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Abstract
Gene-diet interactions play a crucial but poorly understood role in susceptibility to obesity.

Accordingly, the development of genetically tractable model systems to study the influence

of diets in obesity-prone genetic backgrounds is a focus of current research. Here I present

a modified synthetic Drosophila diet optimized for timely larval development, a stage

dedicated to energy storage. Specifically increasing the levels of individual macronutrients–

carbohydrate, lipid, or protein–resulted in markedly different organismal effects. A high-car-

bohydrate diet adversely affected the timing of development, size, early lifespan and body

fat. Strikingly, quadrupling the amount of dietary lipids had none of these effects. Diets rich

in protein appeared to be the most beneficial, as larvae developed faster, with no change in

size, into long-lived adults. I believe this synthetic diet will significantly facilitate the study of

gene-diet interactions in organismal energy balance.

Introduction
Obesity rates are high and continue to climb. There are clearly genetic factors at play, but we
also know that dietary trends contribute to the development of the disease. Multiple animal
models have been developed in order to try to better understand the onset and development of
obesity and derived metabolic disorders, the complexity of which present profound challenges
to research. Gene-diet interactions (i.e., how genetic background influences an individual’s
response to a given diet) are even more complex, illustrated by the difficulty in predicting out-
comes of interventional diets [1]. In general, the dietary components considered relevant to
weight management are lipids, carbohydrate, and protein. Manipulating both the relative and
absolute amounts of these components in the diets of model organisms leads to a variety of
effects on body weight, body fat, overall metabolism, and longevity, among other biological
parameters [1]. However, simultaneously varying the genetic background to identify the under-
lying molecular pathways is only feasible in models amenable to unbiased genetic screens.

Drosophila melanogaster has a long history as an experimental model for the study of vari-
ous human diseases. In terms of metabolic disorders, fruit flies features fundamentally similar
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overall physiology and regulatory organs that functionally parallel those of mammals. Several
studies have identified genetic lesions that lead to “obese” flies with excess body fat [2–5]. A
number of these genes have conserved functions in mammals [3, 5]. In addition to genetic dis-
section, several studies have examined interactions between diet and metabolism-related
parameters including diabetes, heart disease, and lifespan [6–10]. Typically, to modulate pro-
tein content, levels of dietary yeast are varied [10], whereas fat levels are often increased by
using coconut oil [9], and extra sucrose is added to increase carbohydrates [7, 8]. Although
yeast is the major source of protein in standard fly stock media, yeast is clearly more complex
than just protein, and coconut oil is a complex fat. There is thus a need for synthetic Drosophila
diets to more precisely manipulate individual macronutrients, allowing dissection of gene-diet
interactions in the context of organismal metabolism. Toward this goal, several recent studies
have described distinct synthetic diets [11–14]. However, these diets induce drastic delays in
larval development [12, 13] (Table 1). Energy stored during the larval stages fuels metamor-
phosis and much of early adult life [15]. Accordingly, suboptimal nutrition during develop-
ment complicates the analysis of gene-diet and metabolism interactions.

In this study I develop a synthetic Drosophila diet on which larvae develop at rates approach-
ing those observed on rich diets. I determine the effects on development, size, total body fat levels,
feeding behavior and lifespan of increasing levels of specific macronutrients (carbohydrates, lip-
ids or protein). On a carbohydrate-rich diet, larvae have elevated triacylglycerides (TAGs),
develop more slowly into smaller pupae, and, as adults, display changes in age-associated mortal-
ity. By contrast, on a protein-rich diet, larvae do not accumulate extra TAGs, and develop faster
with no changes in size when compared to their sibling controls fed a normal diet. These findings
emphasize the requirement of balanced diets for optimal development, growth and lifespan.

Materials and Methods

Fly stocks and husbandry
Wildtype Oregon R flies were originally obtained from the Bloomington Stock Center (stock
#4269) and have been maintained in the lab for several generations. Adult flies were allowed to

Table 1. Concentrations (in g/L) of relevant components of variousDrosophilamedia and relevant indicators of dietary effects on development,
fecundity/fertility, and longevity.

Diet Protein Carbs Lipid Vit & Mina Gelb Otherc Dev. Timing (days) Life- spand Ref.

Synthetic 73.3 13.3 0.40 9.8 5 1.7 10.36 (adult eclosion) 63 This study

Holidic (50S200N HUNTaa) 21.4 17.1 0.1–0.3 36.0 20 7.5 9.9 (to first pupa) ~55 [13]

Chemically Defined (400K) 19.6 78.4 0.87 3.2 10 – 13.2 (adult eclosion) 37 [12]

Sang’s medium C 55.0 7.5 0.3 6.2 30 0.02 n.d.e n.d. [16, 17]

Hunt’s medium 24.5f 7.5 0.3 6.2 30 0.02 n.d. n.d. [16]

Bloomington stock recipe 19.0 63.9 2.4 1.2 5.3 5.7 n.d. n.d. g

“Regular Food” 24.3 132.5 16.8 1.9 9 1.9 8.6 (adult eclosion) 35 [12]

aVitamins, minerals and nucleic acids
bGelling agent
cPreservatives, etc.
dMedian lifespan for females.
e
“n.d.”, not determined.

fHunt’s medium is derived from Sang’s “defined” medium but utilizes individual amino acids instead of casein.
gBased on nutritional contents of indiviual ingredients as provided by their manufacturers; see Bloomington Stock Center website (http://flystocks.bio.

indiana.edu/Fly_Work/media-recipes/bloomfood.htm).

doi:10.1371/journal.pone.0146758.t001
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lay eggs on grape juice plates with yeast paste at 25° for 4–6 hr. 24 hr after hatching, 50 first-
instar larvae were transferred to each vial of synthetic medium. All experimental animals were
maintained in a 25° incubator.

Synthetic media food
The synthetic diet used here has been modified from Sang’s “defined”medium for Drosophila
culture [16] to optimize for developmental timing and eclosion rates. The concentration of
sucrose was increased 1.75-fold and that of all ingredients was increased 1.33-fold relative to
the original recipe, and the agar content was reduced (Table 1). Normal medium (N), per liter:
5 g agar (VWR, 90000–760), 73.3 g casein (Sigma, C5679), 13.3 g of sucrose (Fisher Scientific,
S5), 0.4 g cholesterol (Sigma, C4951), 0.32 g choline chloride (Sigma, C1879), 0.85 g inosine
(Sigma, I4125), 0.76 g uridine (Sigma, U3003), 133.3 ml NaHCO3 (10 g/L stock), 133.3 ml
KH2PO4 (7.1 g/L stock), 133.3 ml K2HPO4 (37.3 g/L stock), 133.3ml MgSO4 • 7 H2O (6.2 g/L
stock), 133.3 ml vitamin A stock, 13.3 ml vitamin stock B stock, 333 ml deionized water, and
13.3 ml 10% Tegosept (weight/volume in 95% ethanol; Genesee Scientific, 20–259). Vitamin A
stock was 20 mg thiamine (Sigma, T1270), 100 mg riboflavin (Sigma, R4500), 120 mg nicotinic
acid (Sigma, N0761), 160 mg D-pantothenic acid hemicalcium salt (Sigma, P5155), 25 mg pyri-
doxine (Sigma, P6280) and 2 mg biotin (Sigma, B4501), dissolved in 1 L deionized water, ali-
quoted and frozen at -20°C protected from light. Vitamin B stock was 500 mg folic acid
(Thermo Fisher, BP2519) dissolved in 167 ml 20% ethanol, aliquoted and frozen at -20°C pro-
tected from light. To make 4 times carbohydrate (4C), 4 times protein (4P), or 4 times lipids
(4L) medium, sucrose, casein, or cholesterol and choline chloride were increased to 53.2 g,
293.2 g, or 1.6 g and 1.28 g, respectively. Notably, the casein product used (Sigma, C5679) is a
non-homogenous mixture of polypeptide variants, the exact composition of which depends on
genetic polymorphisms in the cows from which it was obtained [18]. However, these variants
are ~99% identical; the product thus contains 87–94% protein whose amino acid composition
is ~99% defined. Media were autoclaved for 30 min using a liquid cycle and Tegosept was
added only after autoclaving. To prevent settling of casein, the media were stirred while cooling
and prior to pouring.

Triglyceride and protein measurements
25 Oregon R larvae of each experimental condition were homogenized in a microcentrifuge
tube using a pestle and centrifuged for 5 min at 13,200 rpm. 8 μl of supernatant was transferred
to a fresh tube and centrifuged again for 5 min at 13,200 rpm. 5 μl of this sample was used in
the TAG assay using a Triglyceride Reagent Kit (Sigma, T2449), per manufacturer’s instruc-
tions. 1 μl of sample was used in the Protein Assay Kit II (BioRad, 500–0002) as recommended
by the manufacturer. Levels of TAGs were normalized to levels of soluble protein. Three inde-
pendent assays (of 25 larvae each) were performed for each experimental condition. Graphpad
Prism v6 software was used to perform statistical tests.

Nile Red staining
Larvae were inverted to expose fat bodies and fixed with 8% paraformaldehyde (Electron
Microscopy Sciences, 15710) for 45 min. Dissected fat bodies were washed three times in
PBTriton 0.1% and stained with 0.25 μg/ml Nile Red (Molecular Probes, N1142) in PBS for 30
min. After washing three times in PBTriton 0.1%, fat bodies were mounted on slides in Slow-
Fade mounting media (Molecular Probes, S36936) to decrease photo-bleaching. Images were
obtained using a confocal microscope.

Effect of Synthetic Diets on Drosophila
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Size measurements
Pupae from larvae reared on the specified diets were measured using a caliper. 54 pupae were
measured for each experimental condition. Graphpad Prism v6 software was used to perform
Ordinary one-way ANOVA test.

Eclosion rates
Eclosion values were measured for each vial as the duration (in days) until the first adults
eclosed from pupal cases. Values were recorded daily in the morning and evening. At least 230
animals (7 vials with ~50 animals each) were analyzed for each experimental condition.

Food intake
Larval food intake was measured as described previously [3], except that larvae reared on the
experimental diets were exposed for 30 min to the same diet to which colored dye was added.
Three independent assays were performed for a total of 60 animals per experimental condition,
and Graphpad Prism v6 software was used to perform Ordinary one-way ANOVA test.

Life span analysis
Larvae seeded on the specific diets were allowed to eclose for 24 hr, and then to mate for 48 hr.
Females were transferred into fresh vials of the same diets on which they were grown. Death
events were recorded daily. At least 300 flies were analyzed per experimental condition, using
Graphpad Prism v6 software to perform statistical analysis (Log-rank (Mantel-Cox) and
Gehan-Breslow-Wilcoxon tests). Flies were transferred to vials with fresh media every 2–3
days. The old vials were kept and animals eclosing from eggs that were laid in them were evalu-
ated to assess fertility.

Results
As a first step towards dissecting the role of dietary composition in organismal energy balance,
I developed enriched diets based on a recipe for synthetic fly food [16] (see Materials and
Methods). Sang’s “defined”medium for Drosophila culture induces significant delays in devel-
opment–up to 2 days delay in larval wandering compared to lab stock food–and low rates of
eclosion (data not shown). I noticed that increasing the concentration of any single component
of Sang’s defined diet (i.e., carbohydrate, lipid, or protein) accelerated larval development and
increased eclosion rates (unpublished observations). Accordingly, I hypothesized that each of
these components is somewhat limiting in Sang’s “defined” diet, and tested modified recipes in
which the concentrations of all ingredients were increased to various extents (1.33- to
2.67-fold) relative to the original recipe. These media were of a more solid consistency due to
the decreased concentration of water, so I reduced the concentration of gelling agent (agar)
(Table 1). I found that, while larvae developed the fastest on a diet with 2.67x more sucrose and
2x more of the other components, on a diet with ~1.75x more sucrose and ~1.33x more of the
other components (Table 1) the duration to wandering was comparable to molasses/yeast-
based stock food and rates of eclosion were the highest (data not shown, and see below).

Next, I specifically increased the relative abundance of lipid, carbohydrates, or protein, and
monitored the effects on various parameters of energy homeostasis in larvae and adults. Wild-
type first instar (L1) larvae were grown on four different diets: Normal (N), and derivatives of
N in which the concentration of a particular macronutrient–lipids (4L), carbohydrates (4C), or
protein (4P)–was quadrupled. Embryos were collected on grape plates, allowed to hatch and
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L1s were transferred to the respective medium and allowed to develop until wandering or adult
stages.

Whole-body TAG levels in wandering larvae reared from embryonic eclosion on the
enriched diets revealed distinct effects of dietary composition on body fat content. When calcu-
lated per larva, there was no statistically significant change in TAG levels on the different diets,
although the carbohydrate- and lipid-rich diets showed a trend towards increased TAGs (Fig
1A). However, when normalized to soluble protein content, TAG levels were significantly
higher in animals fed a diet enriched in carbohydrates, and higher (but not quite statistically

Fig 1. Effect of enriched diets on fat accumulation. Larvae were fed a balanced (N), carbohydrate-rich
(4C), lipid-rich (4L) or protein-rich (4P) diet. (A-C) Larval extracts were analyzed for (A) total TAGs, (B) total
soluble protein, or (C) total TAGs normalized for soluble protein. (D) Fat bodies of larvae were stained post-
fixation for the fat-specific dye Nile Red (red). Fat bodies of larvae grown in 4C and 4L diets have higher
levels of fat per cell (arrow), and commonly display “leakage” of fat from the isolated tissue (arrow head).
Asterisks indicate significant differences (P < 0.05) for Ordinary one-way ANOVA. Error bars, standard
deviation. Since in (C) the variances appeared unequal, both a nonparametric test (MannWhitney) and a t
test with Welch’s correction for unequal variances were also applied to these data. The MannWhitney test
found no significant difference (all P > 0.05) between the diets, whereas the Welch-corrected t test found
significance only for the N-to-4C comparison (P = 0.0218).

doi:10.1371/journal.pone.0146758.g001
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significantly so) on the lipid-rich diet (Fig 1B and 1C). I cannot exclude that more subtle, but
biologically significant, changes in TAG content were missed due to a lack of sensitivity of our
assay. Changes in soluble protein content per larva likely reflect changes in overall body mass
(see below). To visualize differences in fat storage using an assay that does not require such
normalization, I dissected the FBs from larvae and stained them with the lipophilic dye Nile
Red [19]. As shown in Fig 1D, Nile-Red-staining material was found outside of the isolated FB
tissues from larvae grown in 4C or 4L, whereas this was not observed in FBs from larvae fed
the 4P or N diet. I interpret this apparent “leakage” of lipid from the 4C and 4L samples as
indicative of elevated levels of lipids within the lipid droplets of these animals. Excess lipids
inside lipid droplets and/or more or bigger lipid droplets inside FB cells may result in tissue fra-
gility, leading to rupture and lipid release upon dissection and staining. Taken together, these
data suggest that diets rich in carbohydrates and lipids promote accumulation of fat in Dro-
sophila larvae.

Like other animals, fruit flies display food preferences based on taste [20], which could be
altered significantly by dietary composition. Additionally, certain diets may trigger satiety sig-
nals more readily than do other diets. The increased fat observed in animals fed a carbohy-
drate-rich diet could thus reflect an increase in dietary intake or, alternatively, increased
storage of dietary energy. I measured food consumption in larvae. Larvae that had hatched on
the experimental diets were exposed for 30 min to the same diet to which colored dye was
added [3]. By measuring the amount of food coloring in larval homogenate [3], I found a trend
towards reduction in feeding for animals fed the P-rich diet, but this difference was not statisti-
cally significant (Fig 2). These findings are consistent with results from studies in other systems
in which the protein content of diet appears to trigger satiety signals [10, 21, 22]. No differences
were observed between the amounts of food ingested in a N, 4C or 4L diet (Fig 2). The lack of
major differences in larval food consumption suggest that feeding behavior has at most a small
contribution to the observed metabolic alterations in larvae fed the different diets (Fig 1).

Fig 2. Food intake of flies fed enriched diets. Animals reared on the indicated diets were allowed to feed
on red-colored food for a defined period of time. The amount of red food coloring in a homogenate was
measured as absorbance at 520 nm. 20 larvae per diet were analyzed after a 30-min feeding period on the
indicated synthetic diet. No significant differences where observed by Ordinary one-way ANOVA. Error bars,
standard deviation.

doi:10.1371/journal.pone.0146758.g002
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In many species, consumption of insufficient calories stunts development and results in
smaller adults [23–26]. An imbalance of calorie sources also has adverse effects [25, 26]. I won-
dered if diets enriched in certain nutrients would alter rates of development and body size. Ani-
mals fed a 4P diet eclosed a half day faster than those fed the N diet (Fig 3A), whereas excess
carbohydrates led to a half-day developmental delay (Fig 3A and 3B). 4L diet had no effect on
developmental timing (Fig 3A and 3B). The majority of organismal growth occurs during larval
development. To determine if prolonged or curtailed development on the 4P and 4C diets
translated into differences in body size, I measured pupal length in animals raised on the differ-
ent enriched diets (Fig 3C). Although 4P-fed flies eclosed faster than those on any another
medium, their overall size was not affected (Fig 3C). On the other hand, slower-eclosing larvae
fed a 4C diet made smaller pupae (Fig 3C), consistent with the decreased protein content of lar-
vae on this diet (Fig 1B). The 4L diet had no effect on pupal size (Fig 3C). Thus, the alterations
in the timing of development that I observed with the 4P and 4C diets are consistent with a
model in which faster development indicates an abundance of available resources for growth,
and slower development reflects a scarcity of such resources, with protein representing a better
resource than carbohydrate.

It has been well documented that calorie intake influences lifespan [6]. In earlier studies
using undefined media to which specific dietary components were added, varying the ratio of
sugar to yeast had significant effects on lifespan [10, 23]. I also observed effects of synthetic
media on adult lifespan (Fig 4A). Flies fed a 4C diet displayed an unusual bimodal distribution

Fig 3. Effect of enriched diets on times to eclosion and larval size. (A) The duration (in days) from egg
laying to eclosion of adult flies on the indicated diets. 7 independent experiments (totaling� 230 animals per
experimental condition) were performed. (B) The mean values in (A) were subtracted from the mean duration
measured on the N diet. (C) Flies (n = 54 per condition) grown on the different diets were allowed to develop
until pupa stages, at which time a caliper was used to measure their body length. Asterisks indicate
significant differences (P < 0.05) for Ordinary one-way ANOVA. Error bars, standard error of the mean.

doi:10.1371/journal.pone.0146758.g003
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of lifespans composed of a short-lived population and a long-lived population (Fig 4B). No dif-
ference was observed between N and 4L diets. Comparing the N and 4P diet, however, I found
that flies begin dying later on a 4P diet, with a median survival extended by two days compared
to N diet (Fig 4), and a statistically significant difference in overall survival (Gehan-Breslow-
Wilcoxon Test P = 0.0013). In Drosophila and most other species, reproduction limits lifespan,
representing an apparent “trade-off” [27]. Notably, I monitored whether or not new adult ani-
mals eclosed in the vials in which the flies had laid their eggs over a period of 2–3 days, and
found no apparent differences in fertility between any of these synthetic diets (data not
shown).

Discussion
This study differs in several important ways from others that have experimentally altered die-
tary content in Drosophila. Foremost among these is the progression of larval development on
the N diet, which is only slightly delayed (0.5–1 day) relative to standard diets optimized to
shorten the timing of development. Other defined diets strongly delay development (Table 1),

Fig 4. Effects of enriched diets on adult lifespan. Longevity of adult flies fed the indicated diets. n�352 per
diet. (A) Survival curves. Log-rank (Mantel-Cox) test indicates that the curves are significantly different
(P = 0.0048). Median lifespans (days); N, 63; 4C, 69; 4L, 63; 4P, 65. (B) Histograms of individual lifespans.

doi:10.1371/journal.pone.0146758.g004
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and were optimized instead for reproducible lifespan analysis without compromising fecundity
[12, 13]. On one such diet, developmental timing was delayed approximately two-fold, and
only upon the addition of yeast extract–an undefined ingredient–could development be
restored to within 1 day of that achieved on an undefined sugar-yeast diet [13]. Larval develop-
ment is highly focused on the accumulation of energy to support metamorphosis and early
adult life. Drosophilametabolism has presumably evolved under selective pressure to maintain
efficient larval development, and it is thus important to consider this context in the study of
gene-diet relationships. Importantly, egg laying was not significantly decreased on any
enriched diet (S1 Fig). In fact, on the 4L diet adult females laid slightly more eggs (S1 Fig).
However, the total number of eggs was low when compared to the number of eggs reported for
other diets, suggesting that the synthetic diet is not likely to support high rates of egg laying.

Studies focused on Drosophila energy metabolism often utilize enriched diets, created by
adding specific ingredients to an undefined diet. This approach has significant limitations. In
mammalian systems, for example, the ability to test various ratios of carbohydrates to fat often
requires reducing the levels of a single ingredient below the amount found in a “standard” diet,
while maintaining standard levels of other ingredients [28]. Although I have not yet explored
the effects of reducing dietary components, the diets described here facilitate this kind of
approach in Drosophila.

Moreover, it is impossible to define the final concentration of a dietary component when a
specific ingredient is simply added to an undefined diet. In a Drosophilamodel of diet-induced
heart disease, dietary lipid content was increased by the addition of coconut oil, a lipid-rich
(undefined) ingredient [9]. Minimal organismal effects were seen at concentrations below 30%
coconut oil [9]. Considering that I was able to increase dietary lipid content four-fold without
any noticeable adverse effects on lifespan or developmental timing, one can estimate that, in
order to bring about the kinds of changes observed in “high-fat”/”high-lipid” diets based on
30% coconut oil, dietary lipid content must be increased by considerably more than four-fold,
and/or the added source of lipids must contain higher proportions of specific storage-promot-
ing molecules (e.g., TAGs). High-fat/high-lipid diets in human populations are unlikely to
achieve a fat enrichment of this magnitude.

Studies with undefined diets found that increasing the proportional caloric contribution
from yeast produced lean flies, whereas when the same number of calories were provided pri-
marily from sugar, triacylglycerides were increased [10]. It was also found that the yeast:sucrose
ratio was important for optimal life span, as increasing this ratio decreased life span [10, 23],
but increased fecundity [10]. Something other than protein per se in dietary yeast must be the
relevant component with regards to this ratio, as my 4P diet increased life span, despite a high
protein:sucrose ratio. However, increased longevity on a high-protein, low-carbohydrate
diet also does not appear to match recent findings with mice [29] and humans [30]. The abun-
dance of individual amino acids has been shown by others to make important contributions to
longevity [31], and thus is also an important variable to consider for future studies. For exam-
ple, casein in the diets reported here could be replaced with specific combinations of individual
amino acids.

The unusual bimodal distribution of lifespans in the 4C-fed adults could reflect two groups
of individuals: one population succumbed to adverse effects of elevated fat experienced during
development and early adult life, whereas others that survived long enough were able to benefit
from certain old-age-specific advantages of extra stored energy. Indeed, recent studies in
humans suggest that a dietary requirements change significantly with age [30].

In conclusion, the diets described here offer an additional option for the analysis of macro-
nutrient effects on various parameters of organismal metabolism in Drosophila.
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Supporting Information
S1 Fig. Effect of enriched diets on egg laying. Eggs laid per 20 females over a 4-hr interval.
For each diet, data represent three independent egg collections each from two independent
populations of adults (8–10 days old). Asterisks indicate significant differences (P< 0.05).
Error bars, standard error of the mean. Since in the variances appeared unequal, both a non-
parametric test (MannWhitney) and a t test with Welch’s correction for unequal variances
were applied to these data. The MannWhitney test indicated a significant increase in egg laying
on the 4L diet (P = 0.0247). All other P< 0.05.
(JPG)
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