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Abstract
Gene expression, signal transduction and many other cellular processes are subject to sto-

chastic fluctuations. The analysis of these stochastic chemical kinetics is important for

understanding cell-to-cell variability and its functional implications, but it is also challenging.

A multitude of exact and approximate descriptions of stochastic chemical kinetics have

been developed, however, tools to automatically generate the descriptions and compare

their accuracy and computational efficiency are missing. In this manuscript we introduced

CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of

the Chemical Master Equation solution statistics. CERENA implements stochastic simula-

tion algorithms and the finite state projection for microscopic descriptions of processes, the

system size expansion and moment equations for meso- and macroscopic descriptions, as

well as the novel conditional moment equations for a hybrid description. This unique collec-

tion of descriptions in a single toolbox facilitates the selection of appropriate modeling

approaches. Unlike other software packages, the implementation of CERENA is completely

general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By

providing SBML import, symbolic model generation and simulation using MEX-files,

CERENA is user-friendly and computationally efficient. The availability of forward and

adjoint sensitivity analyses allows for further studies such as parameter estimation and

uncertainty analysis. The MATLAB code implementing CERENA is freely available from

http://cerenadevelopers.github.io/CERENA/.

Introduction
Biological processes, including chemical reaction networks, are dynamical systems with inher-
ently stochastic dynamics due to the discrete nature of matter [1]. The kinetics of these pro-
cesses are described by continuous-time Markov chains and can be simulated using stochastic
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simulation algorithms (SSAs) [2]. The impact of stochastic fluctuations is more pronounced in
low copy-number regimes [3] and tends to decrease, but possibly remaining important, as
copy-numbers increase [4]. Given the importance of stochasticity in the dynamics of biological
systems, e.g., cellular mechanisms and their functions [5], a holistic understanding of cell biol-
ogy requires accurate capturing of stochastic effects.

Using well-mixed and thermal equilibrium assumptions, the dynamics of chemical reaction
networks is exactly described by the Chemical Master Equation (CME) [6]. The solution of the
CME yields the probability distribution over the state of the system [1]. Besides special cases
[7], the exact solution of the CME is mostly infeasible as CMEs are usually infinite-dimensional
systems of differential equations. Several approaches have been developed to approximate the
solution of the CME, amongst others variants of finite state projection (FSP) [8–10]. However,
high computational complexity is a limiting factor for the applicability of this class of simula-
tion methods.

To reduce computational complexity, a multitude of approaches have been introduced that,
instead of approximating the full probability distribution, focus on the statistical moments of
it. Various orders of the method of moments (MM) [11] and the system size expansion (SSE)
[1, 12] provide information about the mean and higher-order moments of the distribution.
These methods yield the reaction rate equations (RRE) as a special case. To improve upon the
approximation in the presence of low as well as high copy-number species, hybrid micro-
scopic-mesoscopic approaches such as the method of conditional moments (MCM) [13] and
the conditional linear noise approximations [14] have been introduced. All these methods are
of reduced computational complexity as they possess significantly fewer state-variables com-
pared to the CME or FSP, thus remain feasible for real-world application problems.

Beyond fast numerical simulation, moment-based descriptions facilitate parameter estima-
tion and model selection for stochastic processes [15, 16]. This is essential for inferring
unknown rate constants and pathway topologies from experimental data. In addition to the
approximative model, state-of-the-art estimation algorithms strongly benefit from the solution
of sensitivity equations [17].

Several well-known open-source software packages are available for stochastic simulations,
finite state projection, method of moments, and system size expansion (e.g., [18–26] whose
properties are summarized in Fig 1). In addition, there exist web-based simulation platforms,
e.g., SHAVE [27]. However, a software package offering a broad collection of simulation meth-
ods is still missing. Furthermore, none of the available software provides sensitivity equations,
or hybrid approaches such as the method of conditional moments.

In this paper, we introduce CERENA (ChEmical REaction Network Analyzer), a toolbox for
the analysis of stochastic chemical kinetics. CERENA includes a variety of methods for the
analysis of stochastic biochemical reaction networks, focusing on mesoscopic and macroscopic
descriptions, namely RRE, MM, and SSE. Also, CERENA provides the first implementation of
MCM, and offers a wide range of options, amongst others variable truncation orders and dif-
ferent closure schemes. In addition, FSP and SSA implemented in CERENA can be used to pro-
vide microscopic descriptions of stochastic chemical kinetics. Although efficient
implementations of many variants of SSA are available, e.g., in StochKit [18], CERENA is the
only package supporting arbitrary, including fast-varying, time-dependent reaction propensi-
ties [28]. This variety of descriptions renders CERENA unique compared to other relevant soft-
ware packages (see Fig 1). To improve applicability of CERENA for realistic systems, the
toolbox allows for multiple compartments, non-mass action kinetics, and time-dependent pro-
pensities. CERENA is the first toolbox for stochastic modeling to provide forward and adjoint
sensitivity equations to facilitate efficient parameter estimation when linked to optimization
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packages. Ensuring efficient numerical simulation, CERENA enables comprehensive studies
for a variety of meso- and macroscopic descriptions.

In the following, we describe the functionality of CERENA and introduce the different
approximations. CERENA is then used for a detailed quantitive comparison of different
approximation methods, including various moment closures, which was not done before. In
particular, the approximation accuracies and computation times are assessed, demonstrating
the efficiency of the CERENA implementation.

Fig 1. Overview of software packages for stochastic modeling and their capabilities.

doi:10.1371/journal.pone.0146732.g001
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Methods
In the following, several methods for the modeling of stochastic processes and the correspond-
ing sensitivity analysis are briefly introduced.

Modeling approaches for stochastic biochemical reaction networks
A chemical reaction network, comprising of ns chemical species and nr chemical reactions is
described using a continuous-time Markov chain (CTMC) [29]. The state vector of this
CTMC,X 2 N

ns
0 , represents the counts of species, and is changed every time a reaction fires.

The probability of observing the CTMC at a particular state x at time t is denoted by p(x|t).
The time evolution of the probability distribution p(x|t) is governed by the CME, which is a
system of ordinary differential equations (ODEs) (see S1 CERENA Documentation for more
details). As solving the CME is mostly infeasible due to the large or infinite number of states x,
various approximative methods have been developed. Several methods concentrate on the full
distribution p(x|t) to provide a microscopic description. For mesoscopic and macroscopic
descriptions, there exist several methods that focus on representing the solution of the CME in
terms of its statistical moments. The microscopic, mesoscopic and hybrid methods imple-
mented in CERENA are briefly introduced in the following.

Stochastic Simulation Algorithm. SSAs generate statistically representative sample paths
of the CTMC [2]. An estimate to the probability distribution p(x|t) is given by the frequency of
sample paths that occupy state x at time t. To estimate the moments of the process, Monte-
Carlo integration can be performed. While estimators for probability distribution and
moments are unbiased and converge, the sample-sizes required to obtain low-variance esti-
mates are generally large, rendering SSA-based methods computationally demanding.

Finite State Projection. To enable a direct approximation of p(x|t), FSP [8] reduces the
number of state variables of the CME by only considering the states of non-negligible probabil-
ities. The remaining set of ODEs then yields a lower bound for p(x|t). Growing the state-space
of FSP decreases the approximation error at the cost of increased computational complexity.

Reaction Rate Equations. The RRE is the most commonly used modeling approach for
biochemical reaction networks. It constitutes a system of ODEs for the time evolution of the
mean of the stochastic process in the macroscopic limit. For reaction networks with constant
and linear propensities, i.e. those with only zero- or monomolecular reactions, the solution of
the RRE is exactly the mean of the stochastic process. For reaction networks with nonlinear
propensities, the RRE prediction can be considerably different from the true mean of the pro-
cess since it neglects the stochastic effects. In such cases, the solution of RRE is reflective of the
true mean of the stochastic process only in the limit of large molecule numbers [30].

System Size Expansion. For a systematic approximation of the dynamics of mesoscopic
systems, the SSE has been introduced [1]. The SSE is a power series expansion of the CME in
the inverse volume of the system. The lowest-order approximation for the mean reproduces
the aforementioned RRE. For the covariance, the lowest-order approximation yields the well-
known linear noise approximation (LNA), whose validity has been studied in [30] for different
classes of reaction systems. Higher-order corrections for the mean and covariance yield the
effective mesoscopic rate equation (EMRE) [12] and the inverse omega square (IOS) approxi-
mation [26].

Method of Moments. The method of moments (MM) [11] is conceptually similar to SSE
in that it also sets a framework for describing the moments of the solution of the CME. A sys-
tem of ODEs for the exact time evolution of the moments, which constitutes the moment equa-
tions, can be derived from the CME. Generally, the equations for the lower-order moments
depend on the higher-order moments, rendering moment closure necessary. Commonly used
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closure techniques include low dispersion closure, mean field closure, zero cumulants closure,
and derivative matching closure [31]. The application of moment closure yields a closed set of
approximative equations for the time evolution of the moments.

Method of Conditional Moments. The MCM [13] combines a microscopic description of
low copy-number species with a moment-based description of high copy-number species, pro-
viding a hybrid approach for approximating the solution of the CME. Since stochastic fluctua-
tions are more dominant for low copy-number species, marginal probability densities for these
species are determined. The high-copy number species are merely described in terms of their
moments, conditioned on the state of low-copy number species. The MCM equations are
derived from the CME, and form a system of differential algebraic equations (DAEs). Similar
to the moment equations, the moment closure is generally required to close the set of MCM
equations. This hybrid description can yield an improved approximation accuracy [13].

Sensitivity analysis
FSP, RRE, SSE, MM andMCM yield systems of differential equations. The parameters of differ-
ential equations can efficiently be inferred using gradient-based optimization methods [17].
While gradients can be approximated using finite differences, methods based on sensitivity equa-
tions are known to be more robust and computationally more efficient [17]. CERENA enables
first- and second-order forward sensitivity analysis for all ODE-based and DAE-based modeling
approaches, as well as adjoint sensitivity analysis [32] for all ODE-based modeling approaches.

Forward sensitivity equations. Forward sensitivity equations provide the time-dependent
sensitivity of the state-variables of the differential equations with respect to the parameters.
Assuming that the model possesses n state-variables and nθ parameters, roughly a system of
n(1+nθ) differential equations is solved to compute the first-order state sensitivities with
respect to all parameters. The sensitivity of measured quantities and objective functions can
then be computed based on state sensitivities.

Adjoint sensitivity equations. If the sensitivity of few functions with respect to many
parameters is required, computing the state sensitivities is unnecessarily demanding. In this
case, the adjoint sensitivity equations [32] can be solved to yield a set of adjoint states which
are independent of the parameters. These trajectories are then used to calculate the sensitivity
with respect to any parameters of interest, with low computational cost. Thus, in applications
with high-dimensional parameter spaces and/or few output functionals, calculating adjoint
sensitivities tends to be computationally more advantageous. In parameter estimation, the like-
lihood function can be defined as the sole output functional of the system.

Implementation
CERENA is a MATLAB-based toolbox for the simulation of chemical reaction networks. It
provides a collection of methods for the analysis of stochastic processes, focusing on SSE, MM
and MCM of various orders. In addition, FSP and SSAs are implemented in CERENA to pro-
vide microscopic descriptions of the process, and can also be used to assess the approximation
errors of the aforementioned methods. The workflow of the toolbox is laid out in Fig 2. In the
following, different aspects of implementation and features of the toolbox are explained. For a
detailed list of functions, we refer to the S1 CERENA Documentation. The CERENA toolbox is
freely available from http://cerenadevelopers.github.io/CERENA/.

Network specification
To use CERENA, the biochemical reaction network has to be defined in a specific format
described in the S1 CERENA Documentation. The definition includes species, compartments,
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Fig 2. Workflow of CERENA. (a) CERENA can be used to study (multi-compartment) chemical reaction
networks. (b) The reaction network can be defined in MATLAB, or alternatively, imported from SBML. (c) The
system of equations for different modeling approaches implemented in CERENA is generated, and optionally
stored as MATLAB functions for numerical simulation using MATLABODE solvers. Furthermore, the
representation of the system can be exported to the estimation toolbox Data2Dynamics. (d) The symbolic
representation of the system of equations together with the initial conditions is stored in a MATLAB script. (e)

CERENA: A Toolbox for the Analysis of Stochastic Chemical Kinetics
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reactions and their propensities, inputs and observables of the system. Reaction propensities
can be time-dependent and may or may not follow the law of mass action. In case of non-mass
action kinetics the propensities are approximated, e.g., using Taylor series expansion in MM
and MCM [33]. Inputs are used to describe experimental conditions. Alternatively, networks
described in the Systems Biology Markup Language (SBML) can be imported.

Model derivation and symbolic representation
Following the definition of the biochemical reaction network, a modeling approach and corre-
sponding options, such as approximation order and moment closure technique, can be
selected. In addition to the moment closure techniques implemented in CERENA (see Fig 1),
user-defined closures can be provided. In case of MM and MCM, it can be specified whether
the equations in terms of molecule numbers or concentrations are to be derived. A system of
equations corresponding to the selected modeling approach is then derived, and provided as a
MATLAB script file including the corresponding initial conditions. This symbolic representa-
tion is the basis for the rest of the simulation and analysis. CERENA extensively uses MATLAB
Symbolic Math Toolbox for a variety of symbolic manipulations including symbolic differenti-
ation, e.g., in the calculation of Jacobian matrices used to accelerate the numerical simulation.

The models can be exported to Data2Dynamics software [34] for parameter estimation and
model selection. In addition, an optional intermediate MATLAB function can be generated for
the numerical simulation of the symbolic equations using MATLAB ODE solver ode15s.

Derivation of sensitivity equations and numerical integration
Forward and adjoint sensitivity equations for the selected model are derived based on the afore-
mentioned symbolic representation. The complete symbolic representation can then be used to
compile simulation files. CERENA uses CVODES and IDAS solvers of the SUNDIALS package
[32] which are C implementations of solvers suited for efficient numerical integration of stiff
ODEs and DAEs. Although the SUNDIALS package provides a MATLAB interface to the C
solvers, the governing equations must be specified as MATLAB code, which adds an overhead
to the overall computational cost of numerical simulation. To ensure efficiency, wrappers for
CVODES and IDAS, which compile model-specific MEX-files from automatically generated
native C code, have been implemented in CERENA. The compiled MEX-files are used for the
numerical simulation of the system with given parameter values and time vector. Options for
the numerical solvers and sensitivity analysis can be specified as inputs to the MEX simulation
files. For efficient numerical simulation, essential capabilities of the SUNDIALS package can be
exploited. The compiled MEX-files can be used for subsequent analysis.

Stochastic simulations
The solvers based on differential equations are complemented by SSAs, e.g. to provide refer-
ence solutions. In the case of SSAs, realizations of the stochastic process are simulated. CER-
ENA implements next-reaction methods for constant [2] and time-dependent propensities
[28]. To the best of our knowledge, an implementation of the modified next-reaction method
for systems with time-dependent propensities and delays is not available in other software

Based on the symbolic representation, 1st and 2nd order sensitivity equations are derived. MEX-files, which
use CVODES and IDAS packages of SUNDIALS for the numerical simulation of the models, are compiled. (f)
The generated MEX-files are used for numerical simulation, and can be integrated with other software for
parameter estimation. (g) Various aspects of the simulation results can be visualized using CERENA.

doi:10.1371/journal.pone.0146732.g002
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packages. This method, implemented in CERENA, is exact for reaction networks with time-
dependent propensities whose antiderivatives are available in closed-form. Otherwise, a
numerical integration error is introduced. This error can be controlled by adjusting the integra-
tion error tolerance of the respective numerical solvers.

Visualization
To facilitate the interpretation of the numerical simulation results, CERENA offers various
visualization routines. Time courses for stochastic realizations, as well as mean and higher-
order moments of species, can be plotted. Moreover, the full and marginal probabilities can be
visualized for SSA, FSP andMCM. To illustrate the interaction between different network com-
ponents and propagation of stochasticity, correlation and partial correlation maps, including
movies of these maps over time, are provided.

Application
In this Section, we present two biological models to demonstrate different features of CERENA,
including the improved computational complexity. Furthermore, we exploit the comprehen-
siveness of CERENA to compare different approximative descriptions.

Three-stage gene expression model
As the first example, we consider the generalized three-stage model of gene expression [3]
depicted in Fig 3(a). This model includes a gene with a promotor switching between on- and
off-states. Transcription of mRNA takes place if the promotor is in the on-state, and the tran-
scribed mRNA can be translated into protein. The model also incorporates a protein-induced
activation of the promoter which establishes a positive feedback loop. Protein and mRNA are
subject to degradation. The combination of low-copy number species (the gene) and medium/
high-copy number species (mRNA and protein) makes this model an interesting simulation
test example.

Comprehensive comparison of approximation accuracy. The accuracy of various
approximative descriptions is problem-specific, and therefore, comparisons of different
descriptions for a process of interest is interesting in different applications. As demonstrated
for this model, CERENA offers an easy-to-use framework for such a comprehensive compari-
son, thanks to its broad collection of simulation methods.

This process was implemented and simulated in CERENA for the parameter values given in
S1 CERENA Documentation, Chapter 1, Table E. Fig 3(b) depicts the simulation results for the
mean and the variance of the number of protein molecules obtained using various methods.
All methods yield results which agree well with the reference solution, obtained using FSP. The
RRE deviates the most from the reference solution. This behavior is expected, especially when
the abundance of species is low, as RRE merely provides a macroscopic description of the sto-
chastic process.

As mRNA is only transcribed if the promotor is in the on-state, the conditional distributions
of mRNA and protein counts in the on- and off-states differ. These differences are captured by
the MCM (Fig 3(c)), which provides information about the probability of different promotor
states and the moments of the corresponding conditional distributions of the counts of mRNA
and protein.

The accuracy of different descriptions is quantified in terms of the relative errors of the
mean and variance with respect to the FSP, e.g., |μMCM−μFSP|/μFSP. Fig 4 displays the relative
errors of MM and MCM close to steady state (t = 100), for various truncation orders and
moment closures. For derivative matching closure, we find that the resulting ODE model
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cannot be simulated robustly as it diverges for several truncation orders. It is observed that the
contribution of higher-order moments tends to enhance the simulation accuracy of lower-
order moments. The influence of truncation order on the accuracy varies for different closure
schemes.

Improved computational efficiency. A key bottleneck in the analysis of stochastic chemi-
cal kinetics is the computational complexity of the numerical simulation. As the number of

Fig 3. Simulation of the three-stage model of gene expression. (a) Schematic of the three-stage model of
gene expression. (b) Mean (left) and variance (right) of the number of protein molecules obtained using
different orders of SSE, MM and MCM. (c) Marginal probabilities of promotor states (left), the mean of protein
molecule numbers conditioned on the promotor state (middle), and the variance of protein molecule numbers
conditioned on the promotor state (right) predicted by MCM of order 3. (b,c) FSP results serve as the
reference solution. Low dispersion closure was used for MM and MCM. MM2, MM3, MCM2 and MCM3
denote the second- and third-order MM and the second- and third-order MCM.

doi:10.1371/journal.pone.0146732.g003
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biochemical species or the approximation order increases, the system of differential equations
to be solved becomes larger (Fig 5, top panel), indicating the need for efficient numerical simu-
lation schemes. Since the FSP describes the full probability distribution, its system of equations
is several orders of magnitude larger than the rest of the methods which merely capture a few
moments of the probability distribution (Fig 5, top panel).

We assessed the computation time for implementations in CERENA and compared it to
other packages/implementations (Fig 5, bottom panel). It is evident that the combination of

Fig 4. Approximation error of MM andMCM of various orders with various moment closures for the
three-stage model of gene expression.Relative errors of mean and variance of the protein concentration at
the steady state are depicted for different truncation orders and moment closures. The truncation orderm
means that moments up to orderm are simulated. For moment orders and closures for which the numerical
simulation could not be completed, i.e. derivative matching, no approximation error is reported.

doi:10.1371/journal.pone.0146732.g004

Fig 5. Complexity of different descriptions of the three-stage model of gene expression.Number of
state-variables (top) and computation time (bottom). Runtimes are shown for the numerical simulation using
CVODES/IDAS wrappers implemented in CERENA and MATLAB solver ode15s, as well as for
StochDynTools. The computation times were calculated by averaging over at least 10 simulations. For MM
and MCM low dispersion closure was used.

doi:10.1371/journal.pone.0146732.g005
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CVODES and IDAS packages with corresponding wrappers in CERENA resulted in remark-
able speedup, around 10–100 fold, compared to the use of standard MATLAB ODE-solvers,
e.g., ode15s. Also, other toolboxes, e.g., StochDynTools and iNA, were outperformed by
CERENA. A comparison across different methods reveals that the simulation of higher-order
descriptions which possess more state-variables tends to be computationally more demanding
than the simulation of lower-order descriptions.

JAK-STAT signaling pathway
The second example studied using CERENA is a model of the JAK-STAT signaling pathway
introduced by [35]. The model, sketched in Fig 6(a), describes the signaling cascade of STAT
protein. Upon activation, the Epo receptor triggers the phosphorylation of cytoplasmic STAT.
Dimerization and translocation of phosphorylated STAT into the nucleus, followed by a

Fig 6. Simulation results for the JAK-STAT signaling pathway. (a) Schematic of the simplified JAK-STAT
signaling pathway. The intermediate states npSTAT1 to npSTAT5 are used to model the delayed export of
STAT from the nucleus. (b) The mean (left) and variance (right) of dimerized phosphorylated STAT
concentration, obtained using several methods. SSA simulation results serve as the reference solution.

doi:10.1371/journal.pone.0146732.g006
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delayed export of STAT from the nucleus complete the loop. The time-dependent concentra-
tion of phosphorylated Epo receptor, [pEpoR], functions as an input to the system. The experi-
mental data for the concentration of phosphorylated Epo receptor, cytoplasmic STAT and
phosphorylated cytoplasmic STAT are available from previous studies [36].

The JAK-STAT signaling pathway is an interesting application example as it (i) includes
two compartments, namely cytoplasm and nucleus, and (ii) involves a time-dependent
propensity.

Simulation of multi-compartment systems with time-dependent propensities. We used
CERENA to describe the dynamics of JAK-STAT signaling pathway for parameter values given
in S1 CERENA Documentation, Chapter 8, Table A. As the copy numbers are relatively high in
this pathway, MCM and FSP were not considered. To provide the reference solution, the modi-
fied next-reaction method for systems with time-dependent propensities implemented in CER-
ENA was used which enabled handling of the time-dependent input. As seen in Fig 6(b), all
methods showed the same qualitative behavior as the reference solution.

Comparison of sensitivity analysis methods. In previous studies, it was shown that the
parameters of the JAK-STAT signaling pathway can be estimated efficiently for RRE [35] and
EMRE and second-order MM descriptions [37]. These studies used gradient-based optimiza-
tion methods with gradients being computed using forward sensitivity analysis. Here, we con-
sidered a weighted least-squares objective function as used by [37], and compared the
performance of finite differences, forward and adjoint sensitivity analyses in gradient calcula-
tion for second- and third-order moment equations.

We observed that, even for a small number of parameters, a gain in efficiency is achieved by
using forward and adjoint sensitivity analysis methods instead of finite differences (Fig 7).
Moreover, the adjoint sensitivity analysis has the best scalability with respect to the number of
parameters.

Discussion
Amultitude of studies revealed the functional role of cell-to-cell variability in cellular mecha-
nisms [5]. Hence, the analysis of cell-to-cell variability and its implications is crucial for a

Fig 7. Computation time for different sensitivity analysis methods. The objective function gradient for
MM2 simulation is evaluated for an increasing number of parameters. The computation times of finite
differences, forward sensitivity analysis, and adjoint sensitivity analysis are shown.

doi:10.1371/journal.pone.0146732.g007
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holistic understanding of biological systems, indicating the need for corresponding efficient
simulation tools. In this work, we introduced CERENA, a user-friendly toolbox for the study of
stochastic biological processes. CERENA offers a broad collection of simulation methods for
micro-, meso- and macroscopic description of stochastic processes, rendering it unique com-
pared to other software packages. In addition to various orders of the system size expansion
and moment equations, the first implementation of the method of conditional moments is pro-
vided. CERENA attains generality not only method-wise, but also by imposing the least restric-
tions on the biological systems. Specifically, (regulatory) processes involving non-mass action
kinetics, and/or time-dependent propensities can be analyzed. CERENA is one of the few pack-
ages to provide an SSA for the latter case. A key feature, distinguishing CERENA from all other
packages for stochastic modeling, is the implementation of forward and adjoint sensitivity
analyses for robust and efficient gradient calculations, especially in applications with high-
dimensional parameter spaces. This enables feasible gradient-based optimization. To improve
the computational efficiency, CERENA uses SUNDIALS solvers to compile numerical simula-
tion MEX-files.

We used CERENA for detailed quantitative comparisons of different modeling approaches
on models for three-stage gene expression and Epo-induced JAK-STAT signaling. These appli-
cations demonstrated that CERENA (i) offers suitable approximative methods for different
biological regimes (or systems in different regimes of copy-numbers), and (ii) renders the com-
prehensive comparison of approximative descriptions and the subsequent selection straightfor-
ward. Also, the implementation of numerical solvers in CERENA proved to be significantly
more efficient compared to other packages/implementations. For sensitivity analysis, a further
acceleration was achieved by using forward and adjoint sensitivity analyses, with the latter pos-
sessing a superior scalability with respect to the number of parameters.

The current version of CERENA allows for the study of population-averaged and popula-
tion snapshot data by providing time-dependent moments. To that end, a useful advancement
could be realized by the integration of CERENA with sophisticated parameter estimation and
model selection tools, such as ODE-constrained mixture modeling [38]. Complementarily, the
moments obtained using MM, MCM and SSE could be used to compute a distribution approxi-
mation [39–41] to provide a more informative comparison with respect to SSA and FSP solu-
tions. An automatic reconstruction of such approximative distributions could be incorporated
in future releases of CERENA.

In conclusion, we have shown that CERENA is a comprehensive toolbox for stochastic
modeling which maximizes both applicability and computational efficiency. This renders fur-
ther studies of biological problems of realistic sizes feasible.

Supporting Information
S1 CERENA Documentation. The documentation of CERENA. This documentation
includes a more detailed description of the modeling approaches implemented in CERENA, as
well as elaborate instructions on using the CERENA toolbox.
(PDF)
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