stepped to a denser or a less dense position depending on the sign of the difference. After the
criterion value had been crossed the wedge position corresponding to the closest match was
recorded. The system could be programmed to average two or more consecutive peak-to-peak
measurements before comparison with the criterion. Wavelengths were sampled from 300 to
700 nm, or vice-versa, in 4 or 12 nm steps.

Each S(λ) curve is an average of 10–15 spectral scans per animal. The frequency of stimula-
tion was adjusted in the range of 4–12 Hz, the criteria of ERG response amplitude was set to
4μV amplitude.

Spectral Sensitivity Curves Estimate
We used the residual method to determine the sensitivity curves and peak maximum sensitivi-
ties with the support of software PeakFit v. 4.12 (SeaSolve Software, Bangalore, Karnataka,
India). This method is highly sensitive for the detection of peaks and is often used to find peak
sensitivity in spectrographic or chromatographic among others applications [35–38].

Briefly, the residual procedure provided a curve fitting by using a Fast Fourier Transform
(FFT) filter from the data obtained by the AC Constant-Response Method (Fig 1A and 1B).
The peaks were placed at local maxima in a smoothed data stream (Fig 1C) using Gaussian
curves. Fig 1 illustrates data obtained from gerbils, where two sensitivity peaks (λmax) were
found: one in the UV range with a λmax at 362 nm and another in the green region of the light
spectrum with a λmax at 493 nm.

Results
Fig 2A shows a spectral series of ERGs from a light adapted mouse eye, obtained with flashes
from 340 to 560 nm of equal quanta (-2 log attenuation of the maximum intensity). Responses
were larger between 360–380 nm. They became virtually absent between 400–420 nm and
increased again in the range of 440–560 nm where the largest amplitude was found at 500 nm.
This result was expected since according to the literature [27,29], mice have greater sensitivity
in the UV and green ranges of the spectrum. An analogous pattern was observed for the rat
and gerbil (data not shown).
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Spectral Sensitivities for Different Species of Rodents
The next step was to perform measurements of spectral sensitivity with the AC Constant-
Response Method on different rodent species. In all procedures, three animals of each species
were used and 10–15 scans were performed in each animal with wavelengths presented from
340 to 600 nm in 4 or 12 nm steps. Average curves representing the S(λ) function were then fit-
ted to the data points.

Fig 2B shows the S(λ) functions obtained from mice. Two peaks were observed: a small one
at 350–370 nm and a second large one between 500 and 520 nm. Peak values differed in sensi-
tivity by approximately 0.5 log unit. For values larger than 520 nm, the sensitivity dropped
sharply towards 600 nm. We did not observe significant responses for flashes above 620 nm.

The S(λ) functions measured in rats (Fig 2C) also showed two peaks. The maximum sensi-
tivity occurred in the green range of the light spectrum. When compared with the curve
obtained for mice, the sensitivity range had an offset of -10 nm, with the peak situated in the
range of 490–510 nm. Another peak could be seen in the UV range. The peaks differed in sensi-
tivity by 0.8 log. The spectral sensitivity curve measured in gerbil (Fig 2D) was similar to those

Fig 1. Sensitivity curves determined by the residual method. (A) Data obtained by using the AC Constant-Response Method for the gerbil. (B) Spectral
sensitivity curve obtained using a Fast Fourier Transform (FFT) filter fitted to data points showed in (A). (C) Two peaks were found by fitting Gaussian normal
curves to the FFT results. For the gerbil, the two peaks were located at 362 nm and 493 nm. (D) The same as in (B) showed in log scale.

doi:10.1371/journal.pone.0147318.g001
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found in mice and rats despite the fact that the flicker frequency used had been 12 Hz. Simi-
larly, to results obtained in the other two rodents, two peaks were observed, one in the range of
480–500 nm and another in the UV range. The peaks differed in sensitivity for approximately
0.5 log.

Once we had analyzed all data points for the discrete wavelength range we then applied the
residual method to estimate fitting curves for S(λ) of each rodent species (see Material and
Methods). Fig 3A shows S(λ) as a continuous curve for mice (r2 = 0.9724) and the dashed lines
are Gaussian curves generated by curve adjustment. The maximum sensitivities were 359 nm
and 511 nm. For rats, the λmax was found at 362 nm and 502 nm (r2 = 0.9654). For the gerbil
the best curve yielded λmax at 362 and 492 nm (r2 = 0.9929). Fig 4 shows a residual plot for
each species. The highest and lowest deviation between the fitted curve and the data was
observed for gerbil and rats, respectively (Fig 4B and 4C).

Fig 2. Spectral series and spectral sensitivity obtained by using the AC Constant-Response Method. (A) ERG responses obtained from a light-
adapted mouse. ERG responses were driven by flashes of monochromatic equal quanta lights of different wavelength. Note responses to wavelengths in the
UV and green ranges. (B)Mean spectral sensitivity for mice. Filled circles and bars represent means and standard deviations for n = 3 animals. (C) and (D)
are the mean spectral sensitivities obtained for rats (n = 3) and gerbils (n = 3), respectively. Spectral sensitivity curves for mice and rats were obtained at 4
nm intervals while curves for gerbils were obtained at 12 nm intervals.

doi:10.1371/journal.pone.0147318.g002
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Discussion
The AC Constant-Response Method has been used in previous studies to estimate the spectral
sensitivity of bees and turtles through intracellular recording of photoreceptors (bees) or hori-
zontal cells (turtles) [20,22]. In bees, de Souza et al. [20] estimated S(λ) curves of three types
corresponding to three photoreceptors (UV, blue, and green) peaking at 354, 430, and 518 nm.
Another set of experiments that confirmed the reliability of the AC Constant-Response
Method was performed by Ventura et al. [22], who described the spectral sensitivity for UV
cones in turtles using intracellular recordings of horizontal cells. They found peak sensitivity at
372 nm for the UV cones. Simultaneously, Loew and Govardovskii found similar results using
microspectrophotometry [6]. In the studies with turtles, the experiments were done with iso-
lated eyes, using an eyecup preparation and required procedures to allow an adequate tissue
survival. In the present study we extended the use of the AC Constant-Response Method for
measurements using ERG which is a noninvasive measurement and thus enabled the calcula-
tion of S(λ) in vivo.

The ERG is a mass extracellular recording with a typical phasic response. The choice of the
AC Constant-Response Method was adequate for this type of response because it is indepen-
dent of the response type to be recorded, phasic or tonic [19,20]. Because the criterion in the
AC method is a peak-to-peak amplitude rather than a voltage level [19,20], another advantage
of the AC method is that it is insensitive to baseline changes during the recording session.
These are common occurrences in electrophysiological recordings such as the ERG due to eye

Fig 3. Mean spectral sensitivity curves for different species measured with the AC Constant-Response Method. (A)Mean S(λ) curves for mice with
λmax at 359 and 511 nm (n = 3). (B)Mean spectral sensitivity curves for rats with λmax at 362 and 502 nm (n = 3). (C)Mean spectral sensitivity curves for gerbil
with λmax at 362 and 493 nm (n = 3). (D) Best fittings obtained for each species. For each species, spectral sensitivity curves directly obtained from FFT fits
and underlying Gaussian curves representing individual UV and M cone spectral sensitivities are shown.

doi:10.1371/journal.pone.0147318.g003
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Fig 4. Residual analysis for the spectral sensitivity curves of different species. (A) and (B) Results for
mice and rats, respectively, where large differences relative to the adjustment curve were observed. (C)
Results for gerbils where the differences were small.

doi:10.1371/journal.pone.0147318.g004
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movements or other interferences. Moreover, ERGs elicited by a periodic stimulus (flicker
ERG) are derived by both photoreceptors and bipolar cells when they are recorded at the cor-
nea. Therefore, normal signaling of photoreceptors and bipolar cells as well as regular synaptic
transmission from photoreceptors to bipolar cells are indispensable for the methods.

Nevertheless, the use of ERG associated with the AC Constant-Response Method showed
high sensitivity, being able to detect spectral response of both cone populations (UV and M
cones). These results showed that even in animals with low numbers of cones such as the rat,
where cones correspond to about 1% of all photoreceptors [19], the method was still effective
for photopic spectral sensitivity curve determination.

We were able to reproduce with the AC Constant-Response Method measurements of sensi-
tivity in the UV range for the mouse and gerbil. Our results were very similar to those reported
in previous publications by other authors. In our study, the fits for these animals showed
peak sensitivity at 362 nm for the gerbil and 359 nm for the mouse. Peak sensitivity has been
reported by Jacobs and collaborators to occur at 360 nm in gerbil [15] and 360 nm in mouse
[29], in both cases they used the ERG flicker photometry method [33]. For the M cones we
were able to measure the spectral sensitivity of the three species studied. Our results for the
mouse and gerbil were very similar to those of other studies [15, 27, 29]. The peak sensitivity
found for gerbils was 493 nm and this λmax coincided with that found by Jacobs and Deegan
[15]. For mice, the λmax was 511nm and it is within the range of 509–512 nm described by
Jacobs et al. [29].

Most studies that measured visual spectral sensitivity in albino mice have found curves
shaped by M cone response [39–43]. Under light adaptation, ERG and behavioral results pro-
vided a λmax near 500 nm [39,42]. Lewis and colleagues used fundus reflectometry to report
λmax at 505 nm [41]. In our study the λmax at about 501.8 nm using the AC method is closer to
the peaks reported by studies that used ERG. In addition, our method was able to show a sec-
ond prominent elevation peaking at the UV range (362 nm). For comparison, the λmax for pig-
mented rats in the UV range has been reported as being around 359 nm [17], which is only 3
nm apart from our peak measure.

Previous studies have reported peak differences for the middle wavelength part of the spec-
trum between pigmented and albino rats [39,40,43]. Similarly, in the middle wavelength range
λmax was higher (509 nm) for pigmented rats [17] compared to peak measured for albino rats
in our study (501 nm). It confirms the accuracy of the AC method for spectral sensitivity mea-
sures. The results obtained for the albino rat are extremely important because of the wide use
of these animals in physiological and behavioral studies of vision.

The residual analysis showed that the higher deviations from the fitted curves were found
for rats followed by mice and by gerbil, with the lowest residual bounds. This discrepancy in
the residual analysis could be attributed to the proportion of cones at each species relative to
the total number of photoreceptors. The gerbil is a diurnal rodent whose photoreceptors com-
prise 13% of cones [44]. In contrast, in the retina of the nocturnal mice and rats the proportion
of cones is only 1–3% [45,46]. The reduced number of cones in mice and rats compared to ger-
bil may have influenced the ERG amplitude adding a high cross-trials variability mainly in the
UV range where the highest residual values were observed. The influence of the number of
cones on the ERG variability found in our results finds support in other studies. Yang and cols
[47] recently conducted a detailed study of scotopic and photopic ERG in gerbil and mouse
and pointed out that under scotopic conditions, the ERG response was higher in the rat. How-
ever, in photopic conditions the amplitude of both the a-wave and b-wave were higher in the
gerbil.

Since the animals used were dichromats, it is not possible to know from the recordings if the
method can discriminate the peaks from primates M and L cones, including humans. However,
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we had previously performed chromatic adaptation experiments in intracellular recordings
from horizontal cells in the turtle and by doing so we were able to separate the four photopig-
ments that exist in that species. We were pleasantly surprised by the fact that the peak we
found for the ultraviolet receptor coincided almost exactly with that measured by Loew and
Gowardovskii using microspectrophotometry [7]. We are planning to extend the method to
human recordings but this would require some adaptation of the optical system.

In the present study we have successfully used the AC Constant-Response Method to obtain
spectral sensitivity curves from rodent species using the ERG. The reliability of the method has
already been established in previous studies using intracellular measurements [19,20,22]. The
extension of the method to include ERG measurements remarkably simplifies the procedure
enabling the application to mammals, whose retinas have smaller cells and require an intensive
care to be maintained alive when compared with the retina of reptiles or insects.
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