
RESEARCH ARTICLE

The Hydroxyl at Position C1 of Genipin Is the
Active Inhibitory Group that Affects
Mitochondrial Uncoupling Protein 2 in Panc-1
Cells
Yang Yang1☯, Yifu Yang1☯, Jianwei Hou2, Yue Ding2*, Tong Zhang2*, Yong Zhang2,
JianyingWang2, Chenchen Shi1, Wenwei Fu3, Zhenzhen Cai1

1 Laboratory of Immunology and Virology, Experiment Center For Science and Technology, Shanghai
University of Traditional Chinese Medicine, Shanghai, China, 2 Experiment Center for Teaching and
Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 3 Innovation of Traditional
Chinese Medicine Laboratory, College of Traditional Chinese Medicine, Shanghai University of Traditional
Chinese Medicine, Shanghai, China

☯ These authors contributed equally to this work.
* zhangtongshutcm@hotmail.com (TZ); dingyue-2001@hotmail.com (YD)

Abstract
Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage

of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancre-

atic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this

study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to

be the active groups that cause these inhibitory effects. Four GNP derivatives in which the

hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized

and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancre-

atic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its deriva-

tives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the

relationship between GNP’s activity and its structure. The derivatives with 1-OH substitu-

tions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while

the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-geni-

pin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-

OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for

GNP’s apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apopto-

sis through UCP2 inhibition and subsequent ROS production.

Introduction
Genipin (GNP) is derived from the dry fruits of Gardenia jasminoides Ellis, which has long
been used in traditional Chinese medicine due to its positive effects on inflammation and
hepatic disorders [1]. GNP has been reported to have anti-inflammatory [2, 3], anti-angiogenic,
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anti-thrombotic [4], anti-diabetic [5, 6], choleretic [7], liver protective [8], and neurotrophic
activities [9]. In particular, it has been shown to promote apoptosis in rat glioma C6 cells [10],
human prostate cancer cells(PC3) [11], human cervical cancer cells (HeLa) [12], human hepa-
tocarcinoma Hep3B cells and rat hepatoma FaO cells [13], human non-small-cell lung cancer
cells (H1299) [14], human leukemia K562 cells [15], and human pancreatic adenocarcinoma
PaCa44, PaCa3 and Panc-1 cells [16]. Furthermore, GNP inhibits drug resistance in cancer cells
by increasing the susceptibility to oxidative stress and cytotoxic agents, and all of these effects
are related to its high affinity for uncoupling protein-2 (UCP2) [17–19].

The uncoupling proteins (UCPs) are mitochondrial anion transporter proteins that are
localized to the inner mitochondrial membrane [20]. Several studies have demonstrated that
UCP2 is over-expressed in cancer cells, which attenuates oxidative stress by increasing proton
influx into the mitochondrial matrix and by decreasing mitochondrial superoxide generation
and electron leakage, supporting the notion that the mitigation of oxidative stress is an adaptive
mechanism established by cancer cells for the homeostatic maintenance of reactive oxygen spe-
cies (ROS) [21, 22]. The inhibition of UCP2 via GNP increases the generation of mitochondrial
superoxide ions, particularly in cancer cells, leading to apoptosis, cell cycle arrest, autophagy,
apoptosis and the prevention of chemoresistance.

However, the mechanism by which GNP inhibits UCP2 remains unknown, and the rela-
tionship between its chemical structure and biological effects has not yet been determined.
GNP is obtained from geniposide (1-GNP1) as the product of the hydrolysis of glucose at the
C1 site by bacterial enzymes termed β-D-glycosidases, which exist in the intestines and liver.
An in vitro study has found that 1-GNP1 does not induce apoptosis in hepatoma cells, in con-
trast with GNP [8]. In addition, in the presence of an equimolar amount of glycine, GNP can
dimerize to generate genipocyanin G1, which is a blue-pigmented, highly conjugated dimeric
adduct with the ability to cross-link proteins [23–25]. Cytochrome c has also been shown to be
cross-linked by GNP, forming oligomers in a process that likely involves the generation of
complexes via the reaction of two primary amine groups from separate proteins with the two
hydroxyls of GNP [6]. GNP derivatives that lack the hydroxyl at the C1 position (1-OH) or at
the C10 position (10-OH) may have decreased cross-linking abilities because 1-OH and
10-OH are likely necessary for the generation of oligomers [26]. In the present study, GNP and
four GNP derivatives with 1-OH or 10-OH substitutions were prepared. Differences in the
inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) prolif-
eration were assessed to explore the relationship between GNP’s activity and structure. For fur-
ther mechanistic analysis, the effects of GNP and its derivatives on apoptosis, UCP2 inhibition
and ROS production were also examined. Based on the evidence accumulated to date, 1-OH is
the key site for GNP’s biological effects, whereas the apoptosis that is induced by GNP and its
derivatives is related to UCP2 inhibition in Panc-1 cells and the induction of ROS production.

Materials and Methods

Preparation of GNP and its derivatives
Four GNP derivatives were isolated and synthesized to identify the active groups in the struc-
ture of GNP. Based on their structural characteristics, GNP and the four derivatives, 1-GNP1,
1-ethyl-genipin (1-GNP2), 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2)
were divided into two groups. The first group included GNP, 10-GNP1 and 10-GNP2; these
compounds contained 1-OH, but 10-OH was replaced by another group. The second group
included 1-GNP1 and 1-GNP2, in which 1-OH was replaced by another group. The structures
of GNP and its derivatives are shown in Fig 1A.

Relationship between Genipin’s Activity and Structure
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1-GNP1 was isolated from Gardenia jasminoides Ellis as described in our previous study
[27, 28]. GNP was prepared by the hydrolysis of 1-GNP1 using a previously reported proce-
dure [29]. 1-GNP2, 10-GNP1, and 10-GNP2 were synthesized in our laboratory. Their purity
was analyzed by high-performance liquid chromatography (HPLC). The infrared (IR),
ESI-MS, UV, 1H-NMR and 13C-NMR spectra were collected to identify their structures.

1-GNP2 Five grams of GNP was dissolved in 100 ml ethanol with one drop of concentrated
hydrochloric acid. The mixture was blended at 60°C for 6 h, brought to pH 7 with 1 M sodium
hydroxide and dried under vacuum. Extraction was performed using 100 ml of ethyl acetate,
and the ethyl acetate phase was collected, then washed with 100 ml of saline water and dried.
Further purification was completed using a silica gel column (15 mm�100 mm, 70 g) with an
eluent (chloroform:ethyl acetate = 3:1, v/v), which was detected by thin-layer chromatography
(TLC), collected, and dried. The reaction equation is shown in Fig 1B. We obtained 0.3180 g of
white powder.

10-GNP1We dissolved 0.5 g GNP in 22 ml dichloromethane with 0.267 ml pyridine. Then,
0.299 ml trimethylacetyl chloride was added under an N2 atmosphere at 0°C, and the mixed
solution was stirred for 12 h. The mixture was then dried with a rotary evaporator and dis-
solved in 20 ml of ethyl ether. The solution was washed with 20 ml of saturated ammonium
chloride solution, saturated sodium chloride solution and 5% CuSO4 solution, sequentially.
The ethyl ether layer was collected and dried. A silica gel column (15 mm�100 mm, 70 g) and
an eluent (ethyl acetate:petroleum ether = 1:4, v/v) were used for purification of the product.

Fig 1. Chemical structures of the GNP derivatives and the reactions used to synthesize them. Chemical structures of GNP and its derivatives. (B) The
synthetic processes of 1-GNP2, 10-GNP1 and 10-GNP2.

doi:10.1371/journal.pone.0147026.g001
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The eluent was detected by TLC, collected and dried. The reaction equation is shown in Fig 1B.
We obtained 0.2530 g of white powder.

10-GNP2We dissolved 0.68 g GNP in 25 ml of dimethylformamide with 9.9 g TBS t-butyl-
dimethylsilyl (TBDMS) and 11.2 g AgNO3. The solution was placed into a 50-ml round flask
and stirred overnight at room temperature. After the solution was filtered, it was washed with
water. The solution was then dried, dissolved in 25 ml of ethanol, and stirred for 6 h at room
temperature with 16.6 g (0.066 mol) pyridinium p-toluenesulfonate (PPTS). Next, it was
washed with water, dried, dissolved in 10 ml of dichloromethane and blended for 3.5 h at room
temperature with 0.306 g (0.03 mol) acetic anhydride, 0.109 g (0.05 mol) 4-dimethylaminopyr-
idine (DMAP) and 0.1 ml triethylamine. The product was then washed with water and dried
using a rotary evaporator. The dried product was stirred for another 3.5 h in nBu4NF and acetic
acid solvent, washed with water, and dried again using a rotary evaporator. Purification was
achieved using a silica gel column (15 mm�100 mm, 70 g) with an eluent (petroleum ether:
ethyl acetate = 4:1, v/v), which was detected by TLC, collected, and dried. The reaction equa-
tion is shown in Fig 1B. We obtained 0.2187 g of white powder.

Cell culture
The human pancreatic adenocarcinoma Panc-1 cell line and the hepatocellular carcinoma
HepG2 cell line were obtained from the Cell Bank of Type Culture Collection of the Chinese
Academy of Sciences, Shanghai Institute of Cell Biology (Shanghai, China) and have been
described previously [30–33]. The Panc-1 cells were cultured in RPMI 1640 supplemented
with 1% antibiotic-antimycotic solution (100×, Gibco), 10% heat-inactivated fetal bovine
serum, and 0.5 μM 2-mercaptoethanol and incubated at 37°C under 5% CO2. The HepG2 cells
were cultured in high-glucose DMEM with stable L-glutamine supplemented with 1% antibi-
otic-antimycotic solution (100×, Gibco), 10% heat-inactivated fetal bovine serum, and 0.5 μM
2-mercaptoethanol and incubated at 37°C under 5% CO2. The cells were harvested two times
per week with trypsin/ethylenediamine tetraacetic acid for passaging and were seeded in
100-mm dishes. Cells were seeded at a density of 5×103 cells/well in 96-well plates to assess cell
proliferation and at 1.2×105 cells/well in 6-well plates to examine apoptosis, cell morphology,
ROS levels, the mitochondrial membrane potential and cell cycle arrest.

Cell viability assay
The crystal violet assay was performed to assess cell viability. Panc-1 cells and HepG2 cells
were seeded at densities of 5×103 and 3×104 cells/well, respectively, in 96-well plates and incu-
bated for 24 h. They were then exposed to GNP or its derivatives (at 50, 100, 200, and 400 μM)
for 72 h. Next, the cells were fixed and stained with 0.03% crystal violet (w/v) in 20% methanol.
The dye was solubilized in lysis buffer (0.8979 g sodium citrate and 1.25 ml of 1N HCl in 98.05
ml of 47.5% ethanol), and the absorbance was spectrophotometrically measured at 540/630 nm
to assess cell growth. All data are provided as the mean of three independent experiments.

Morphological observation of cells and Hoechst staining
Panc-1 cells were seeded in 6-well plates (1.2×105 cells/well) for 24 h, treated with GNP or its
derivatives (at 200 μM) for 72 h at 37°C, and then directly observed by inverted phase-contrast
microscopy. Another group of cells was treated with GNP or its derivatives (200 μM) for 48 h.
They were then washed by the addition of PBS, fixed in 4% paraformaldehyde at room temper-
ature for 30 min and resuspended in PBS before the placement of cover slips. Adhered cells
were incubated with Hoechst 33258 for 20 min at 37°C. The cover slips were rinsed with PBS
and imaged by fluorescence microscopy.

Relationship between Genipin’s Activity and Structure
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Flow cytometric analysis of cell apoptosis
Panc-1 cells were seeded in 6-well plates (1.2×105 cells/well). After 24 h, they were treated with
GNP or its derivatives (at 200 μM) for 48 h at the indicated concentrations. Next, the cells were
fixed with 2% paraformaldehyde in PBS for 30 min at room temperature. The cells were then
washed twice with PBS and stained with annexin V/FITC in binding buffer at room tempera-
ture for 10 min in the dark. Washed cells that were suspended in binding buffer were stained
with propidium iodide (PI) in binding buffer. Finally, cell fluorescence was assessed by flow
cytometry (FACSCalibur; BD Biosciences). Data analysis was performed using CellQuest
software.

Flow cytometric analysis of cell cycle progression
To further examine the effects of these compounds on the induction of cell cycle activity, Panc-
1 cells were incubated for 24 h in 6-well plates with GNP and its derivatives (at 200 μM). The
cells were then harvested, washed by the addition of PBS, and fixed by incubation in ice-cold
70% ethanol overnight at 4°C. Suspended cells were centrifuged, the supernatant was dis-
carded, and the cells were then resuspended in PI staining solution (100 μg/ml RNase A and
40 μg/ml PI) for 30 min at 37°C. The samples were assessed by flow cytometry (FACSCalibur;
BD Biosciences). Data analysis was performed using Modfit software.

UCP2 gene over-expression and silencing
UCP2 over-expression experiments were conducted by using a pCMV expression vector con-
taining human UCP2 cDNA and Lipofectamine 2000 transfection reagent (Life Technologies;
Invitrogen). Successfully transfected cells were selected with G418 (Geneticin). Cells trans-
fected with an empty pCMV vector were employed as negative controls (mock). The transfec-
tion efficiency was greater than 30%, as previously determined by cytofluorimetric analysis
using a pGFP vector (Figure A in S1 File). UCP2 over-expression was measured by Western
blotting (Figure B in S1 File) [34]. Cells were incubated for 72 h with three levels (40, 120, and
200 μM) of GNP and its derivatives to determine their effects on UCP2 over-expression and
cell viability.

UCP2 silencing experiments were performed with a specific small interfering (si) (50-
CACCTTTCCTCTGGATACTGCTAAA-30) RNA that targeted UCP2 mRNA and a non-targeting
(NT) siRNA (50-CAGUCGCGUUUGCGACUGG-30); both siRNAs were acquired from Life Tech-
nologies (Invitrogen). Transfection of cells was performed for 24 h using siRNAs at final con-
centrations of 50, 100, and 150 nM with Lipofectamine RNAiMAX reagent. The transfection
efficiency was previously assessed by qPCR (Real-time Quantitative PCR Detecting System)
(Figure C in S1 File) and the down-regulation of UCP2 expression was measured by Western
blotting (Figure B in S1 File) [35]. Panc-1 cells were incubated for 72 h with three levels (40,
120, 200 μM) of GNP and its derivatives to determine their effects on UCP2 silencing and cell
viability.

Analysis of intracellular reactive oxygen species
Intracellular ROS generation was assessed by using a 2’,7’-dichlorofluorescein diacetate
(DCF-DA) probe. Cells were seeded in 96-well plates (5×103 cells/well) or 6-well plates
(1.2×105 cells/well) and treated with GNP or its derivatives (at 200 μM) after 24 h. Then, the
cells were incubated with 10 μMDCF-DA was using for cells incubation for 15 min at 37°C.
After staining, the cells were examined by fluorescence microscopy, flow cytometry and a
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multi-color fluorescence scanning imaging system. All data are shown as the mean of three
independent experiments.

Determination of mitochondrial membrane potential
A lipophilic cation probe, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazol- carbocyanine
iodide (JC-1), was employed to assess the mitochondrial membrane potential. This probe is
capable of specifically entering into mitochondria, so it is more effective than rhodamine and
other carbocyanines, and it exhibits a reversible fluorescence color change from green (FL1) to
orange (FL2) with increasing membrane potential. Panc-1 cells were digested in sterile centri-
fuge tubes using a trypsin-EDTA solution (Gibco), and then washed twice with PBS and resus-
pended in 0.5 ml KRBH buffer containing 1% (w/v) BSA. After pre-incubation for 20 min with
GNP or its derivatives (at 200 μM), they were incubated with JC-1 for 20 min at 37°C. The cells
were then washed two times and resuspended in PBS. Flow cytometry (FACSCalibur; BD Bio-
sciences) was performed immediately to measure cell fluorescence. Data analysis was con-
ducted using CellQuest software.

Statistical analysis
The data are shown as the mean ± standard error (SE). Student’s t-test was used to conduct sta-
tistical analyses, and Prism 5 software was used to generate graphs. Statistical significance was
set at a p<0.05.

Results

Identification of GNP and its derivatives
1-GNP1 is a white powder, and its purity was determined to be as high as 98%, as determined
by HPLC analysis. Its structure was determined by comparing HPLC and ESI-MS spectra with
the reference standard (1-GNP1, CAS Number: 24512-63-8, Tauto Biotech Industries Ltd.,
China). In positive-mode UPLC-MS/MS spectra, a major ion weight [M+Na]+ of 411.1 with
product ions at m/z 379.1, 217.0 and 349.0 was detected, whereas in negative mode, a deproto-
nated weight [M-H]- of 387.0 with product ions at m/z 225.1 and 123.0 was detected. The
derived formula of 1-GNP1 was C17H24O10, and its structure is shown in Fig 1A.

GNP is a white powder and its purity was determined to be as high as 98%, as determined
by HPLC analysis. Its structure was determined by comparing HPLC and ESI-MS spectra with
the reference standard (GNP, CAS Number: 6902-77-8, Wako Pure Chemical Industries Ltd,
Japan). In negative-mode UPLC-MS/MS spectra, a deprotonated weight [M-H]- of 225.1 and
product ions at m/z 207.1, 147.0, 123.0 and 101.0 were detected. The derived formula of GNP
was C11H14O5, and its structure is shown in Fig 1A.

1-GNP2 is a white powder. The synthesis reaction equation is shown in Fig 1B. Its purity
was determined to be as high as 98%, as calculated using the area normalization method of
HPLC. The ESI-MS, 1H-NMR and 13C-NMR spectra were collected for structural identifica-
tion. A pseudo molecular ion weight [M+H]+ of 255.3 with product ions at m/z 209.3, 177.2,
and 149.3 was detected in positive-mode UPLC-MS/MS spectra. The derived formula of
1-GNP2 was C13H18O5, and its structure is shown in Fig 1A. The 1H-NMR and 13C-NMR
spectra and data are shown in Figure D and Figure E in S1 File.

10-GNP1 is a white powder. The synthesis reaction equation is shown in Fig 1B. The yield
was 71.3%, and the purity was up to 98%, as calculated using the area normalization method of
HPLC. The ESI-MS, 1H-NMR and 13C-NMR spectra were collected to determine its structure.
A deprotonated weight [M-H]- of 309.1 with product ions at m/z 207.1, 175.1, 147.1 and 101.1
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was detected in negative-mode UPLC-MS/MS spectra. The derived formula of 10-GNP1 was
C16H22O6, and its structure is shown in Fig 1A. The 1H-NMR and 13C-NMR spectra and data
are shown in Figure F and Figure G in S1 File. 10-GNP2 is a white powder. The synthesis reac-
tion equation is shown in Fig 1B. The yield was 70.0%, and the purity was up to 99%, as calcu-
lated using the area normalization method of HPLC-VWD. The ESI-MS, 1H-NMR and
13C-NMR spectra were collected to determine its structure. A deprotonated weight [M-H]- of
267.2 with product ions at m/z 207.1, 175.1, 147.2, and 101.2 was observed. The derived for-
mula of 10-GNP2 was C13H16O6, and its structure is shown in Fig 1A. The 1H-NMR and
13C-NMR spectra and data are shown in Figure H and Figure I in S1 File.

Inhibitory effects of GNP and its derivatives on Panc-1 cell growth
GNP has been reported to exert a wide range of inhibitory effects on tumor growth and also to
promote apoptosis. The Panc-1 cell line was used to compare the effects of GNP and its deriva-
tives (1-GNP1, 1-GNP2, 10-GNP1 and 10-GNP2) on tumor cell survival rate. Because GNP's
pharmacological mechanism is associated with the mitochondrial transmembrane protein
UCP2, the crystal violet method was used to detect the effects of GNP and its derivatives on the
Panc-1 cell survival rate to prevent a nonspecific reaction from occurring between GNP or its
derivatives and succinate dehydrogenase, which is used in the MTT and CCK8 (Cell Counting
Kit-8) assays. After Panc-1 cells were incubated with GNP and its derivatives (50, 100, 200, and
400 μM) for 72 h, the derivatives were divided into two structure-based groups that exhibited
different effects on Panc-1 cell growth. 10-GNP1 and 10-GNP2, which had 10-OH substitu-
tions but retained 1-OH, had the same effects as GNP in significantly reducing Panc-1 cell via-
bility. GNP, 10-GNP1 and 10-GNP2 showed cytotoxic and antiproliferative effects on Panc-1
cells in a dose-dependent manner. In contrast, 1-GNP1 and 1-GNP2, which had 1-OH substi-
tutions, had no effects on cell viability. The concentrations of GNP and its derivatives needed
to inhibit 50% of the cells (IC50) are also shown in Fig 2A. The IC50 values of GNP and the
10-OH-substituted derivatives ranged from 219 μM to 290.5 μM, but the values of the 1-OH-
substituted derivatives exceeded 400 μM. Further, to demonstrate that the inhibition of viabil-
ity was not cell line dependent, HepG2 cells were used to compare the inhibitory effects of
GNP and its derivatives, and the results were consistent with those for the Panc-1 cells (Fig
2B). The IC50 values of GNP and the 10-OH-substituted derivatives for the HepG2 cell ranged
from 74.7 μM to 123.9 μM, whereas the values of the 1-OH-substituted derivatives exceeded
400 μM.

Cellular apoptosis induced by GNP and its derivatives
To assess the effects of GNP and its derivatives on the induction of apoptosis, Panc-1 cells were
exposed to GNP and its derivatives at 200 μM for 48 h. Apoptosis (annexin V/PI) analysis was
performed using flow cytometry. The apoptosis rate of the Panc-1 cells was analyzed using
CellQuest software. The apoptosis rates of the 10-GNP1- and 10-GNP2-treated cells were simi-
lar to that of the GNP-treated cells. Furthermore, FACS analysis revealed the absence of Panc-
1 apoptosis after 1-OH substitution in 1-GNP1 and 1-GNP2, and no differences were observed
relative to control cells (Fig 3A).

Effects of GNP and its derivatives on cell cycle progression
A comparison of the percentages of control cells and cells treated with GNP and its derivatives
for 24 h in the G0/G1, S, and G2/M phases was performed to analyze cell cycle distribution. In
the control group, apoptotic (sub G0/G1) cells were not assessed, and a total of 6.67±1.97% of
all viable control cells was found to be in G2/M phase. After 24 h of treatment with 200 μM
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GNP, the G2/M population increased to 24.3±1.49% (a nearly 4-fold increase) of the total num-
ber of viable cells. This change was accompanied by decreases in the G1 and S populations.
Treatment with GNP significantly altered the cell cycle distribution and increased the number
of apoptotic cells, demonstrating that the decrease of cell viability was caused by the induction
of apoptosis and was related to cell cycle arrest. The percentages of cells at G2/M were com-
pared among the GNP derivatives and were as follows: 5.19±3.04% (1-GNP1), 7.35±1.29%
(1-GNP2), 8.11±2.06% (10-GNP1), and 19.32±1.1% (10-GNP2) (Fig 3C). These results verify
the conclusions that apoptosis induced cell death and that GNP and 10-GNP2 caused G2/M
arrest in the Panc-1 cells. GNP has also been reported to induce the accumulation of K562 cells
at the G2/M phase [14]. We obtained the same results for Panc-1 cells, and the effects of the
derivatives on cell cycle arrest were consistent with the induction of apoptosis in the Panc-1
cells. However, the proportion of 10-GNP1-treated cells arrested at the G2/M phase at 24 h

Fig 2. Cytotoxicity of GNP and its derivatives on Panc-1 cells and HepG2 cells. The effects of GNP and its derivatives on the Panc-1 cell (A) and HepG2
cell(B) survival rate at concentrations of 50, 100, 200 and 400 μM after 72 h, as determined by crystal violet colorimetric assay. The values are the means
(±SE) of three independent experiments. Statistical analysis was performed by comparing the viability of control cells with that of cells treated with GNP
(*p<0.05, **p<0.01 and ***p<0.001).

doi:10.1371/journal.pone.0147026.g002

Relationship between Genipin’s Activity and Structure

PLOS ONE | DOI:10.1371/journal.pone.0147026 January 15, 2016 8 / 17



Fig 3. Effects of GNP and its derivatives on apoptosis and cell cycle arrest in Panc-1 cells.Cells apoptosis induced by GNP and its derivatives was
analyzed using the annexin V (FITC)/PI binding assay by flow cytometry. The values are the means (±SE) of three independent experiments. Statistical
analysis was performed by comparing the annexin V and PI indexes in cells that were treated with GNP and its derivatives with those in cells in the control
group (*p<0.05, **p<0.01, and ***p<0.001). (B) Panc-1 cells morphology was analyzed using a microscope (magnification, 400×) after the cells were
treated with GNP and its derivatives. The cells treated with GNP, 10-GNP1 and 10-GNP2 exhibited several characteristic morphological changes, including
the appearance of more rounded, shrunken, and suspended cells. In contrast, the morphologies of those treated with 1-GNP1 and 1-GNP2 were normal, with
round and homogeneous nuclei similar to those observed in Panc-1 cells that were cultured in control medium. (C) The effects of GNP and its derivatives on
Panc-1 cell cycle progression were determined by flow cytometric analysis. The values are the mean (±SE) of three independent experiments. Following
treatment with GNP or 10-GNP2, the percentage of cells at G2/M was significantly increased compared with control cells; this effect was accompanied by a
significant decrease in the percentage of G1 cells (*** p<0.001). (D) Morphological changes in cell nuclei and chromosomes were observed by Hoechst
33258 staining and fluorescence microscopy (magnification, 200×).

doi:10.1371/journal.pone.0147026.g003
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was 8.11±2.06%, which was not significantly different from the proportions of 1-GNP1- and
1-GNP2-treated cells that were accumulated at G2/M. These results may be due to the different
chemical structures of 10-GNP1, 10-GNP2 and GNP. Because 10-OH was replaced with tri-
methylacetyl, which is a large group, the solubility of 10-GNP1 in the cell culture medium was
much lower than that of 10-GNP2 and GNP. In addition, the different chemical structures
would cause 10-GNP1, 10-GNP2 and GNP to have different absorption rates for Panc-1 cells.
The G2/M-arrested population of 10-GNP1-treated cells was not as large as those of the
10-GNP2- and GNP-treated cells at 24 h, but the population size increased to 34.06% at 48 h.
These results suggest that different amounts of time were required for 10-GNP1, 10-GNP2 and
GNP to reach their full effects. In this manuscript, we present the sizes of the G2/M-arrested
populations of 10-GNP1-, 10-GNP2- and GNP-treated Panc-1 cells at the same time point of
24 h.

Morphological changes were evaluated by microscope after Panc-1 cells were treated with
GNP or its derivatives at 200 μM for 72 h. The number of cells was significantly reduced after
treatment with GNP, 10-GNP1 and 10-GNP2, and more rounded, shrunken, and suspended
cells with typical apoptotic morphological changes were observed (Fig 3C arrows) in these
treated cells compared to in untreated control cells. However, the morphology of the cells that
were treated with 1-GNP1 and 1-GNP2 was similar to that of Panc-1 cells cultured in control
medium; these cells exhibited the normal characteristic of round and homogeneous nuclei (Fig
3C). To better clarify the changes in cell morphology induced by GNP and its derivatives dur-
ing apoptosis, Hoechst 33258 staining was used to assess nuclear morphology in Panc-1 cells
that were treated for 48 h with GNP or its derivatives at 200 μM. Increased nuclear size was
observed in the GNP-, 10-GNP1- and 10-GNP2-treated cells; this effect could be related to G2/
M arrest. In contrast, 1-GNP1- and 1-GNP2-treated cells had morphologically normal nuclei,
similar to those in the controls (Fig 3D).

UCP2 partially mediated the inhibitory effects of GNP and its derivatives
on Panc-1 cells
GNP is an effective inhibitor of UCP2. UCP2 provides protection against oxidative stress by
increasing the flow of protons across the mitochondrial matrix, thereby increasing the effi-
ciency of electron flow through the respiratory complexes. GNP can induce apoptosis in many
types of cancer cells by inhibiting UCP2 function. To determine whether the effects of GNP
and its derivatives on UCP2 were similar, a UCP2 over-expressing Panc-1 cell line was con-
structed using a pCMV expression vector. A UCP2-silenced Panc-1 cell line was also con-
structed using UCP2 siRNA. The different inhibitory effects induced by GNP and its
derivatives on UCP2 over-expressing and low-expressing Panc-1 cells were then separately
compared. The inhibitory effects of GNP, 10-GNP1 and 10-GNP2 were blocked by UCP2
over-expression in Panc-1 cells, whereas 1-GNP1 and 1-GNP2 exhibited no inhibitory effects
on Panc-1 or control (mock) cells with either normal expression or over-expression of UCP2
(Fig 4A). UCP2 silencing in Panc-1 cells as mediated by siRNA resulted in the same inhibitory
effect as that caused by GNP. GNP and UCP2 siRNA were assumed to affect the same site of
UCP2, which may result in a significant decrease due to the superposition effect. Thus, the rela-
tionships between the GNP derivatives and UCP2 silencing were determined according to the
following equation: Y = (x/UCP2—x/NT)×100%, where Y is the rate difference, x is the OD
value of cells treated with GNP or its derivatives in UCP2 siRNA transfected cells, UCP2 is the
OD value of cells treated with UCP2 siRNA only, and NT is the OD value of cells treated with
non-target siRNA only. The results showed that the rate differences (Y values) of GNP,
10-GNP1 and 10-GNP2 were much smaller than those of 1-GNP1 and 1-GNP2 (Fig 4B). The
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results of the UCP2 over-expression and silencing experiments indicate that 10-GNP1 and
10-GNP2 inhibit UCP2 function and suppress cell growth in a manner similar to GNP but that
1-GNP1 and 1-GNP2 have no such effects.

Regulation of ROS production by GNP and its derivatives
ROS production in Panc-1 cells was assessed by DCFH-DA staining. DCF fluorescence inten-
sity was significantly increased in cells that were treated with GNP, 10-GNP1, and 10-GNP2
compared with that in those treated with 1-GNP1, 1-GNP2, and control medium, as deter-
mined by fluorescence microscopy (Fig 5A) and flow cytometry (Fig 5B). ROS are important
mediators of the stress response in many different types of cells. To demonstrate whether ROS
participated in the induced effect, the antioxidant N-acetyl-L-cysteine (NAC) was added to
Panc-1 cells that were cultured in the presence of the experimental compounds. Concurrent
treatment with NAC resulted in a marked decrease in the fluorescence intensity of the
DCFH-DA reactions induced by GNP, 10-GNP1, and 10-GNP2 (Fig 5C). NAC treatment sig-
nificantly increased the Panc-1 cell growth rate in the presence of 10-GNP1 and 10-GNP2 (Fig
5D). However, 1-GNP1 and 1-GNP2 did not induce ROS production or the associated reac-
tions. Additionally, an in vitro cell-free superoxide-generating system was also used to

Fig 4. UCP2 partially mediated the inhibitory effects of GNP and its derivatives in Panc-1 cells. The inhibitory effects of GNP, 10-GNP1 and 10-GNP2
were significantly blocked by UCP2 over-expression in Panc-1 cells (***p<0.001 and **p<0.01), whereas 1-GNP1 and 1-GNP2 exhibited no inhibitory
effects on Panc-1 cells with either normal expression or over-expression of UCP2. (B) Differences in the inhibitory effects of GNP and its derivatives on
UCP2-silenced Panc-1 cells and normal Panc-1 cells were determined using crystal violet colorimetric assay. The rate differences (Y values) of GNP,
10-GNP1 and 10-GNP2 were significantly smaller than those of 1-GNP1 and 1-GNP2 (***p<0.001, **p<0.01, and *p<0.05). For all experiments, the values
are the mean (±SE) of three independent experiments performed in triplicate.

doi:10.1371/journal.pone.0147026.g004
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Fig 5. Effects of GNP and its derivatives on ROS production in Panc-1 cells. ROS production in Panc-1 cells was assessed by DCFH-DA staining. DCF
fluorescence was observed under a fluorescence microscope (magnification, 400×). (B) DCF fluorescence intensity was measured by flow cytometry. (C)
Panc-1 cells were pre-treated with 10 mMNAC and then treated with GNP and its derivatives at 200 μM for 24 h. DCF fluorescence intensity was measured
using a multimode plate reader. Concurrent treatment with NAC significantly decreased the fluorescence intensities of the DCFH-DA reactions induced by
GNP (***p<0.001), 10-GNP1 (*p<0.05) and 10-GNP2 (***p<0.001). (D) Cell viability was determined using crystal violet colorimetric assay. NAC treatment
significantly increased the Panc-1 cell growth rate in the presence of 10-GNP1 and 10-GNP2 (*p<0.05). (E) The mitochondrial membrane potential of Panc-1
cells was measured using JC-1 dye. The data are expressed as the 600/535 nm fluorescence ratio. Statistical analysis: (*p<0.05), GNP derivatives vs. GNP;
(#p<0.05), GNP and its derivatives vs. control. For all experiments, the values are the mean (±SE) of three independent experiments performed in triplicate.

doi:10.1371/journal.pone.0147026.g005
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demonstrate that GNP and its derivatives did not promote superoxide scavenging or scavenge
superoxide directly (Figure J in S1 File).

The mitochondrial membrane potential is regulated by UCP2 in intact cells. The mitochon-
drial membrane potential is increased due to a lack of UCP2 or the removal of endogenous
superoxides in dispersed islet cells and in many types of cancer cells. A mitochondrial mem-
brane potential-sensitive fluorescent dye (JC-1) was used to investigate whether the GNP deriv-
atives had the same ability as GNP to induce changes in the mitochondrial membrane
potential. GNP, 10-GNP1 and 10-GNP2 increased in the fluorescence intensity of mitochon-
drial JC-1 over time, and 10-GNP1 and 10-GNP2 also significantly increased fluorescence
intensity of JC-1 compared with the control group. However, neither 1-GNP1 nor 1-GNP2
affected this fluorescence intensity (Fig 5E). These findings demonstrate that the inhibitory
effects on UCP2 were related to an increase in the mitochondrial membrane potential. Thus,
the 1-OH of GNP was deduced to be the key site of its biological effects.

Discussion
In recent years, GNP has been reported to have potential anti-cancer effects. Many studies
have revealed that various tumor cell lines undergo apoptosis following GNP treatment. How-
ever, the relationship between its structure and its therapeutic effects has not yet been eluci-
dated. Apoptosis is associated with several characteristic morphological changes, including the
appearance of more rounded, shrunken, and suspended cells, and leads to an eventual reduc-
tion in the number of surviving cells. The typical characteristics of apoptosis were observed
after cells were treated with GNP and 10-OH-substituted derivatives, whereas cellular mor-
phology did not change after cells were treated with 1-OH-substituted derivatives. The IC50

values of GNP and the 10-OH-substituted derivatives ranged from 219 μM to 290.5 μM, but
the values of the 1-OH-substituted derivatives exceeded 400 μM. Treatment with GNP and the
10-OH-substituted derivatives significantly altered the cell cycle profile and increased the num-
ber of apoptotic cells, demonstrating that the decrease in cell viability was caused by the induc-
tion of apoptosis and was associated with cell cycle arrest. These results are consistent with
those of a previous report that compared the effects of GNP and 1-GNP1 in hepatocellular car-
cinoma cells [12]. HepG2, a hepatocellular carcinoma cell line, was chosen to compare the
inhibitory effects of GNP and its derivatives, and the results were consistent with those
obtained for the Panc-1 cells, indicating that the inhibitory effect was not cell line dependent.
Thus, we speculate that the active group of GNP is 1-OH and not 10-OH.

A reduction in the number of surviving cells may be caused by the induction of cell death
and/or the inhibition of cell proliferation. GNP and 10-OH-substituted derivatives could
induce Panc-1 apoptosis, as demonstrated by annexin-V/PI staining. Microscopy revealed that
the number of rounded, shrunken, and suspended cells were increased whereas the number of
whole cells was significantly reduced. Based on Hoechst 33258 staining, treatment with GNP
and its 10-OH-substituted derivatives also appeared to increase nuclear size, an effect that was
caused by G2/M arrest. GNP and 10-GNP2 caused G2/M arrest in Panc-1 cells, whereas
1-GNP1 and 1-GNP2 had no effects on the cell cycle of Panc-1 cells. The size of the nucleus in
cells in the G2/M phase is reportedly larger than that in cells in the G0/G1 phase, which may be
because cellular components, including DNA and proteins, are naturally enlarged in prepara-
tion for mitosis. A similar phenomenon has been observed for the etoposide- and temozolo-
mide-induced arrest of HCT116 cells and glioma cells in G2/M phase [36, 37].

The effect of 10-GNP1 on G2/M arrest was not obvious when cell cycle progression was ana-
lyzed, but 10-GNP1 could induce a higher apoptosis rate than GNP and 10-GNP2 at 72 h. This
result could be due to the different chemical structures of 10-GNP1, 10-GNP2 and GNP. As
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10-OH was replaced with trimethylacetyl, which is a large group, the solubility of 10-GNP1 in
the cell culture medium was much lower than that of 10-GNP2 and GNP in cell culture
medium. In addition, the different chemical structures would also cause dissimilarity in the
absorption rates of 10-GNP1, 10-GNP2 and GNP in Panc-1 cells. At 24 h, the G2/M- arrested
population of the 10-GNP1-treated cells was not as large as those of 10-GNP2- and GNP-
treated cells, but we found that the size of this cell population increased to 34.06% at 48 h, dem-
onstrating that different amounts of time were required for 10-GNP1, 10-GNP2 and GNP to
reach their full effect in Panc-1 cells. The IC50 of 10-GNP1 was lower than those of 10-GNP2
and GNP at 72 h. The inconsistent results may be due to the low solubility and slower absorp-
tion rate of 10-GNP1, and similar effects were also observed with another treatment at 24 h for
the detection of mitochondrial membrane potential.

Pancreatic cancer is considered one of the most lethal cancers, and its mortality rate is
nearly equal to its incidence rate. Mitochondrial UCP2 has been reported to be over-expressed
in pancreatic cancer tissues compared with adjacent normal tissues [38]. UCP2 over-expres-
sion is a possible strategy adopted by cancer cells for protection from excess ROS production.
UCP2 inhibition could represent a therapeutic strategy, especially for the treatment of chemo-
resistant tumors. The disruption of UCP2 transcription by a specific siRNA and the inhibition
of UCP2 function by specific compounds, such as GNP, could also be useful clinical strategies.
The inhibition of UCP2 allows ROS accumulation and genomic instability, while the negative
regulation of mitochondrial ROS production through UCP2 over-expression usually occurs
during cancer development, chemo-resistance, and tumor metastasis to defend cancer cells
from apoptosis. The antioxidant effect of UCP2 plays a vital role in the resistance of pancreatic
cancer cells to standard chemotherapy. Moreover, the mitochondrial membrane potential is
increased due to a lack of UCP2 or the removal of endogenous superoxides in dispersed islet
cells and in many types of cancer cells. Our results showed that the apoptosis of Panc-1 cells
induced by GNP, 10-GNP1, and 10-GNP2 was related to the inhibition of UCP2 function,
which in turn led to an increase in ROS production and the mitochondrial membrane poten-
tial, whereas the GNP derivatives with 1-OH substitutions (1-GNP1 and 1-GNP2) lost all of
these abilities. Thus, the 1-OH in GNP was deduced to be the key site for its biological effects.

Conclusions
This study is the first to identify the key active site in the structure of GNP. The results indi-
cated that the 1-OH of GNP is very important for its cytotoxic effect on Panc-1 cells. The deriv-
atives 10-GNP1 and 10-GNP2, which retained the 1-OH group, exhibited inhibitory effects
similar to those of GNP. In contrast, the derivatives 1-GNP1 and 1-GNP2, in which 1-OH was
substituted with other groups, did not inhibit Panc-1 cell growth. The HepG2 cell line was used
to show that the inhibitory effects were not cell line dependent. Additionally, the inhibitory
effects were studied by performing a cell proliferation assay, fluorescence microscopy, and flow
cytometric analyses of the cell cycle and cell apoptosis. The mechanism of apoptosis was related
to the inhibition of UCP2 function, which in turn led to increases in ROS production and the
mitochondrial membrane potential. Based on these conclusions, new GNP derivatives can be
developed in which the 1-OH group and their biological activities are maintained. The results
of this study support the use of UCP2 inhibitors in anti-tumor strategies for the treatment of
pancreatic adenocarcinoma and provide novel insight into the structure of GNP.

Supporting Information
S1 File. Plasmid transfection rate determined by cytofluorimetric analysis (Figure A). UCP2
over-expression or silencing, as measured byWestern blotting (Figure B). UCP2 gene silencing,
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10-GNP1 (Figure G). 1HNMR spectrum of 10-GNP2 (Figure H). 13CNMR spectrum of
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and the promotion of superoxide scavenging (Figure J).
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