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Abstract
Several methods have been applied to EEG or MEG signals to detect functional networks.

In recent works using MEG/EEG and fMRI data, temporal ICA analysis has been used to

extract spatial maps of resting-state networks with or without an atlas-based parcellation of

the cortex. Since the links between the fMRI signal and the electromagnetic signals are not

fully established, and to avoid any bias, we examined whether EEG alone was able to

derive the spatial distribution and temporal characteristics of functional networks. To do so,

we propose a two-step original method: 1) An individual multi-frequency data analysis

including EEG-based source localisation and spatial independent component analysis,

which allowed us to characterize the resting-state networks. 2) A group-level analysis

involving a hierarchical clustering procedure to identify reproducible large-scale networks

across the population. Compared with large-scale resting-state networks obtained with

fMRI, the proposed EEG-based analysis revealed smaller independent networks thanks to

the high temporal resolution of EEG, hence hierarchical organization of networks. The com-

parison showed a substantial overlap between EEG and fMRI networks in motor, premotor,

sensory, frontal, and parietal areas. However, there were mismatches between EEG-based

and fMRI-based networks in temporal areas, presumably resulting from a poor sensitivity of

fMRI in these regions or artefacts in the EEG signals. The proposed method opens the way

for studying the high temporal dynamics of networks at the source level thanks to the high

temporal resolution of EEG. It would then become possible to study detailed measures of

the dynamics of connectivity.

Introduction
The functional organisation of the brain follows two complementary principles known as func-
tional segregation and functional integration [1,2]. The principle of functional segregation
asserts that populations of neurons, strongly interconnected (cortical surface area less than 1
cm²), work synchronously and thus form cerebral functional areas clearly delineated spatially,
which may be associated with a specific elementary task [3]. For processing a high-level task,

PLOSONE | DOI:10.1371/journal.pone.0146845 January 19, 2016 1 / 18

a11111

OPEN ACCESS

Citation: Sockeel S, Schwartz D, Pélégrini-Issac M,
Benali H (2016) Large-Scale Functional Networks
Identified from Resting-State EEG Using Spatial ICA.
PLoS ONE 11(1): e0146845. doi:10.1371/journal.
pone.0146845

Editor: Dezhong Yao, University of Electronic
Science and Technology of China, CHINA

Received: July 31, 2015

Accepted: December 21, 2015

Published: January 19, 2016

Copyright: © 2016 Sockeel et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement:We decided to make
the anonymized data available without restriction as
follows: an archive of 7.4 Go is available at http://
megfront.meg.chups.jussieu.fr/MEEG_data/data.tgz
and uploaded to Dryad: http://datadryad.org/review?
doi = doi:10.5061/dryad.v9f16 (DOI: doi:10.5061/
dryad.v9f16). It contains the EEG data, the 3D
positions of the EEG electrodes and the
corresponding anatomical MRI for the 12 subjects
analyzed in this study. The EEG data are in
BrainAmps format easily readable by common
toolboxes. The EEG electrodes positions are
available as text file with the x, y and z coordinates.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0146845&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://megfront.meg.chups.jussieu.fr/MEEG_data/data.tgz
http://megfront.meg.chups.jussieu.fr/MEEG_data/data.tgz
http://datadryad.org/review?doi�=�doi:10.5061/dryad.v9f16
http://datadryad.org/review?doi�=�doi:10.5061/dryad.v9f16
http://dx.doi.org/10.5061/dryad.v9f16
http://dx.doi.org/10.5061/dryad.v9f16


several of these functional areas are mobilised and interact at a larger scale with specific tempo-
ral dynamics: this is known as functional integration [4]. Functional areas are hence integrated
in large-scale functional networks defined as sets of distant cerebral areas that are linked
anatomically, through white matter tracts, and functionally, through dynamics of coupled
activities [5].

The analysis of these functional networks in healthy subjects [6,7] or in patients [8,9,10] has
mainly relied on resting-state functional MRI (fMRI) data. Spatial independent component
analysis (sICA) is a widely-used data-driven method that enables reproducible non-invasive
mapping of several functional networks [11] at the group level and with a spatial resolution in
the order of a few millimetres.

Bayesian inference models (e.g.: dynamic causal modelling [4]) or specific conditional con-
nectivity measures (e.g.: partial correlation [12], conditional integration [13], Granger causality
[14]) have been proposed to study the connectivity dynamics within large-scale functional net-
works in fMRI. However, the frequencies of the natural cognitive rhythms of the brain and the
intrinsic dynamics of connectivity in large-scale functional networks remain inaccessible, since
fMRI has a limited temporal resolution in the order of the second and hence a frequency spec-
trum restricted to very low activity frequencies (less than 1 Hz).

These limitations may be overcome by using electroencephalography (EEG) or magnetoen-
cephalography (MEG), which offer a direct measure of neural electrical activity with a temporal
resolution in the order of 1 ms.

Several methods have been applied to EEG or MEG signals to detect functional networks.
They rely on various approaches such as temporal ICA at the level of the sensors [15], connec-
tivity measures between sensors [16], temporal correlation between fMRI signals and EEG sen-
sors power in several frequency bands [17], or spatial ICA of EEG sensors level and fMRI data
for functional network connectivity analysis [18].

Sensor-based approaches suffer from a poor spatial localisation. The interpretation of the
resulting maps is compromised by the ambiguity due to the diffusion of the EEG signal. More-
over group studies are difficult, due to variable positions of the sensors leading to different
observed physiological processes across subjects [19].

Source localisation approaches give access to the neural correlates of EEG [20,21] with less
ambiguity due to volume conduction and thus lead to a greater spatial resolution than sensor-
based methods. Frequency tagging has been used by Regan [22], enabling identification of the
functional networks involved in the response to a specific stimulus at the cortical level. How-
ever, such an activation study (i.e. following the presentation of a specific stimulus) only shows
the networks activated by the stimulus and not the other intrinsic functional networks. To
identify such networks, resting-state acquisitions (i.e. in which subjects refrain from any overt
activity) are preferred.

For instance, in a recent work using MEG and fMRI data, Brookes and colleagues used
beamformer spatial filtering combined with temporal ICA of the Hilbert transform of the
MEG signals to extract spatial maps of resting-state networks (RSN) [23], which were in accor-
dance with resting-state fMRI networks.

In [24], the authors used dual regression analysis to identify several spatial networks from
MEG data, based on seed voxels from independent spatial fMRI networks.

On the other hand, Deliglianni and collaborators [25] analysed simultaneous EEG-fMRI
recordings. Following Brookes and colleagues’ work [23], they applied a temporal ICA to the
Hilbert transform of the band-limited power of the EEG signals. Then, they used an atlas-
based parcellation of the cortex to derive time-series at the cortical level for a further functional
connectivity analysis.

Resting-State EEG Functional Networks
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Approaches using simultaneous EEG-fMRI recordings offer the opportunity to characterize
brain networks with a high spatial resolution based on the fMRI results and a high temporal reso-
lution based on the EEG signals. However, to exploit these simultaneous recordings one needs to
fully understand the relationship between both modalities. In that respect, it has been shown that
the power of the EEG signal convolved with a canonical hemodynamic response function could
be related to the blood oxygen level-dependent (BOLD) signal measured with fMRI [26,27].

Can RSN be spatially characterized in EEG alone at the individual level with a good reliabil-
ity? Are these networks reproducible at the group level? What is the added value of the high
temporal resolution of EEG? And finally, how do the identified networks compare with fMRI
findings? In this paper we examine the potential of EEG alone to derive the spatial distribution
and the temporal characteristics of large-scale resting-state functional networks.

To do so, we propose an original method that combines an individual data analysis including
EEG-based source localisation and spatial independent component analysis, and a group-level
analysis involving a hierarchical clustering procedure. This article comprises three sections.
Firstly, the method is introduced, which consists of several steps: Source localisation, power
computation, individual spatial ICA, group analysis based on hierarchical clustering. Then, to
compare the RSN identified from EEG alone with fMRI results, we present the EEG and fMRI
protocols and the data acquired in healthy subjects, as well as the comparison methodology.

Method
Logothetis and Laufs described a link between local field potentials (LFP) and fMRI signal [26,
27, 28]. Their original studies dealt with LFP, thus only rather small populations of neurons
were considered (from 10,000 to several millions of pyramidal cells arranged in functional
macrocolumns). The associated transfer function was a correlation between the power of the
reconstructed cortical sources of the EEG signal convolved with a hemodynamic response
function (HRF) and the fMRI BOLD signal [26] (Eq 1):

PEEG � HRF ¼ XfMRI ; ð1Þ

where� denotes convolution, PEEG is the power of the reconstructed cortical sources of the
EEG signal, XfMRI is the BOLD signal recorded in fMRI andHRF is the canonical hemodynamic
response function used in the framework of the general linear model in conventional fMRI sta-
tistical analyses [5]. Persistent coupling between BOLD signal and EEG power has been
observed in various frequency bands including Delta and Theta, Alpha, Beta, and Gamma [27].

Given Eq 1 and convolution being linear, one can consider to apply sICA on the power of
EEG signals at the source level in several frequency bands to detect functional networks. Thus,
we can derive an approach based on Eq 1 consisting of two steps:

1. An individual data analysis involving source localisation and sICA of reconstructed EEG
data to identify individual large-scale functional networks and associated temporal
dynamics.

2. A group-level analysis based on a hierarchical clustering of individual spatial maps to iden-
tify large-scale networks reproducible at the population level.

Individual data analysis
Input Data. Our method required for each subject: the artefact-free EEG signals, the tridi-

mensional positions of the EEG electrodes on the scalp, the meshes of the interface between the
grey matter and the white matter (GM-WM interface), and the mesh of the head (surface of
the scalp).

Resting-State EEG Functional Networks
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Data pre processing. EEG: Physiological (muscular activity, movement, eye blinks) and
non-physiological (50 Hz contamination) artefacts were detected by a variance analysis on the
electrooculogram (EOG) and electrocardiogram (ECG) recordings thanks to dataHandler soft-
ware [29]. The contaminated segments were rejected. These pre processing steps helped to
increase the inherently low signal-to-noise ratio (SNR) of the on-going EEG by removing most
of the signals not originating from the brain. A better SNR insured an increased accuracy of the
source localisation step and a decreased inter-individual variability [30].

Anatomical MRI: The brain tissues (grey matter, white matter) were segmented from the
anatomical T1-weighted MRI of each subject by using the BrainVISA software [31]. A mesh of
the GM-WM interface was extracted and decimated to speed up the source reconstruction,
while preserving a spatial resolution of the order of 2 mm. Each hemisphere was modelled by a
surface of approximately 4,000 vertices, thus a mesh of approximately 8,000 vertices modelled
the GM-WM interface for each subject.

Localisation of EEG sources. The potential measured in EEG originates from the macro-
columns of pyramidal neurons. These macrocolumns can be modelled as electrical dipoles
located at the GM-WM interface and perpendicular to this interface. The decimated mesh of
the GM-WM interface was used as the source space comprising approximately 8,000 dipoles
per subject. The scalp potentials generated by each dipole depend on the characteristics of the
various tissues of the head and are measured by the EEG scalp electrodes. Knowing the geome-
try of the anatomy and the conductivity of the subject’s head, the time course of the dipoles’
activity can then be assessed by solving two consecutive problems: the forward problem and
the inverse problem.

The forward problem consists of modelling the contribution of each dipole to the signals of
the EEG electrodes by solving Maxwell’s equations, which take the geometry and conductivity
of head tissues into account. In this study, the head was modelled by three nested spheres
modelling the different tissues [32]. A relative conductivity coefficient was assigned to each tis-
sue (skin: 1, bone: 1/80, brain: 1). Solving Maxwell's equations yielded a gain matrix G such that

X ¼ G� D; ð2Þ

where them x tmatrix X represents the signal onm EEG electrodes and on t time points, and
the n x tmatrix D represents the time course of activity for n dipoles on t time points. G is hence
anm x nmatrix, wherem is the number of electrodes and n the number of dipoles, i.e. the num-
ber of vertices in the mesh of the GM-WM interface.

The second step for the reconstruction of the signal is the inverse problem. It consists of
estimating the signal D at the level of the dipoles from the EEG signal measured on the elec-
trodes, knowing the gain matrix G. To solve this problem, we used the weighted minimum-
norm method where the EEG signals were re-referenced using an average reference. The analy-
sis was performed using the BrainStorm software [20].

Temporal dynamics. In order to take all the information contained in the EEG data into
account and to benefit from their high temporal resolution, five frequency bands of interest
were considered, which cover the usual frequency spectrum of EEG data (Delta and Theta 1 to
7 Hz, Alpha 7 to 13 Hz, Beta 17 to 23 Hz, Gamma1 27 to 33 Hz, Gamma2 33 to 40 Hz).

Using 2-second-long time windows, the power of the signal was computed at the source
level in these 5 frequency bands, using a fast Fourier transform (FFT) on T time points. The
five n x Tmatrices Yfreq were concatenated as follows (see Fig 1):

Y ¼ ½Y1�7HzY7�13HzYl7�23HzY27�33HzY34�40 Hz�:

Resting-State EEG Functional Networks
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The power of EEG data was not distributed uniformly over the frequency spectrum. The
power in low frequencies was higher than that in high frequencies (1/f effect). In order to take
the five frequency bands of interest into equal account, we normalized the data. To reduce the
1/f effect, we computed the logarithm of the ratio of the power to the average power in time
and space for each frequency band.

Spatial ICA. In fMRI, methods based on sICA have become the reference to detect large-
scale functional networks. Following Eq (1), we applied sICA on the power of the signals asso-
ciated with the EEG dipoles (Y matrix, see Fig 2). We resorted to the FastICA algorithm [33]. A
principal component analysis (PCA) of YT was first performed in the temporal dimension, fol-
lowed by an ICA on the spatial dimension of the main PCA factors (i.e. explaining 95% of the
total variance). The number of ICA components to retain was set to K = 100 for each subject,
so as not to neglect any relevant information. Each sICA spatial component corresponded to a

Fig 1. Processing of the EEG data. The artefact-free raw data at the sensors level (top row) were fed into a minimum-norm localisation algorithm to obtain
current densities at the cortex level (middle row). After filtering in 5 frequency bands (Delta & Theta, Alpha, Beta, Gamma1, Gamma2), the power of the
cortical signals was computed by integrating over two-second-long windows. The end result at the cortical level was the power time courses in each of the 5
frequency bands (bottom row).

doi:10.1371/journal.pone.0146845.g001
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network on the GM-WM interface. The associated temporal dynamics corresponded to the
time-frequency signature in the five frequency bands of the network.

Group-level data analysis
Up to now, our approach had remained strictly individual since sICA was performed at the
subject level. One hundred components were obtained for each subject, each component repre-
senting a spatial distribution on the GM-WM interface of the subject associated with five time
courses corresponding to each frequency band of interest. The following group-level analysis
was aimed at identifying large-scale networks reproducible at the population level. The group-
level analysis reduces the variability observed at the individual level due to the low SNR of on-
going EEG.

Spatial Normalization of the data. This group analysis requires a common cortical sur-
face to be able to compare the spatial distributions of the components originating from the dif-
ferent subjects. We selected the GM-WM interface colin27 from the Montreal Neurological
Institute (MNI), adopted as a standard by the ICBM [34]. The spatial distributions of the indi-
vidual sICA components were projected to this surface by using Shepard’s interpolation [35].

Hierarchical clustering. To identify networks at the population level from the whole set
of normalized individual spatial components, the components were clustered according to
their spatial similarity using Ward’s criterion [36]. To do so, a dendrogram was built based on
the Euclidean distance between the normalised individual components, and this hierarchy was
threshold using two criteria [37]. On the one hand, a representativity criterion was defined as
the percentage of the total number of subjects contributing to one cluster of the hierarchy. On
the other hand, a unicity criterion was defined as the percentage of the total number of subjects
contributing with only one component to one cluster of the hierarchy. The assumption was
that, for a network to be reproducible across the group, a relevant component would be found
in a spatially analogous manner in most subjects with a high representativity and a high
unicity.

At the group level we then defined a large-scale network as the spatial average of its individ-
ual clustered sICA components in space and frequency bands powers. In order to identify the
main cortical areas of this network, it is necessary to develop a statistical model. Following the
assumption that the individual sICA components in a given cluster are drawn from an

Fig 2. Spatial ICA of the concatenated power dynamics at the cortical level.

doi:10.1371/journal.pone.0146845.g002
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independent random sample, the spatial average of these components follows a Student spatial
distribution [37] that can be threshold (p< 0.05), which ensures that the remaining cortical
regions are robust across subjects since they are above the chance level.

Comparison of EEG and fMRI large-scale networks: EEG and fMRI data
acquisitions
All data were acquired in the NeuroImaging Research centre (CENIR) at the Pitié-Salpêtrière
hospital in Paris, France. This study was specifically validated by the local ethics committee:
Comité de Protection des Personnes–Ile-de-France under the number CPP DGS2007-0555.
Fifteen right-handed healthy subjects (6 females, aged 26.6 ± 2.1 years) participated in the
study after giving their written informed consent.

Two EEG datasets were acquired, one outside the MRI magnet and the other simultaneously
with the fMRI acquisitions. Only the EEG data recorded outside the magnet were considered
in this study. The subjects were placed under the same conditions as in the magnet: they were
lying supine, looking at the stimuli via a mirror and could hear an audio recording equivalent
to the noise produced by the MRI gradients. The EEG acquisitions were carried out with a
62-channel BrainAmp cap, associated with an electrocardiogram (ECG) and an electrooculo-
gram (EOG). The sampling frequency of the signal was 5 kHz. The high sampling rate of our
EEG signals insured a good stability of the power spectra computed using FFT at the cortical
level. We did not notice any instability. The reference electrode was located on the cap on Cz,
and the ground electrode below Oz. Electrode impedance did not exceed 10kOhm. The elec-
trodes were placed on the subject’s scalp according to the 10/20 system and their tridimen-
sional coordinates were measured thanks to a Polhemus localisation system. The coordinates
of three fiducial points (nasion, left and right pre-auricular) were also recorded.

A preliminary visual inspection of the EEG data enabled us to check their overall quality.
Three subjects were excluded, since either the quality of their EEG signal was poor (2 subjects),
or the EEG cap was positioned incorrectly (1 subject). Thus, 12 subjects were finally included
in the analysis.

The functional and anatomical MRI data were acquired on a Siemens 3 Teslas Trio TIM sys-
tem (functional data: EPI sequence, TR = 2s, TE = 27ms, flip angle = 78°, matrix size 64x64
voxels, 40 contiguous slices, voxel size: 3 mm isotropic, 750 volumes; T1-weighted anatomical
data: MPRAGE sequence, TR = 2.3s, TE = 4.18ms, flip angle = 9°, matrix size 256x256 voxels,
176 contiguous slices, voxel size: 1 mm isotropic).

The acquisition protocol included resting-state periods (5 minutes eyes closed), visual and
motor tasks. In this paper, only the last resting-state period at then end of the experiment was
analysed.

Comparison strategy
To investigate whether the large-scale functional networks identified in EEG at the group level
were similar to those found in fMRI, a comparison methodology was designed. Functional net-
works were identified from fMRI data using the NetBrainWork software as described by Perl-
barg and colleagues [38], which yielded 3D images of fMRI-based functional networks
(RSN_fMRI) in the MNI standard space. In order to compare spatially these networks with the
functional networks obtained from the EEG data (RSN_EEG) on the surface of the GM-WM
interface in the same MNI standard space, the RSN_fMRI were interpolated on the surface of
the MNI GM-WM interface, thanks to a method using a Voronoi diagram [39]. We noticed
that the RSN_EEG had a much smaller spatial extent than the RSN_fMRI (see the results and
the discussion sections). We thus tested whether there existed a linear combination of the

Resting-State EEG Functional Networks

PLOS ONE | DOI:10.1371/journal.pone.0146845 January 19, 2016 7 / 18



RSN_EEG that would correspond to a given RSN_fMRI. To this end, a stepwise regression
analysis was applied between RSN_fMRI and RSN_EEG as covariates. By proceeding stepwise,
i.e. by adding the RSN_EEG one by one in the regression, only those networks that showed the
greatest correlation (tested with a Fisher’s F-test) with each RSN_fMRI were selected.

Results

Individual data analysis
Preprocessed EEG signals were first of all analysed individually. The minimum-norm method
was used to estimate the activity of sources on the GM-WM interface and this activity was inte-
grated in 2-second-long time windows. Time windows containing an artefact were excluded,
thus the number of time windows differed between subjects (119 ± 14.4 windows/subject). Sig-
nal powers were then extracted in the five frequency bands of interest.

Spatial ICA was conducted on the matrix Y corresponding to the signal power in the five
frequency bands at the source level on the GM-WM interface. For every subject, the first 100
components were considered. Three of these components are shown in Fig 3 for one subject.
Every component had a spatial distribution (top rows of Fig 3a, 3b and 3c) and 5 time-fre-
quency representations corresponding to the dynamics of power in the 5 frequency bands of
interest (bottom rows of Fig 3a, 3b and 3c).

All the spatial components had a small extent (approx. 50 vertices), showing one main area
with high values of the spatial distribution and many other areas associated to lower values, dis-
tributed more sparsely over the whole GM-WM interface. The 100 highest values areas covered
the whole GM-WM interface,

One of the major interests of the proposed method is that it allowed us to study the time-fre-
quency distribution of each spatial component in specific bands of interest.

For each component an equivalent contribution of the power in the five frequency bands
was observed (see Fig 3b). However, some of the spatial components contained more power in
one frequency band, see Fig 3 for the Alpha (3a) band, the Delta and Theta band (3c).

Group-level data analysis
Once one hundred components were extracted for each subject, they were projected onto the
standard MNI colin27 surface. Hierarchical clustering among all the individual sICA compo-
nents was then performed. Fig 4 shows examples of clusters obtained using a representativity
criterion superior or equal to 0.5 and a unicity criterion superior or equal to 0.3. This hierarchi-
cal clustering yielded to 104 clusters. 92 out of the 1200 components obtained from the individ-
ual sICAs could not be clustered in any cluster according to the representativity and unicity
criteria (See Fig 4). The spatial average map in each cluster was then computed and threshold
using t-statistics (see section “Hierarchical clustering”) at p<0.05 corrected for multiple com-
parisons using a false discovery rate procedure.

The final 104 RSN_EEG contained between 10 and 38 individual sICA components from
several subjects. Fig 5 shows two RSN_EEG and associated power distribution in each fre-
quency band. Fig 5a shows an RSN_EEG including somato-motor areas. All subjects contrib-
uted to this network (representativity = 1), 41% with only one component (unicity = 0.41).
Power distribution was equally distributed over the five frequency bands. The estimated vari-
ance was lowest for the low-frequency bands. Fig 5b shows an RSN_EEG including fronto-
parietal areas. 83% of the subjects contributed to this network (representativity = 0.83), 38%
with only one component (unicity = 0.38). Power distribution was equally distributed except
for the Alpha band.

Resting-State EEG Functional Networks
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Fig 3. Three individual spatial ICA components. For each component, the top part of the figure shows the
values of the spatial distribution. The bottom part of the figure shows the power values of the corresponding
component along time for the 5 frequency bands Delta & Theta, Alpha, Beta, Gamma1 and Gamma2.

doi:10.1371/journal.pone.0146845.g003
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Comparison of EEG and fMRI large-scale networks
Twenty functional networks were extracted at the group level from fMRI data and projected
onto the MNI standard GM-WM interface. The extracted RSN_fMRI were those

Fig 4. Hierarchical clustering of the individual spatial ICA components. The individual spatial ICA components (left) were projected to the MNI colin27
template (right). A hierarchical clustering was then performed to identify the RSN_EEG.

doi:10.1371/journal.pone.0146845.g004
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conventionally identified including a motor / sensori-motor network, a visual network, and the
default mode network.

Fig 6 shows the result of the stepwise regression analysis between EEG and fMRI networks.
A linear combination of few EEG networks was found to overlap closely each of the fMRI net-
works. Fig 6 illustrates such an overlap for the visual, motor and default mode networks,
respectively.

Among the 104 RSN_EEG, some overlapped with only one RSN_fMRI, others with several
RSN_fMRI. The left part of Fig 7 shows the 23 RSN_EEG that overlapped with only one
RSN_fMRI (1 to 1 association). The 47 RSN_EEG overlapping with several RSN_fMRI are
shown in the right part of Fig 7 (1 to N association). Finally the 34 RSN_EEG not overlapping
with any RSN_fMRI are shown in Fig 8.

Association of one EEG network with one fMRI network only was found mainly in motor,
premotor and sensory areas. Association of one EEG network with several fMRI networks was
found mainly in frontal and parietal areas. EEG networks associated with no fMRI network
were found mainly in the anterior temporal lobes.

These results showed that large-scale functional networks could be characterized using EEG
alone with a good reliability.

Discussion

Discussion of the method
We proposed an approach to characterise spatially and temporally brain networks using EEG
recordings while taking into account information in several frequency bands. The method con-
sisted of two steps:

1. An individual data analysis including EEG-based source localisation and spatial indepen-
dent component analysis

2. A group-level analysis including a hierarchical clustering of spatial individual components.

Fig 5. Two examples of RSN_EEG. Two RSN_EEG and associated power distribution in each frequency band are shown. (a) RSN_EEG including somato-
motor areas and (b) RSN_EEG including fronto-parietal areas.

doi:10.1371/journal.pone.0146845.g005
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At the individual level, the proposed multi-frequency data analysis allowed us to character-
ize the networks using a source localisation approach (forward / inverse problem) and a spatial
ICA. At the group level, we used hierarchical clustering to identify which large-scale networks
were reproducible across the population. Besides, we used a regression analysis to compare
EEG and fMRI networks. At each step, we used validated methods, commonly used in other
contexts; however each of them had its limitations.

We used the concentric sphere method to solve the forward problem [32]. It is a simple
technique of low computational cost. However, this method is less realistic compared with
approaches such as the boundary element method, which may allow obtaining a better spatial
resolution by using the individual anatomy in the model. Focusing on the cortex, we did not
take into account in our model deep brain structures such as the thalamus and the hippocam-
pus, which play an important role in processing high-level information. New models including
deep structures are now available [40]. Their use would enable a full characterisation of brain

Fig 6. Stepwise regression performed between RSN_EEG and RSN_fMRI. The results of the stepwise regression performed between RSN_EEG (a) and
RSN_fMRI (b) are shown in (c).

doi:10.1371/journal.pone.0146845.g006
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networks with EEG. However, since subcortical regions have not been observed in a reproduc-
ible manner with fMRI, this would make a comparison between the two modalities difficult.

We used minimum-norm estimation to solve the inverse problem. Other localisation
approaches could be used in our framework such as LORETA [21] or beamformers [23], which
may improve the frequency and spatial characterisation of the networks. It had been shown
that the choice of the reference and the volume conduction influence the recorded brain activ-
ity. In our case, the optimization of the re-referencing of the EEG by using an infinity reference
as proposed by Qin and collaborators [41, 42] with REST algorithm would improve the recon-
struction at the source level and further computation of functional connectivity.

Reconstructing sources at the cortical level allows disambiguating the EEG surface signals
up to a certain level. However, due to the inverse problem being ill-posed, the spatial resolution
of EEG remains low (in the order of centimetre). In our method, we did not use directly a con-
nectivity measure to identify the networks at the individual level. Our results did not show a
strong leakage effect. Indeed, sICA, by using both space and time, allowed a good separation of
the networks by finding a set of cortical regions that followed a similar temporal behaviour
(See Fig 3). The results at the group level showed a lower spatial resolution due to inter-individ-
ual variability. The spatial resolution of our approach could be further improved by the re-ref-
erence through the REST algorithm and the use of optimization approaches as described in
recent papers [43] leading to a strong decrease in spatial leakage at the source level.

A significant tuning parameter for sICA was the number of independent components
extracted for each subject. The number of components was set to K = 100 for each subject, sim-
ilar results were obtained using K = 200. We believe that K = 100 should be adequate for

Fig 7. Association of EEG networks with fMRI networks. The RSN_EEG overlapping with only one RSN_fMRI are shown in the left part of the figure (1 to
1 association). The RSN_EEG overlapping with several RSN_fMRI are shown in the right part of the figure (1 to N association).

doi:10.1371/journal.pone.0146845.g007
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resting-state studies on normal subjects. This parameter may be lowered when analysing sig-
nals obtained while performing a task or filtered signals in a single frequency band.

At the group level, we defined a RSN_EEG as the spatial average of its individual clustered
sICA components in space and frequency bands powers. To determine the RSN_EEG of inter-
est, we used two thresholds: representativity and unicity adapted from the fMRI literature (0.5
for representativity and 0.3 for unicity), we obtained 104 classes with a small spatial extent. The
chosen unicity parameter was lower than the one used in fMRI [38]. This is probably due to
the small spatial extent and the higher number of the individual sICA components in EEG
compared with fMRI. The representativity criterion quantified the reproducibility of the net-
work at the individual level, a representativity of 0.5 meaning that only half the subjects showed
this network. This inter-individual variability observed at the cortical level could be related to
the low SNR of the on-going EEG signals and the intrinsic variability between subjects. Thanks
to the group-level analysis (hierarchical clustering followed by thresholding of the average map
in each cluster), large-scale networks reproducible across the population could be accurately
identified.

Fig 8. EEG networks not included in any fMRI network.

doi:10.1371/journal.pone.0146845.g008
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Another way to perform the group level analysis would involve an ICA on the concatenated
Y matrix of all the subjects as proposed in the fMRI literature [44, 45]. In principle this
approach could take advantage of the number of subjects to increase the information available
to the spatial ICA. If the powers of the sources at the cortical level in the different frequency
bands were homogenous across the population of subjects, the results would be similar to those
obtained with our method. However, as we mentioned, the signals at the cortical level showed
inter-individual variability in space and power. This variability would bias a spatial ICA applied
directly at the group level. Indeed, the first independent components could be related to only
few subjects with high powers and homogenous spatial distributions. Performing the spatial
ICA subject by subject insured that the intrinsic variability of each subject was taken into
account in our framework. However this latter approach could be less sensitive to extract not
very well integrated networks.

In recent works using MEG and fMRI data [23,24] or EEG and fMRI [25], beamformer spa-
tial filtering combined with temporal ICA analysis was used to extract spatial maps of resting-
state networks with [25] or without [23] an atlas-based parcellation of the cortex. Temporal
ICA was applied on the concatenated dataset across subjects and for each of the 5 frequency
bands (1Hz to 40Hz). In contrast with our method, the extracted networks corresponded to
one frequency band.

Since the links between the fMRI signal and the electromagnetic signals are not fully estab-
lished, and to avoid any bias, we examined whether EEG alone was able to derive the spatial
distribution and temporal characteristics of functional networks. Using EEG data alone we
obtained resting-state networks the spatial extent of which was smaller than that of the net-
works found in fMRI on the same population. Linear combinations of RSN_EEG overlapped
significantly the RSN_fMRI, as shown by the stepwise regression analysis.

We can conclude that the power of the reconstructed EEG signal in the chosen frequency
bands included enough spatial structuring information, which allowed us to extract large-scale
functional networks from resting-state EEG data. We did not make any assumption concerning
the contribution of one frequency band to a given network as cross-frequency coupling was
shown to be a preeminent feature of on-going signals [46]. The power distribution was variable
over the five frequency bands across RSN_EEG. An equivalent contribution of the power to the
five frequency bands was generally observed. However, some networks contained more power
in one frequency band. This is consistent with the observed coupling between fMRI BOLD sig-
nal and EEG signal in various frequency bands [27]. Our framework could be applied to a sin-
gle frequency band, however it may fail to detect many networks where complex cross-
frequency coupling would occur.

We chose a 2-second-long time window to compute the power of the signal at the cortical
level to be consistent with the repetition time of the fMRI acquisition. However, the length of
the time window could be adapted to the frequency content of interest in a given study. For
example, to investigate slower dynamics in the on-going EEG signals, the length of the time
window could be increased.

Our analysis revealed a hierarchical-like organization of RSN_fMRI into smaller indepen-
dent RSN_EEG. In fact, a given RSN_fMRI was similar to a set of RSN_EEG thanks to the high
temporal resolution of EEG. This result is meaningful with respect to the principles of segrega-
tion and functional integration [3].

The comparison strategy yielded a good overlap between the EEG and fMRI networks over
a large portion of the cortex. However, there were mismatches between EEG-based and fMRI-
based networks. The RSN_EEG associated with a single RSN_fMRI network were found
mainly in motor, premotor and sensory areas. Other RSN_EEG associated with several
RSN_fMRI were found mainly in frontal and parietal areas. In these areas the RSN_fMRI
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themselves overlap [47], therefore the RSN_EEG networks were naturally included in several
fMRI networks. Moreover, the assumption that functional networks are disjoint from one
another may not be justified for example in associative areas. Many areas of the brain have sev-
eral functions and thus can participate in different large-scale networks. The observed mis-
match between the remaining RSN_EEG and RSN_fMRI may result from a poor sensitivity of
fMRI in these regions (partial volume effects, deformation), artefacts in the EEG signals (resid-
ual ocular, muscular or cardiac artefacts) or neuronal activities that did not induce detectable
BOLD signals.

The similarities between EEG and fMRI functional networks might be explained by the fact
that these networks are likely to be supported by the same underlying anatomy. To assess this
relationship between structure and function, anatomical networks obtained by diffusion imag-
ing [48] could be compared with EEG and fMRI functional networks.

Conclusion
We proposed an approach to characterise spatially and temporally brain networks using EEG
recordings. We examined whether EEG alone was able to derive the spatial distribution and
temporal characteristics of functional networks. To do so, we proposed a two-step original
method: 1) An individual multi-frequency data analysis at the cortical level. 2) A group-level
analysis to identify the reproducible large-scale networks. This EEG-based analysis revealed
small independent networks thanks to the high temporal resolution of EEG. The comparison
with fMRI showed a good overlap between the EEG and fMRI networks in motor, premotor,
sensory areas, frontal and parietal areas. However, there were mismatches in temporal areas
resulting from a poor sensitivity of fMRI in these regions or low SNR in the EEG signals.

The advantage of the proposed method is the perspective to study the high temporal
dynamics of networks at the source level thanks to the high temporal resolution of EEG. It
would then become possible to study detailed measures of the dynamics of connectivity in cor-
tico-subcortical networks and between networks (e.g. measures of coherence or causality). This
would provide ideal tools for studying normal and pathological brain function.
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