
RESEARCH ARTICLE

Neurokernel: An Open Source Platform for
Emulating the Fruit Fly Brain
Lev E. Givon☯, Aurel A. Lazar*☯

Department of Electrical Engineering, Columbia University, New York, NY 10027, United States of America

☯ These authors contributed equally to this work.
* aurel@ee.columbia.edu

Abstract
We have developed an open software platform called Neurokernel for collaborative develop-

ment of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their

execution and testing on multiple Graphics Processing Units (GPUs). Neurokernel provides

a programming model that capitalizes upon the structural organization of the fly brain into a

fixed number of functional modules to distinguish between these modules’ local information

processing capabilities and the connectivity patterns that link them. By defining mandatory

communication interfaces that specify how data is transmitted between models of each of

these modules regardless of their internal design, Neurokernel explicitly enables multiple

researchers to collaboratively model the fruit fly’s entire brain by integration of their indepen-

dently developed models of its constituent processing units. We demonstrate the power of

Neurokernel’s model integration by combining independently developed models of the retina

and lamina neuropils in the fly’s visual system and by demonstrating their neuroinformation

processing capability. We also illustrate Neurokernel’s ability to take advantage of direct

GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neurokernel’s

communication performance both over the number of interface ports exposed by an emula-

tion’s constituent modules and the total number of modules comprised by an emulation.

Introduction
Reverse engineering the information processing functions of the brain is an engineering grand
challenge of immense interest that has the potential to drive important advances in computer
architecture, artificial intelligence, and medicine. The human brain is an obvious and tantaliz-
ing target of this effort; however, its structural and architectural complexity place severe limita-
tions upon the extent to which models built and executed with currently available
computational technology can relate its biological structure to its information processing capa-
bilities. Successful development of human brain models must therefore be preceded by an
increased understanding of the structural/ architectural complexity of the more tractable brains
of simpler organisms and how they implement specific information processing functions and
govern behavior [1].

PLOSONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 1 / 25

OPEN ACCESS

Citation: Givon LE, Lazar AA (2016) Neurokernel:
An Open Source Platform for Emulating the Fruit Fly
Brain. PLoS ONE 11(1): e0146581. doi:10.1371/
journal.pone.0146581

Editor:William W Lytton, SUNY Downstate MC,
UNITED STATES

Received: October 26, 2015

Accepted: December 18, 2015

Published: January 11, 2016

Copyright: © 2016 Givon, Lazar. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All code and
documentation are available on the Neurokernel
project website at: neurokernel.github.io.

Funding: This work was supported by Air Force
Office of Scientific Research (AFOSR) (http://www.
wpafb.af.mil/afrl/afosr/), AFOSR grant #FA9550-12-
10232 (author: AAL); National Science Foundation
(NSF) (http://www.nsf.gov), NSF grant #1544383
(author: AAL); and Professional Scholarship of the
Engineering Graduate Student Council at Columbia
University (http://engineering.columbia.edu) (author:
LEG). The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0146581&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.wpafb.af.mil/afrl/afosr/
http://www.wpafb.af.mil/afrl/afosr/
http://www.nsf.gov
http://engineering.columbia.edu

The nervous system of the fruit fly Drosophila melanogaster possesses a range of features
that recommend it as a model organism of choice for relating brain structure to function.
Despite the obvious differences in size and complexity between the mammalian and fruit fly
brains, researchers dating back to Cajal have observed common design principles in the struc-
ture of their sensory subsystems [2]. Many of the genes and proteins expressed in the mamma-
lian brain are also conserved in the genome of Drosophila [3]. These features strongly suggest
that valuable insight into the workings of the mammalian brain can be obtained by focusing on
that of Drosophila.

Remarkably, the fruit fly is capable of a host of complex nonreactive behaviors that are gov-
erned by a brain containing only*105 neurons and*107 synapses organized into fewer than
50 distinct functional units, many of which are known to be directly involved in functions such
as sensory processing, locomotion, and control [4]. The relationship between the fruit fly’s
brain and its behaviors can be experimentally probed using a powerful toolkit of genetic tech-
niques for manipulation of the fruit fly’s neural circuitry such as the GAL4 driver system [5–9],
recent advances in experimental methods for precise recordings of the fruit fly’s neuronal
responses to stimuli [10–12], techniques for analyzing the fly’s behavioral responses to stimuli
[13–15], and progress in reconstruction of the fly connectome, or neural connectivity map [16,
17]. These techniques have provided access to an immense amount of valuable structural and
behavioral data that can be used to model how the fruit fly brain’s neural circuitry implements
processing of sensory stimuli [4, 18–22].

Despite considerable progress in mapping the fruit fly’s connectome and elucidating the
patterns of information flow in its brain, the complexity of the fly brain’s structure and the
still-incomplete state of knowledge regarding its neural circuitry pose challenges that go
beyond satisfying the current computational resource requirements of fly brain models. These
include (1) the need to explicitly target the information processing capabilities of functional
units in the fruit fly brain, (2) the need for fly brain model implementations to efficiently scale
over additional hardware resources as they advance in complexity, and (3) the need for brain
modeling to be approached as an explicitly open and collaborative process of iterative refine-
ment by multiple parties similar to that successfully employed in the design of the Internet [23]
and large open source projects such as the Python programming language [24].

To address these challenges, we have developed an open source platform called Neurokernel
for implementing connectome-based fruit fly brain models and executing them upon multiple
Graphics Processing Units (GPUs). In order to achieve scaling over multiple computational
resources while providing the programmability required to model the constituent functional
modules in the fly brain, the Neurokernel architecture provides features similar to that of an
operating system kernel. In contrast to general-purpose neural simulators, the design of Neuro-
kernel and brain models built upon it is driven by publicly available proposals called Requests
for Comments (RFCs).

Neurokernel’s design is predicated upon the organization of the fruit fly brain into a fixed
number of functional modules characterized by local neural circuitry. Neurokernel explicitly
enforces a programming model for implementing models of these functional modules called
Local Processing Units (LPUs) that separates between their internal design and the connectivity
patterns that link their external communication interfaces independently of the internal design
of models designed by other researchers and of the connectivity patterns that link them. This
modular architecture facilitates collaboration between researchers focusing on different func-
tional modules in the fly brain by enabling models independently developed by different
researchers to be integrated into a single whole brain model irrespective of their internal designs.

This paper is organized as follows. We first review the anatomy of the fruit fly brain that
motivate Neurokernel’s design and then describe its architecture and support for GPU

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 2 / 25

Competing Interests: The authors have declared
that no competing interests exist.

resources and programmability in the following section. The subsequent two sections respec-
tively present Neurokernel’s programming model and detail its API. To illustrate the use of
Neurokernel’s API, we then describe its use to integrate independently developed models of
the retina and lamina neuropils in the fly’s visual system. We also assess Neurokernel’s ability
to exploit technology for accelerated data transmission between multiple GPUs in benchmarks
of its module communication services. Finally, we compare Neurokernel to other computa-
tional projects directed at reverse engineering the function of neural circuits and discuss the
project’s long-term goals.

Framework Design and Features

Modeling the Fruit Fly Brain
Analysis of the Drosophila connectome has revealed that its brain can be decomposed into
fewer than 50 distinct neural circuits, most of which correspond to anatomically distinct
regions in the fly brain [4]. These regions, or neuropils, include sensory circuits such as the
olfactory system’s antennal lobe and the visual system’s lamina and medulla, as well as control
and integration neuropils such as the protocerebral bridge and ellipsoid body (Fig 1). Neuropils
range in size from about 6,000 neurons (lamina) to 40,000 neurons (medulla). Most of these
modules are referred to as local processing units (LPUs) because they are characterized by
unique populations of local neurons whose processes are restricted to specific neuropils.

The axons of an LPU’s local neurons and the synaptic connections between them and other
neurons in the LPU constitute an internal pattern of connectivity that is distinct from the bun-
dles, or tracts, of projection neuron processes that transmit data to neurons in other LPUs (Fig
1); this suggests that an LPU’s local neuron population and synaptic connections largely deter-
mine its functional properties. While the connection densities within and between LPUs is not
fully known, the total strength of connections between LPUs (defined in terms of total numbers
of dendritic and axonal terminals for all projection neurons linking a LPU with other LPUs) has
been observed to vary between 600 and 44,000 for a sample of 13,000 projection neurons in the
adult Drosophila brain [25]. The fruit fly brain also comprises modules referred to as hubs that
contain no local neurons; they appear to serve as communication relays between different LPUs.

Fig 1. Modular structure of fruit fly brain. Individual neuropils are identified by different colors in the left-
hand figure, with the names of several major neuropils listed. Most neuropils are paired across the fly’s two
hemispheres. The right-hand figure depicts a tract of neuronal axons connecting neuropils across
hemispheres highlighted in yellow (image created using data and software from [26–28], reproduced with
permission).

doi:10.1371/journal.pone.0146581.g001

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 3 / 25

In contrast to a purely anatomical subdivision, the decomposition of the brain into functional
modules casts the problem of reverse engineering the brain as one of discovering the informa-
tion processing performed by each individual LPU and determining how specific patterns of
axonal connectivity between these LPUs integrates them into functional subsystems. Modeling
both these functional modules and the connectivity patterns that link them independent of the
internal design of each module is a fundamental requirement of Neurokernel’s architecture.

Architecture of the Neurokernel
We refer to our software framework for fruit fly brain emulation as a kernel because it aims to
provide two classes of functions associated with traditional computer operating systems [29]: it
must serve as a resource allocator that enables the scalable use of parallel computing resources
to accelerate the execution of an emulation, and it must serve as an extended machine that pro-
vides software services and interfaces that can be programmed to emulate and integrate func-
tional modules in the fly brain.

Neurokernel’s architectural design consists of three planes that separate between the time
scales of a model’s representation and its execution on multiple parallel processors (Fig 2). Each
plane exposes a vertical API that provides abstractions/services of that plane to higher level
planes; this enables development of new features within one plane while minimizing the need to
modify code associated with other planes. Services that implement the computational primitives
and numerical methods required to execute supported models on parallel processors are pro-
vided by the framework’s compute plane. Translation or mapping of a models’ specified compo-
nents to the methods provided by the compute plane and management of the parallel hardware
and data communication resources required to efficiently execute a model is performed by

Fig 2. The three-plane structure of the Neurokernel architecture is based on the principle of
separation of time scales. The application plane provides support for hardware-independent specification
of LPUs and their interconnects. Services that implement the neural primitives and computing methods
required to execute neural circuit model instantiations on GPUs are provided by the compute plane.
Translation or mapping of specified model components to the methods provided by the compute plane and
management of multiple GPUs and communication resources is performed by the control plane operating on
a cluster of CPUs.

doi:10.1371/journal.pone.0146581.g002

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 4 / 25

Neurokernel’s control plane. Finally, the framework’s application plane provides support for
specification of neural circuit models, connectivity patterns, and interfaces that enable indepen-
dently developed models of the fly brain’s functional subsystems to be interconnected; we
describe these interfaces in greater detail in the Application Programming Interface section.

Neurokernel Programming Model
Interface Configuration. A key aspect of Neurokernel’s design is the separation it imposes

between the internal processing performed by an LPU model and how that model communi-
cates with other models (Fig 3). Neurokernel’s programming model requires that one specifies
how an LPU’s interface is configured and connected to those of other LPUs. The interface of an
LPU must be described exclusively in terms of communication ports that either transmit data
to or receive data from ports exposed by other LPUs after each execution step. Each port must
be configured either to receive input or emit output, and must be configured to either accept
spike data represented as boolean values or graded potential data represented as floating point
values (Fig 4). Both of these settings are mutually exclusive; a single port may not both receive
input and emit output, nor may it accept both spike and graded potential data. Ports may be
connected to arbitrary internal components of an LPU; a graded potential port, for example,
need not be associated with a neuron model’s membrane voltage. Ports are uniquely specified
relative to other ports within an interface using a path-like identifier syntax to facilitate hierar-
chical organization of large numbers of ports (Table 1).

Pattern Configuration. A single LPU may potentially be connected to many other LPUs;
these connections must be expressed as patterns between pairs of LPUs (Fig 3). Each pattern
must be expressed in terms of (1) two interfaces—each comprising a set of ports—between
which connections may be defined, (2) the actual connections between individual ports in the
two interfaces (Table 2), and (3) the attributes of each port in the pattern’s interfaces (Table 3).

Port attributes are used by Neurokernel to determine compatibility between LPU and pat-
tern objects. To provide LPU designers with the freedom to determine how to multiplex input
data from multiple sources within an LPU, Neurokernel does not permit multiple input ports
in a pattern to be connected to a single output port. Input ports in a pattern may be connected

Fig 3. Neurokernel programmingmodel. An LPUmodel’s internal components (cyan) are exposed via
input and output ports (yellow and orange). Connections between LPUs are described by patterns (green)
that link the ports of one LPU to those of another. Connections may only be defined between ports of the
same transmission type.

doi:10.1371/journal.pone.0146581.g003

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 5 / 25

Fig 4. LPU interface. Each communication port must either receive input (yellow) or emit output (orange), and must either transmit spikes (diamonds) or
graded potentials (circles).

doi:10.1371/journal.pone.0146581.g004

Table 1. Path-like port identifier and selector syntax examples. In these examples, the identifier level
strings med and L1 are chosen to respectively denote an LPU and a neuron within that LPU. An interface
designer may select whichever level strings are deemed suitable to label ports in an interface, however.

Identifier/Selector Comments

/med/L1[0] selects a single port

/med/L1/0 equivalent to /med/L1[0]

/med+/L1[0] equivalent to /med/L1[0]

/med/[L1,L2][0] selects two ports

/med/L1[0, 1] another example of two ports

/med/L1[0],/med/L1[1] equivalent to /med/L1[0, 1]

/med/L1[0:10] selects ten ports

/med/L1/� selects all ports starting with /med/L1

(/med/L1,/med/L2)+[0] equivalent to /med/[L1,L2][0]

/med/[L1,L2].+[0:2] equivalent to /med/L1[0],/med/L2[1]

doi:10.1371/journal.pone.0146581.t001

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 6 / 25

to multiple output ports. It should be noted that the connections defined by an inter-LPU con-
nectivity pattern do not represent synaptic models; any synapses comprised by a brain model
must be a part of the design of a constituent LPU and connected to the LPU’s ports in order to
either receive or transmit data from or to modeling components in other LPUs.

Application Programming Interface
In contrast to other currently available GPU-based neural emulation packages [30–33], Neuro-
kernel is implemented entirely in Python, a high-level language with a rich ecosystem of scien-
tific packages that has enjoyed increasing popularity in neuroscience research. Although GPUs
can be directly programmed using frameworks such as NVIDIA CUDA and OpenCL, the diffi-
culty of writing and optimizing code using these frameworks exclusively has led to the develop-
ment of packages that enable run-time code generation (RTCG) using higher level languages
[34]. Neurokernel uses the PyCUDA package to provide RTCG support for NVIDIA’s GPU
hardware without forgoing the development advantages afforded by Python [35].

To make use of Neurokernel’s LPU API, all LPU models must subclass a base Python class
called Module that provides LPU designers with the freedom to organize the internal struc-
ture of their model implementations as they see fit independent of the LPU interface configura-
tion. Implementation of a Neurokernel-compatible LPU requires that (1) the LPU be uniquely
identified relative to all other LPUs to which it may be connected in a subsystem or whole-
brain emulation, (2) the execution of all operations comprised by a single step of the LPU’s
emulation be performed by invocation of a single method called run_step(), and that (3)
the LPU’s interface be configured as described in the Interface Configuration subsection.

Table 2. Example of connections between ports in two LPUs respectively denoted lam and med. An
instance of the Pattern class comprises these connections and the port attributes in Table 3.

Source Port Destination Port

/lam[0] /med[0]

/lam[0] /med[1]

/lam[1] /med[2]

/med[3] /lam[3]

/med[4] /lam[4]

/med[4] /lam[5]

doi:10.1371/journal.pone.0146581.t002

Table 3. Attributes of the ports in the connectivity pattern described in Table 2.

Port Interface I/O Port Type

/lam[0] 0 in graded potential

/lam[1] 0 in graded potential

/lam[2] 0 out graded potential

/lam[3] 0 out spiking

/lam[4] 0 out spiking

/lam[5] 0 out spiking

/med[0] 1 out graded potential

/med[1] 1 out graded potential

/med[2] 1 out graded potential

/med[3] 1 in spiking

/med[4] 1 in spiking

doi:10.1371/journal.pone.0146581.t003

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 7 / 25

An instantiated LPU’s graded potential and spiking ports are respectively associated with
GPU data arrays that Neurokernel accesses to transmit data between LPUs during emulation
execution; LPU designers are responsible for reading the data elements associated with input
ports and populating the elements associated with output ports in the run_step()method.
Modeling components that do not communicate with other LPUs and the internal connectivity
patterns defined between them are not made accessible through the LPU’s interface (Fig 3).

Inter-LPU connectivity patterns correspond to the connections described by the tracts
depicted in Fig 1. These are represented by a tensor-like class called Pattern that contains
the port and connection data described in the Pattern Configuration subsection. To conserve
memory, only existing connections are stored in a Pattern instance. In addition to manually
constructing inter-LPU connectivity patterns using the configuration methods provided by the
Pattern class, Neurokernel also supports loading connectivity patterns from CSV, GEXF, or
XML files using a schema similar to NeuroML [36] with components that enable the specifica-
tion of LPUs, connectivity patterns, and the ports they expose. Inter-LPU connections cur-
rently remain static throughout an emulation; future versions of Neurokernel will support
dynamic instantiation and removal of connections while a model is being executed.

The designer of an LPU is responsible for associating ports with internal components that
either consume input data or emit output data. Neurokernel provides a class called GPUPort-
Mapper that maps port identifiers to GPU data arrays; by default, each Module instance con-
tains two GPUPortMapper instances that respectively associate the LPU’s ports with arrays
containing graded potential and spike values. After each invocation of the LPU’s run_step
()method, data within these arrays associated with the LPU’s output ports is automatically
transmitted to the port data arrays of destination LPUs, while input data from source LPUs is
automatically inserted into those elements associated with the LPU’s input ports (Table 4).

In addition to the classes that represent LPUs and inter-LPU connectivity patterns, Neuro-
kernel provides an emulation manager class called Manager that provides services for config-
uring LPU classes, connecting them with specified connectivity patterns, and determining how
to route data between LPUs based upon those patterns. The manager class hides the process
and communication management performed by OpenMPI so as to obviate the need for model
designers to directly interact with the traditional MPI job launching interface. Once an emula-
tion has been fully configured via the manager class, it may be executed for a specified interval
of time or for a specified number of steps.

Apart from the API requirements discussed above, Neurokernel currently places no explicit
restrictions upon an LPU model’s internal implementation, how it interacts with available
GPUs, how LPUs record their output, or the topology of interconnections between different
LPUs; compatible LPUs and inter-LPU patterns may be arbitrarily composed to construct sub-
systems (Fig 5). It should be noted that the current LPU interface is not intended to be final; we
anticipate its gradual extension to support communication between models that more accu-
rately account for the range of interactions that occur within the fruit fly’s brain.

Table 4. Example of input and output data mapped to and from data arrays by the GPUPortMapper class for the ports comprised by interface 0 in
the pattern described in Tables 2 and 3.

[StraddleRule]Graded Potential Ports [StraddleRule]Spiking Ports
Port Array Index Array Data Port Array Index Array Data

/lam[0] 0 0.71 /lam[3] 0 1

/lam[1] 1 0.83 /lam[4] 1 0

/lam[2] 2 0.52 /lam[5] 2 1

doi:10.1371/journal.pone.0146581.t004

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 8 / 25

Neurokernel’s compute plane currently provides GPU-based implementations for several
common neuron and synapse models. Supported neuron models include the Leaky Integrate-
and-Fire, Hodgkin-Huxley, and Morris-Lecar point neuron models, as well as a stochastic
model of the photoreceptors in the fly retina. Alpha function and conductance-based synaptic
models are also supported. These modeling components may be used to construct and execute
LPUs without writing any Python code by specifying an LPU’s design declaratively as a graph
stored in GEXF, an XML format for storing a property graph supported by various graph pro-
cessing libraries. Neurokernel does not restrict LPU model developers to using the above mod-
els; additional modeling components may be added to the compute plane as plugins.

Communication between LPU instances in a running Neurokernel emulation is performed
using MPI to enable brain emulations to take advantage of multiple GPUs hosted either on

Fig 5. Neurokernel brain modeling architectural hierarchy. Independently developed LPUs and connectivity patterns may be composed into subsystems
(red, green) which may in turn be connected to other subsystems to construct a model of the whole brain (yellow).

doi:10.1371/journal.pone.0146581.g005

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 9 / 25

single computer or a computer cluster. Neurokernel uses OpenMPI [37] to provide accelerated
access between GPUs that support NVIDIA’s GPUDirect Peer-to-Peer technology [38, 39]
when the source and destination memory locations of an MPI data transfer are both in GPU
memory. Neurokernel-based models are executed in a bulk synchronous fashion; each LPU’s
execution step is executed asynchronously relative to other LPUs’ execution steps, but data
associated with the output ports of all connected LPUs must be propagated to their respective
destinations before those LPUs can proceed to the next execution step. Since data is transmit-
ted between connected LPUs at every execution step, the output ports of all LPUs are effectively
sampled at the same rate. Individual LPUs may perform internal computations at a finer time
resolution, provided that they update their output port data arrays at the end of each invoca-
tion of their run_step()methods.

Using the Neurokernel API
This section illustrates how to use the Neurokernel classes described in the Application Pro-
gramming Interface section to construct and execute an emulation consisting of multiple con-
nected LPUs. The section assumes that Neurokernel and its relevant dependencies (including
OpenMPI) have already been installed on a system containing multiple GPUs. First, we import
several required Python modules; the mpi_relaunchmodule provided by Neurokernel sets
up the MPI environment required to enable communication between LPUs.

import neurokernel.mpi_relaunch

from mpi4py import MPI

import numpy as np

import pycuda.gpuarray as gpuarray

from neurokernel.mpi import setup_logger

from neurokernel.core_gpu import Module, Manager

from neurokernel.pattern import Pattern

from neurokernel.plsel import Selector, SelectorMethods

Next, we create a subclass of Module whose run_step()method accesses the class
instance’s port data arrays; the example below generates random graded potential and spiking
output port data.

class MyModule (Module):

@ @ @

Example of derived module class.

@ @ @

def run_step (self):

Call the run_step() method of the parent class (Module):

super (MyModule, self).run_step()

Log input graded potential data:

self.log_info(‘input gpot port data: ‘+\ str(self.pm[‘gpot’]
[self.in_gpot_ports]))

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 10 / 25

Log input spike data:

self.log_info (‘input spike port data: ‘+\ str (self.pm
[‘spike’][self.in_spike_ports]))

Output random graded potential data:

out_gpot_data = \ gpuarray.to_gpu(np.random.rand(len(self.
out_gpot_ports)))

self.pm[‘gpot’][self.out_gpot_ports] = out_gpot_data

self.log_info (‘output gpot port data: ‘+str (out_gpot_data))

Output spikes to randomly selected output ports:

out_spike_data = \ gpuarray.to_gpu(np.random.randint(0, 2, len
(self.out_spike_ports)))

self.pm[‘spike’][self.out_spike_ports] = out_spike_data

self.log_info(‘output spike port data: ‘+str(out_spike_data))

The data arrays associated with an LPU’s ports may be accessed using their path-like identi-
fiers via two instances of the GPUPortMapper class stored in the self.pm attribute.
Updated data associated with output ports is propagated to the relevant destination LPUs by
Neurokernel before the next iteration of the emulation’s execution.

To connect two LPUs, we specify the ports to be exposed by each LPU using path-like
selectors. The example below describes the interfaces for two LPUs that each expose two
graded potential input ports, two graded potential output ports, two spiking input ports, and
two spiking output ports. Selector is a convenience class that provides methods and over-
loaded operators for combining and manipulating sets of validated port identifiers. For
example, Selector(‘/a/in/gpot[0:2]’) corresponds to the set of two input graded
potential port identifiers /a/in/gpot[0] and /a/in/gpot[1]. Additional methods for
manipulating port identifiers are provided by the SelectorMethods class.

Define input graded potential, output graded potential,

input spiking, and output spiking ports for LPUS ‘a’ and ‘b’:

m1_sel_in_gpot = Selector(‘/a/in/gpot[0:2]’)

m1_sel_out_gpot = Selector(‘/a/out/gpot[0:2]’)

m1_sel_in_spike = Selector(‘/a/in/spike[0:2]’)

m1_sel_out_spike = Selector(‘/a/out/spike[0:2]’)

m2_sel_in_gpot = Selector(‘/b/in/gpot[0:2]’)

m2_sel_out_gpot = Selector(‘/b/out/gpot[0:2]’)

m2_sel_in_spike = Selector(‘/b/in/spike[0:2]’)

m2_sel_out_spike = Selector(‘/b/out/spike[0:2]’)

Combine selectors to obtain sets of all input, output,

graded potential, and spiking ports for the two LPUs:

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 11 / 25

m1_sel = m1_sel_in_gpot+m1_sel_out_gpot+\ m1_sel_in_spike
+m1_sel_out_spike

m1_sel_in = m1_sel_in_gpot+m1_sel_in_spike

m1_sel_out = m1_sel_out_gpot+m1_sel_out_spike

m1_sel_gpot = m1_sel_in_gpot+m1_sel_out_gpot

m1_sel_spike = m1_sel_in_spike+m1_sel_out_spike

m2_sel = m2_sel_in_gpot+m2_sel_out_gpot +\ m2_sel_in_spike
+m2_sel_out_spike

m2_sel_in = m2_sel_in_gpot+m2_sel_in_spike

m2_sel_out = m2_sel_out_gpot+m2_sel_out_spike

m2_sel_gpot = m2_sel_in_gpot+m2_sel_out_gpot

m2_sel_spike = m2_sel_in_spike+m2_sel_out_spike

Count the number of graded potential and

spiking ports exposed by each LPU:

N1_gpot = SelectorMethods.count_ports(m1_sel_gpot)

N1_spike = SelectorMethods.count_ports(m1_sel_spike)

N2_gpot = SelectorMethods.count_ports(m2_sel_gpot)

N2_spike = SelectorMethods.count_ports(m2_sel_spike)

Using the above LPU interface data, we construct an inter-LPU connectivity pattern by
instantiating the Pattern class, setting its port input/output and transmission types, and
populating it with connections:

Initialize connectivity pattern that can link

ports in m1_sel with ports in m2_sel:

pat12 = Pattern(m1_sel, m2_sel)

Set the input/output and transmission type attributes of each port
in the pattern’s two interfaces:

pat12.interface[m1_sel_out_gpot] = [0, ‘in’, ‘gpot’]

pat12.interface[m1_sel_in_gpot] = [0, ‘out’, ‘gpot’]

pat12.interface[m1_sel_out_spike] = [0, ‘in’, ‘spike’]

pat12.interface[m1_sel_in_spike] = [0, ‘out’, ‘spike’]

pat12.interface[m2_sel_in_gpot] = [1, ‘out’, ‘gpot’]

pat12.interface[m2_sel_out_gpot] = [1, ‘in’, ‘gpot’]

pat12.interface[m2_sel_in_spike] = [1, ‘out’, ‘spike’]

pat12.interface[m2_sel_out_spike] = [1, ‘in’, ‘spike’]

Create the connections between ports:

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 12 / 25

pat12[‘/a/out/gpot[0]’, ‘/b/in/gpot[0]’] = 1

pat12[‘/a/out/gpot[1]’, ‘/b/in/gpot[1]’] = 1

pat12[‘/b/out/gpot[0]’, ‘/a/in/gpot[0]’] = 1

pat12[‘/b/out/gpot[1]’, ‘/a/in/gpot[1]’] = 1

pat12[‘/a/out/spike[0]’, ‘/b/in/spike[0]’] = 1

pat12[‘/a/out/spike[1]’, ‘/b/in/spike[1]’] = 1

pat12[‘/b/out/spike[0]’, ‘/a/in/spike[0]’] = 1

pat12[‘/b/out/spike[1]’, ‘/a/in/spike[1]’] = 1

We can then pass the defined LPU class and the parameters to be used during instantiation
to a Manager class instance that connects them together with the above pattern. The setu-
p_logger function may be used to enable output of log messages generated during
execution:

logger = setup_logger(screen = True, file_name=‘neurokernel.log’,
mpi_comm = MPI.COMM_WORLD, multiline = True)

man = Manager()

m1_id = ‘m1’

man.add(MyModule, m1_id, m1_sel, m1_sel in, m1_sel_out, m1_sel_g-
pot, m1_sel_spike, np.zeros(N1_gpot, dtype = np.double), np.zeros
(N1_spike, dtype = int), device = 0)

m2_id = ‘m2’

man.add(MyModule, m2_id, m2_sel, m2_sel_in, m2_sel_out, m2_sel_g-
pot, m2_sel_spike, np.zeros(N2_gpot, dtype = np.double), np.zeros
(N2_spike, dtype = int), device = 1)

man.connect(m1_id, m2_id, pat12, 0, 1)

After all LPUs and connectivity patterns are provided to the manager, the emulation may be
executed for a specified number of steps as follows. Neurokernel uses the dynamic process cre-
ation feature of MPI-2 supported by OpenMPI to automatically spawn as many MPI processes
are needed to run the emulation:

Compute number of execution steps given emulation duration

and time step (both in seconds):

duration = 10.0

dt = 1e-2

steps = int(duration/dt)

man.spawn()

man.start(steps)

man.wait()

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 13 / 25

Results
To evaluate Neurokernel’s ability to facilitate interfacing of functional brain modules that can
be executed on GPUs, we employed Neurokernel’s programming model to interconnect inde-
pendently developed LPUs in the fruit fly’s early visual system to provide insights into the
representation and processing of the visual field by the cascaded LPUs. We also evaluated Neu-
rokernel’s scaling of communication performance in simple configurations of the architecture
parameterized by numbers of ports and LPUs.

The scope of the effort to reverse engineer the fly brain and the need to support the revision
of brain models in light of new data requires a structured means of advancing and document-
ing the evolution of those models and the framework required to support them. To this end,
the Neurokernel project employs Requests for Comments documents (RFCs) as a tool for
advancing the designs of both Neurokernel’s architecture and the LPU models built to use it.
IPython notebooks and RFCs [40, 41] containing detailed descriptions of the models of the
visual system LPUs described below and their execution performance on multiple GPUs are
publicly available on the project website http://neurokernel.github.io/docs.html.

Integration of Independently Developed LPUModels
The integrated early visual system model we considered consists of models of the fruit fly’s ret-
ina and lamina. The retina model comprises a hexagonal array of 721 ommatidia, each of
which contains 6 photoreceptor neurons. The photoreceptor model employs a stochastic
model of how light input (photons) produce a membrane potential output. Each photoreceptor
consists of 30,000 microvilli modeled by 15 equations per microvillus, a photon absorption
model, and a model of how the aggregate microvilli contributions produce the photoreceptor’s
membrane potential [41]; the entire retina model employs a total of about 1.95 billion equa-
tions. The lamina model consists of 4,326 Morris-Lecar neurons configured to not emit action
potentials and about 50,000 conductance-based inhibitory synapses expressing histamine [40].
The LPUs were linked by 4,326 feed-forward connections from the retina to the lamina; the
connections from the retina to the lamina were configured to map output ports exposed by the
retina to input ports in the lamina based upon the neural superposition rule [42]. The source
code for the visual system model is available at http://github.com/neurokernel/retina-lamina

The combined retina and lamina models were executed on up to 4 Tesla K20Xm NVIDIA
GPUs with an 8 second natural video scene provided as input to the retinal model’s photore-
ceptors. The computed membrane potentials of specific photoreceptors in each retinal omma-
tidium and of select neurons in each cartridge of the lamina were recorded (Fig 6); videos of
the computed potentials are included in the supporting information (S1 Video). In this exam-
ple, the observed R1 photoreceptor outputs demonstrate the preservation of visual information
received from the retina by the lamina LPU. The L1 and L2 lamina neuron outputs demon-
strate the signal inversion taking place in the two pathways shaping the motion detection cir-
cuitry of the fly. These initial results illustrate how Neurokernel’s API enables LPU model
designers to treat their models as neurocomputing modules that may be combined into com-
plex information processing pipelines whose input/output properties may be obtained and
evaluated.

Module Communication Performance
We compared the performance of emulations in which port data stored in GPU memory is
copied to and from host memory for traditional network-based transmission by OpenMPI to
that of emulations in which port data stored in GPU memory is directly passed to OpenMPI’s
communication functions. The latter functions enabled OpenMPI to use NVIDIA’s GPUDirect

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 14 / 25

http://neurokernel.github.io/docs.html
http://github.com/neurokernel/retina-lamina

Peer-to-Peer technology to perform accelerated transmission of data between GPUs whose
hardware supports the technology by bypassing the host system’s CPU and memory [39]. All
tests discussed below were performed on a host containing 2 Intel Xeon 6-core E5-2620 CPUs,
32 Gb of RAM, and 4 NVIDIA Tesla K20Xm GPUs running Ubuntu Linux 14.04, NVIDIA
CUDA 7.0, and OpenMPI 1.8.5 built with CUDA support.

Scaling over Number of LPU Output Ports. To evaluate how well inter-LPU communi-
cation scales over the number of ports exposed by an LPU on a multi-GPU machine, we

Fig 6. Example of natural input to the combined retina/lamina model. The hexagonal tiling depicts the array of ommatidia in the retina and the
corresponding retinotopic cartridges in the lamina. Outputs of select photoreceptors in the retina (R1) that are fed to neurons in the lamina and outputs of
specific neurons in the lamina (L1, L2) are also depicted.

doi:10.1371/journal.pone.0146581.g006

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 15 / 25

constructed and ran emulations comprising multiple connected instances of an LPU class with
an empty run_step()method (see the Application Programming Interface section) and
measured (1) the average time taken per execution step to synchronize the data exposed by the
output ports in each of two connected LPUs with their respective destination input ports; (2)
the average throughput per execution step (in terms of number of port data elements transmit-
ted per second) of the synchronization, where each port is stored either as a 32-bit integer or
double-precision floating point number (both of which occupy 8 bytes).

We initially examined how the above performance metrics scaled over the number of output
ports exposed by each LPU in a 2-LPU emulation and over the number of LPUs in an emula-
tion where each LPU is connected to every other LPU and the total number of output ports
exposed by each LPU is fixed. We compared the performance for scenarios where data in GPU
memory is directly exposed to OpenMPI to that for scenarios where the data is copied to the
host memory prior to transmission; the former scenarios enabled OpenMPI to accelerate data
transmission between GPUs using NVIDIA’s GPUDirect Peer-to-Peer technology. The metrics
for each set of parameters were averaged over 3 trials; the emulation was executed for 500 steps
during each trial.

The scaling of performance over number of ports depicted in Fig 7 clearly illustrate the abil-
ity of GPU-to-GPU communication between locally hosted GPUs to ensure that increasing the
number of ports exposed by an LPU does not increase model execution time for numbers of
ports similar to the numbers of neurons in actual LPUs. We also observed noticeable speedups
in synchronization time for scenarios using more than 2 GPUs as the number of ports exposed
by each LPU is increased (Fig 8). As the number of GPUs in use reached the maximum avail-
able in our test system, overall speedup diminished; this appears to be due to gradual saturation
of the host’s PCI bus.

Scaling over Number of LPUs. Current research on the fruit fly brain is mainly focused
on LPUs in the fly’s central complex and olfactory and vision systems. Since the interplay
between these systems will be key to increasing understanding of multisensory integration and
how sensory data might inform behavior mediated by the central complex, we examined how

Fig 7. Synchronization performance for an emulation comprising 2 interconnected LPUs accessing 2 different GPUs on the same host scaled over
number of output ports exposed by each LPU. The number of output ports was varied over 25 equally spaced values between 50 and 15,000. The plot on
the left depicts average synchronization time per execution step, while the plot on the right depicts average synchronization throughput (in number of ports
per unit time) per execution step.

doi:10.1371/journal.pone.0146581.g007

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 16 / 25

well Neurokernel’s communication mechanism performs in scenarios where LPUs from these
three systems are successively added to a multi-LPU emulation. Starting with the pair of LPUs
with the largest number of inter-LPU connections, we sorted the 19 LPUs in the above three
systems in decreasing order of the number of connections contributed with the addition of
each successive LPU and measured the average speedup in synchronization time per execution
step due to direct GPU-to-GPU data. The number of connections for each LPU was based
upon estimates from a mesoscopic reconstruction of the fruit fly connectome; these numbers
appear in Document S2 of the supplement of [25]. The LPU class instances were designed to
send and receive data only; no other computation was performed or benchmarked during exe-
cution. To amortize inter-LPU transmission costs, the LPUs were partitioned across the avail-
able GPUs using the METIS graph partitioning package [43] to minimize the total edge cut.
The speedup afforded by direct GPU-to-GPU data (Fig 9) illustrates that current GPU technol-
ogy can readily power multi-LPU models based upon currently available connectome data.

Discussion
In light of their low costs and rapidly increasing power and availability, there is growing inter-
est in leveraging the power of multiple GPUs to support neural simulations with increasingly
high computational demands [44–46]. When combined with concomitant increases in fruit fly
connectomic knowledge and improvements in electrophysiological techniques, the ongoing
advance of GPU technology affords an unprecedented opportunity to emulate an entire brain
or nervous system of a computationally tractable organism. The OpenWorm project [47], for
instance, is capitalizing on the extremely small number of neurons in the nervous system of the
nematode Caenorhabditis elegans and the full reconstruction of its connectome [48] to develop
an emulation of the entire worm on a computer. A recently started effort is the development of
a neuromechanical model called Sibernetic [49] that uses GPUs to power simulation of its
body and environment. In a similar vein, Neurokernel stands to enable fly researchers to lever-
age improving GPU technology to take advantage of the increasing amounts of connectome

Fig 8. Speedup of average synchronization time per execution step for an emulation scaled over
number of LPUs, where each LPU is mapped to a single GPU. The total number of output ports exposed
by each LPU was varied between 250 and 10,000 at 250 port intervals.

doi:10.1371/journal.pone.0146581.g008

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 17 / 25

data produced by ongoing advances in our understanding of the fly brain’s connectivity [4, 16,
17] for designing and testing fly brain models.

Currently available neural simulation software affords researchers with a range of ways of
constructing neural circuit models. These include tools that enable models to be explicitly
expressed as systems of differential equations [50], structured documents [36], or explicit calls
to a high-level programming API [51–53]. They also include tools for defining and manipulat-
ing neural connectivity patterns [54–56]. A platform for developing emulations of the entire
fruit fly brain, however, must provide programming services for expressing the functional
architecture of the whole brain (or its subsystems) in terms of subunits with high-level infor-
mation processing properties that clearly separate between the internal design of each subunit
and how they communicate with each other. Neurokernel’s architecture specifically targets
these gaps by providing both the high-level APIs needed to explicitly define and manipulate
the architectural elements of brain models as well as the low-level computational substrate
required to efficiently execute those models’ implementations on multiple GPUs (see Fig 2).

Existing technologies for interfacing neural models currently provide no native support for
the use of GPUs and none of the aforementioned services required to scale over multiple GPU
resources. Neurokernel aims to address the problem of model incompatibility in the context of
fly brain modeling by ensuring that GPU-based LPU model implementations and inter-LPU
connectivity patterns that comply with its APIs are interoperable regardless of their internal
implementations.

Despite the impressive performance GPU-based spiking neural network software can cur-
rently achieve for simulations comprising increasingly large numbers of neurons and synapses,
enabling increasingly detailed fruit fly brain models to efficiently scale over multiple GPUs will
require resource allocation and management features that are not yet provided by currently avail-
able neural simulation packages. By explicitly providing services and APIs for management of
GPU resources, Neurokernel will enable fly brain emulations to benefit from the near-term
advantages of scaling over multiple GPUs while leaving the door open to anticipated improve-
ments in GPU technology that can further accelerate the performance of fly brain models.

Fig 9. Synchronization performance for an emulation comprising between 4 and 19 interconnected
LPUs selected from the central complex, olfactory, and vision systems partitioned over 2 to 4 GPUs
on the same host.

doi:10.1371/journal.pone.0146581.g009

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 18 / 25

The challenges of reverse engineering neural systems have spurred a growing number of
projects specifically designed to encourage collaborative neuroscience research endeavors.
These include technologies for model sharing [36, 57, 58], curation of publicly available
electrophysiological data [59], and the construction of comprehensive nervous system models
for specific organisms [47]. For collaborative efforts at fruit fly brain modeling to succeed, how-
ever, there is a need to both ensure the interoperability of independently developed LPU mod-
els without modification of their internal implementations while enforcing a model of the
overall brain connectivity architecture. Software packages that enable multiple independently
developed neural simulators to execute complex models either by means of communication
APIs that simulators must support [60] or through encapsulation of calls to one simulator by a
second simulator [61] must be complemented with the flexibility to define and manipulate the
emulated connectivity architecture. By imposing mandatory communication interfaces upon
models, Neurokernel explicitly ensures that LPUmodels may be combined with other compati-
ble models to construct subsystem or whole brain emulations.

Neuromorphic platforms whose design is directly inspired by the brain have the potential to
execute large-scale neural circuit models at speeds that significantly exceed those achievable
with traditional von Neumann computer architectures [62–65]. Increasing support for high-
level software interfaces such as PyNN [52] by such platforms raises the possibility of executing
highly detailed LPUmodels on neuromorphic hardware. As neuromorphic technology matures
and becomes available to the wider neurocomputing community, we anticipate Neurokernel’s
compute plane eventually supporting the use of such hardware alongside and eventually in the
place of GPU technology to power whole brain emulations.

Although the Neurokernel project is specifically focused upon reverse engineering the fruit fly
brain, the framework’s ability to capitalize upon the structural modularity of the brain and facili-
tate collaborative modeling stand to benefit efforts to reverse engineer the brains of other model
organisms. To this end, we have already used Neurokernel to successfully scale up the retinal
model described in the Integration of Independently Developed LPUModels section to emulate
the retina of the house fly, which comprises almost 10 times as many differential equations (18.8
billion) as that of the fruit fly (1.95 billion). Further development of Neurokernel’s support for
multiple GPUs and—eventually—neuromorphic hardware will hopefully open the doors to collab-
orative modeling of the brains of even more complex organisms such as the zebra fish and mouse.

Future Development
Efforts at reverse engineering the brain must ultimately confront the need to validate hypothe-
ses regarding neural information processing against actual biological systems. In order to
achieve biological validation of the Neurokernel, the computational modeling of the fruit fly
brain must be tightly integrated with increasingly precise electrophysiological techniques and
the recorded data evaluated with novel system identification methods [10, 12, 66–70]. This will
enable direct comparison of the output of models executed by Neurokernel to that of corre-
sponding neurons in the brain regions of interest. Given that recently designed GPU-based sys-
tems for emulating neuronal networks of single spiking neuron types have demonstrated near
real-time execution performance for networks of up to*105 spiking neurons and*107 syn-
apses using single GPUs [30, 33, 71], and in light of advances in the power and accessibility of
neuromorphic technology [52, 62–65], we anticipate that future advances in parallel comput-
ing technology will enable Neurokernel’s model execution efficiency to advance significantly
towards the time scale of the actual fly brain. These advances will enable researchers to validate
models of circuits in the live fly’s brain within similar time scales and use the observed discrep-
ancies to inform subsequent model improvements (Fig 10).

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 19 / 25

Although Neurokernel currently permits brain models to make use of multiple GPUs, it
requires programmers to explicitly manage the GPU resources used by a model’s implementa-
tion. Having implemented the API for building and interconnecting LPUs described in the
Application Programming Interface section within Neurokernel’s application plane, our next
major goal is to implement a prototype GPU resource allocation mechanism within the control
plane to automate selection and management of available GPUs used to execute a fly brain
model. Direct access to GPUs will also be restricted to modeling components implemented by
LPU developers and added to Neurokernel’s compute plane; models implemented or defined
in the application plane will instantiate and invoke these components. These developments will
permit experimentation with different resource allocation policies as LPU models become
more complex. Restricting parallel hardware access to modeling components exposed by the
compute plane will also facilitate development of future support for other parallel computing
technologies such as non-NVIDIA GPUs or neuromorphic hardware.

Neurokernel is a fundamental component of the collaborative workflow needed to acceler-
ate the process of fruit fly brain model development, execution, and refinement by multiple
researchers. This workflow, however, also requires a means of efficiently constructing brain
models and modifying their structure and parameters in light of output discrepancies observed
during validation or to incorporate new experimental data. As noted in the Application Pro-
gramming Interface section, Neurokernel currently can execute LPU models declaratively spec-
ified as GEXF files that each describe an individual LPU’s design as a graph of currently
supported neuron and synapse model instances and separately specified inter-LPU connectiv-
ity patterns. Since this model representation must either be manually constructed or generated

Fig 10. In vivo validation is essential to the development of accurate fly brain models.Neural
responses to sensory stimuli are recorded from the live fly brain in real time and compared to the computed
responses of the corresponding components in a fly brain model executed on the same time scale.
Discrepancies between these responses and new connectome data may be used to improve the model’s
accuracy (fruit fly photograph adapted from Berger and fly robot image adapted from Vizcano, Benton,
Gerber, and Louis, both reproduced with permission).

doi:10.1371/journal.pone.0146581.g010

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 20 / 25

by ad hoc processing of connectome data, modification of LPUs is currently time consuming
and significantly slows down the improvement of brain models. LPUs explicitly implemented
in Python that do not use supported neuron or synapse models are even less easy to update
because of the need to explicitly modify their implementations.

To address these limitations and enable rapid updating and reevaluation of fly brain models,
we are building a system based upon graph databases called NeuroArch for the specification
and sophisticated manipulation of structural data associated with LPU models and inter-LPU
connectivity [72]. NeuroArch will (1) provide LPU developers with a means of defining model
components and canonical circuit abstractions using biologically-oriented model-specific
labels, (2) enable powerful queries against the data associated with multiple interconnected
LPU models via an object-oriented interface similar to that provided by object-relational map-
ping (ORM) software to web application developers, (3) provide access to model data at differ-
ent levels of structural abstraction higher than neurons and synapses, (4) enable access to and/
or modification of stored data in multiple modes, i.e., as a subgraph (to facilitate graph-based
queries) or a table (to facilitate tabular or relational queries), and (5) provide an interface to
Neurokernel that enables immediate execution of models defined in NeuroArch.

Conclusion
Despite the fruit fly brain’s relative numerical tractability, its successful emulation is an ambi-
tious goal that will require the joint efforts of multiple researchers from different disciplines.
Neurokernel’s open design, support for widely available commodity parallel computing tech-
nology, and ability to integrate independently developed models of the brain’s functional sub-
systems all facilitate this joining of forces. The framework’s first release is a step in this
direction; we expect and anticipate that aspects of the current design such as connectivity struc-
ture and module interfaces will be superseded by newer designs informed by the growing body
of knowledge regarding the structure and function of the fly brain. We invite the research com-
munity to join this effort on Neurokernel’s website (https://neurokernel.github.io/), online
code repository (https://github.com/neurokernel/neurokernel), and development mailing list
(https://lists.columbia.edu/mailman/listinfo/neurokernel-dev).

Supporting Information
S1 Video. Natural video signal input and photoreceptor/neuron outputs of integrated ret-
ina/lamina LPU models. This video depicts a natural video signal input to the photoreceptors
in the 721 ommatidia comprised by the retina model, average photoreceptor response per
ommatidium, and outputs (membrane potentials) of select photoreceptors (R1) in retina and
neurons (L1, L2) in the lamina.
(ZIP)

Acknowledgments
The authors would like to thank Konstantinos Psychas, Nikul H. Ukani, and Yiyin Zhou for
developing and integrating the visual system LPU models used to test the software. The authors
would also like to thank Juergen Berger for kindly permitting reuse of his fruit fly photograph
and thank Nacho Vizcaíno, Richard Benton, Bertram Gerber, and Matthieu Louis for permit-
ting reuse of the robot fly image they composed for the ESF-EMBO 2010 Conference on Func-
tional Neurobiology in Minibrains.

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 21 / 25

https://neurokernel.github.io/
https://github.com/neurokernel/neurokernel
https://lists.columbia.edu/mailman/listinfo/neurokernel-dev
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146581.s001

Author Contributions
Conceived and designed the experiments: LEG AAL. Performed the experiments: LEG. Ana-
lyzed the data: LEG AAL. Contributed reagents/materials/analysis tools: AAL. Wrote the
paper: LEG AAL. Initiated project: AAL.

References
1. Kandel ER, Markram H, Matthews PM, Yuste R, Koch C. Neuroscience thinks big (and collaboratively).

Nature Reviews Neuroscience. 2013 Sep; 14(9):659–664. doi: 10.1038/nrn3578 PMID: 23958663

2. Sanes JR, Zipursky SL. Design Principles of Insect and Vertebrate Visual Systems. Neuron. 2010 Apr;
66(1):15–36. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0896627310000449. doi: 10.
1016/j.neuron.2010.01.018 PMID: 20399726

3. Armstrong JD, van Hemert JI. Towards a virtual fly brain. Philosophical Transactions of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences. 2009 Jun; 367(1896):2387–2397. Available
from: http://rsta.royalsocietypublishing.org/content/367/1896/2387.abstract. doi: 10.1098/rsta.2008.
0308

4. Chiang AS, Lin CY, Chuang CC, Chang HM, Hsieh CH, Yeh CW, et al. Three-dimensional reconstruc-
tion of brain-wide wiring networks in Drosophila at single-cell resolution. Current Biology. 2011 Jan; 21
(1):1–11. Available from: http://www.cell.com/current-biology/abstract/S0960-9822(10)01522-8?
switch = standard. doi: 10.1016/j.cub.2010.11.056 PMID: 21129968

5. Duffy JB. GAL4 system in Drosophila: a fly geneticist’s Swiss Army knife. Genesis (New York, NY:
2000). 2002 Oct; 34(1–2):1–15. PMID: 12324939. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/12324939. doi: 10.1002/gene.10150

6. Rister J, Pauls D, Schnell B, Ting CY, Lee CH, Sinakevitch I, et al. Dissection of the Peripheral Motion
Channel in the Visual System of Drosophila melanogaster. Neuron. 2007 Oct; 56(1):155–170. Available
from: http://www.cell.com/neuron/abstract/S0896-6273(07)00712-X. doi: 10.1016/j.neuron.2007.09.
014 PMID: 17920022

7. Song Z, PostmaM, Billings SA, Coca D, Hardie RC, Juusola M. Stochastic, Adaptive Sampling of Infor-
mation by Microvilli in Fly Photoreceptors. Current Biology. 2012 Jun; 22(15):1371–1380. Available
from: http://www.cell.com/current-biology/abstract/S0960-9822(12)00634-3. doi: 10.1016/j.cub.2012.
05.047 PMID: 22704990

8. Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, et al. Multiple Spectral Inputs Improve Motion
Discrimination in the Drosophila Visual System. Science. 2012 May; 336(6083):925–931. PMID:
22605779. Available from: http://www.sciencemag.org/content/336/6083/925. doi: 10.1126/science.
1215317 PMID: 22605779

9. Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, et al. A directional tuning map of Dro-
sophila elementary motion detectors. Nature. 2013 Aug; 500(7461):212–216. Available from: http://
www.nature.com/nature/journal/v500/n7461/abs/nature12320.html. doi: 10.1038/nature12320 PMID:
23925246

10. Kim AJ, Lazar AA, Slutskiy YB. System identification of Drosophila olfactory sensory neurons. Journal
of Computational Neuroscience. 2011 Aug; 30(1):143–161. Available from: http://www.springerlink.
com/content/j046v670uj85v48v/. doi: 10.1007/s10827-010-0265-0 PMID: 20730480

11. Wilson RI. Understanding the functional consequences of synaptic specialization: insight from the Dro-
sophila antennal lobe. Current Opinion in Neurobiology. 2011 Apr; 21(2):254–260. Available from:
http://www.sciencedirect.com/science/article/pii/S0959438811000420. doi: 10.1016/j.conb.2011.03.
002 PMID: 21441021

12. Kim AJ, Lazar AA, Slutskiy YB. Projection neurons in Drosophila antennal lobes signal the acceleration
of odor concentrations. eLife. 2015 May;p. e06651. Available from: http://elifesciences.org/content/
early/2015/05/14/eLife.06651.

13. Budick SA, Dickinson MH. Free-flight responses of Drosophila melanogaster to attractive odors. Jour-
nal of Experimental Biology. 2006; 209(15):3001–3017. Available from: http://jeb.biologists.org/
content/209/15/3001.abstract. doi: 10.1242/jeb.02305 PMID: 16857884

14. Maimon G, Straw AD, Dickinson MH. A simple vision-based algorithm for decision making in flying Dro-
sophila. Current Biology. 2008 Mar; 18(6):464–470. Available from: http://www.sciencedirect.com/
science/article/B6VRT-4S21J46-2/2/5ef5f08d7f9b78d3777a5e731d088567. doi: 10.1016/j.cub.2008.
02.054 PMID: 18342508

15. Chiappe ME, Seelig JD, Reiser MB, Jayaraman V. Walking Modulates Speed Sensitivity in Drosophila
Motion Vision. Current Biology. 2010 Aug; 20(16):1470–1475. Available from: http://www.

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 22 / 25

http://dx.doi.org/10.1038/nrn3578
http://www.ncbi.nlm.nih.gov/pubmed/23958663
http://linkinghub.elsevier.com/retrieve/pii/S0896627310000449
http://dx.doi.org/10.1016/j.neuron.2010.01.018
http://dx.doi.org/10.1016/j.neuron.2010.01.018
http://www.ncbi.nlm.nih.gov/pubmed/20399726
http://rsta.royalsocietypublishing.org/content/367/1896/2387.abstract
http://dx.doi.org/10.1098/rsta.2008.0308
http://dx.doi.org/10.1098/rsta.2008.0308
http://www.cell.com/current-biology/abstract/S0960-9822(10)01522-8?switch�=�standard
http://www.cell.com/current-biology/abstract/S0960-9822(10)01522-8?switch�=�standard
http://dx.doi.org/10.1016/j.cub.2010.11.056
http://www.ncbi.nlm.nih.gov/pubmed/21129968
http://www.ncbi.nlm.nih.gov/pubmed/12324939
http://www.ncbi.nlm.nih.gov/pubmed/12324939
http://dx.doi.org/10.1002/gene.10150
http://www.cell.com/neuron/abstract/S0896-6273(07)00712-X
http://dx.doi.org/10.1016/j.neuron.2007.09.014
http://dx.doi.org/10.1016/j.neuron.2007.09.014
http://www.ncbi.nlm.nih.gov/pubmed/17920022
http://www.cell.com/current-biology/abstract/S0960-9822(12)00634-3
http://dx.doi.org/10.1016/j.cub.2012.05.047
http://dx.doi.org/10.1016/j.cub.2012.05.047
http://www.ncbi.nlm.nih.gov/pubmed/22704990
http://www.sciencemag.org/content/336/6083/925
http://dx.doi.org/10.1126/science.1215317
http://dx.doi.org/10.1126/science.1215317
http://www.ncbi.nlm.nih.gov/pubmed/22605779
http://www.nature.com/nature/journal/v500/n7461/abs/nature12320.html
http://www.nature.com/nature/journal/v500/n7461/abs/nature12320.html
http://dx.doi.org/10.1038/nature12320
http://www.ncbi.nlm.nih.gov/pubmed/23925246
http://www.springerlink.com/content/j046v670uj85v48v/
http://www.springerlink.com/content/j046v670uj85v48v/
http://dx.doi.org/10.1007/s10827-010-0265-0
http://www.ncbi.nlm.nih.gov/pubmed/20730480
http://www.sciencedirect.com/science/article/pii/S0959438811000420
http://dx.doi.org/10.1016/j.conb.2011.03.002
http://dx.doi.org/10.1016/j.conb.2011.03.002
http://www.ncbi.nlm.nih.gov/pubmed/21441021
http://elifesciences.org/content/early/2015/05/14/eLife.06651
http://elifesciences.org/content/early/2015/05/14/eLife.06651
http://jeb.biologists.org/content/209/15/3001.abstract
http://jeb.biologists.org/content/209/15/3001.abstract
http://dx.doi.org/10.1242/jeb.02305
http://www.ncbi.nlm.nih.gov/pubmed/16857884
http://www.sciencedirect.com/science/article/B6VRT-4S21J46-2/2/5ef5f08d7f9b78d3777a5e731d088567
http://www.sciencedirect.com/science/article/B6VRT-4S21J46-2/2/5ef5f08d7f9b78d3777a5e731d088567
http://dx.doi.org/10.1016/j.cub.2008.02.054
http://dx.doi.org/10.1016/j.cub.2008.02.054
http://www.ncbi.nlm.nih.gov/pubmed/18342508
http://www.sciencedirect.com/science/article/pii/S0960982210008614

sciencedirect.com/science/article/pii/S0960982210008614. doi: 10.1016/j.cub.2010.06.072 PMID:
20655222

16. Chklovskii DB, Vitaladevuni S, Scheffer LK. Semi-automated reconstruction of neural circuits using
electron microscopy. Current Opinion in Neurobiology. 2010 Oct; 20(5):667–675. Available from: http://
www.sciencedirect.com/science/article/pii/S0959438810001224. doi: 10.1016/j.conb.2010.08.002
PMID: 20833533

17. Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, et al. A visual motion detection cir-
cuit suggested by Drosophila connectomics. Nature. 2013 Aug; 500(7461):175–181. doi: 10.1038/
nature12450 PMID: 23925240

18. Frye MA, Dickinson MH. Closing the loop between neurobiology and flight behavior in Drosophila. Cur-
rent Opinion in Neurobiology. 2004 Dec; 14(6):729–736. Available from: http://www.sciencedirect.com/
science/article/B6VS3-4DPH182-6/2/17c22b45f3c0e9eafd8933dfcbefd7c5. doi: 10.1016/j.conb.2004.
10.004 PMID: 15582376

19. Morante J, Desplan C. The Color-Vision Circuit in the Medulla of Drosophila. Current Biology. 2008
Apr; 18(8):553–565. Available from: http://www.sciencedirect.com/science/article/B6VRT-4S80H99-1/
2/d29c3c349afe68de045a80c14f6149e1. doi: 10.1016/j.cub.2008.02.075 PMID: 18403201

20. Huston SJ, Jayaraman V. Studying sensorimotor integration in insects. Current Opinion in Neurobiol-
ogy. 2011 Aug; 21(4):527–534. Available from: http://www.sciencedirect.com/science/article/pii/
S0959438811000985. doi: 10.1016/j.conb.2011.05.030 PMID: 21705212

21. Mu L, Ito K, Bacon JP, Strausfeld NJ. Optic Glomeruli and Their Inputs in Drosophila Share an Organi-
zational Ground Pattern with the Antennal Lobes. The Journal of Neuroscience. 2012 May; 32
(18):6061–6071. PMID: 22553013. Available from: http://www.jneurosci.org/content/32/18/6061. doi:
10.1523/JNEUROSCI.0221-12.2012 PMID: 22553013

22. Seelig JD, Jayaraman V. Feature detection and orientation tuning in the Drosophila central complex.
Nature. 2013 Oct;advance online publication. doi: 10.1038/nature12601 PMID: 24107996

23. Bradner S. The Internet Standards Process—Revision 3. Internet RFCs, ISSN 2070-1721. 1996 Oct;
RFC 2026. Available from: http://www.rfc-editor.org/rfc/rfc2026.txt.

24. Warsaw B, Hylton J, Goodger D, Coghlan N. PEP Purpose and Guidelines. Python Enhancement Pro-
posals. 2000 Jun;PEP 1. Available from: http://www.python.org/dev/peps/pep-0001/.

25. Shih CT, Sporns O, Yuan SL, Su TS, Lin YJ, Chuang CC, et al. Connectomics-Based Analysis of Infor-
mation Flow in the Drosophila Brain. Current Biology. 2015; 0(0). Available from: http://www.cell.com/
article/S096098221500336X/abstract.

26. Peng H, Ruan Z, Long F, Simpson JH, Myers EW. V3D enables real-time 3D visualization and quantita-
tive analysis of large-scale biological image data sets. Nature Biotechnology. 2010 Apr; 28(4):348–353.
doi: 10.1038/nbt.1612 PMID: 20231818

27. Peng H, Tang J, Xiao H, Bria A, Zhou J, Butler V, et al. Virtual finger boosts three-dimensional imaging
and microsurgery as well as terabyte volume image visualization and analysis. Nature Communica-
tions. 2014; 5:4342. doi: 10.1038/ncomms5342 PMID: 25014658

28. Peng H, Bria A, Zhou Z, Iannello G, Long F. Extensible visualization and analysis for multidimensional
images using Vaa3D. Nature Protocols. 2014 Jan; 9(1):193–208. doi: 10.1038/nprot.2014.011 PMID:
24385149

29. Lazar AA. Programming telecommunication networks. IEEE Network. 1997 Oct; 11(5):8–18. doi: 10.
1109/65.620517

30. Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veidenbaum AV. A configurable simulation environ-
ment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural
Networks. 2009 Jul; 22(5–6):791–800. Available from: http://www.sciencedirect.com/science/article/
B6T08-4WNGW6V-4/2/1836146d5752dbc7a170f3aa19a436ca. doi: 10.1016/j.neunet.2009.06.028
PMID: 19615853

31. Mutch J, Knoblich U, Poggio T. CNS: a GPU-based framework for simulating cortically-organized net-
works. MIT; 2010. MIT-CSAIL-TR-2010-013. Available from: http://gpucomputing.net/?q = node/429.

32. Nowotny T. Flexible neuronal network simulation framework using code generation for NVidia1CUDA
(TM). BMC Neuroscience. 2011 Jul; 12(Suppl 1):P239. PMID: null PMCID: PMC3240344. Available
from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240344/. doi: 10.1186/1471-2202-12-S1-P239

33. Richert M, Nageswaran JM, Dutt N, Krichmar JL. An efficient simulation environment for modeling
large-scale cortical processing. Frontiers in Neuroinformatics. 2011; 5:19. doi: 10.3389/fninf.2011.
00019 PMID: 22007166

34. Brette R, Goodman DFM. Simulating spiking neural networks on GPU [review-article]; 2012. Available
from: http://informahealthcare.com/doi/abs/10.3109/0954898X.2012.730170.

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 23 / 25

http://www.sciencedirect.com/science/article/pii/S0960982210008614
http://dx.doi.org/10.1016/j.cub.2010.06.072
http://www.ncbi.nlm.nih.gov/pubmed/20655222
http://www.sciencedirect.com/science/article/pii/S0959438810001224
http://www.sciencedirect.com/science/article/pii/S0959438810001224
http://dx.doi.org/10.1016/j.conb.2010.08.002
http://www.ncbi.nlm.nih.gov/pubmed/20833533
http://dx.doi.org/10.1038/nature12450
http://dx.doi.org/10.1038/nature12450
http://www.ncbi.nlm.nih.gov/pubmed/23925240
http://www.sciencedirect.com/science/article/B6VS3-4DPH182-6/2/17c22b45f3c0e9eafd8933dfcbefd7c5
http://www.sciencedirect.com/science/article/B6VS3-4DPH182-6/2/17c22b45f3c0e9eafd8933dfcbefd7c5
http://dx.doi.org/10.1016/j.conb.2004.10.004
http://dx.doi.org/10.1016/j.conb.2004.10.004
http://www.ncbi.nlm.nih.gov/pubmed/15582376
http://www.sciencedirect.com/science/article/B6VRT-4S80H99-1/2/d29c3c349afe68de045a80c14f6149e1
http://www.sciencedirect.com/science/article/B6VRT-4S80H99-1/2/d29c3c349afe68de045a80c14f6149e1
http://dx.doi.org/10.1016/j.cub.2008.02.075
http://www.ncbi.nlm.nih.gov/pubmed/18403201
http://www.sciencedirect.com/science/article/pii/S0959438811000985
http://www.sciencedirect.com/science/article/pii/S0959438811000985
http://dx.doi.org/10.1016/j.conb.2011.05.030
http://www.ncbi.nlm.nih.gov/pubmed/21705212
http://www.jneurosci.org/content/32/18/6061
http://dx.doi.org/10.1523/JNEUROSCI.0221-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22553013
http://dx.doi.org/10.1038/nature12601
http://www.ncbi.nlm.nih.gov/pubmed/24107996
http://www.rfc-editor.org/rfc/rfc2026.txt
http://www.python.org/dev/peps/pep-0001/
http://www.cell.com/article/S096098221500336X/abstract
http://www.cell.com/article/S096098221500336X/abstract
http://dx.doi.org/10.1038/nbt.1612
http://www.ncbi.nlm.nih.gov/pubmed/20231818
http://dx.doi.org/10.1038/ncomms5342
http://www.ncbi.nlm.nih.gov/pubmed/25014658
http://dx.doi.org/10.1038/nprot.2014.011
http://www.ncbi.nlm.nih.gov/pubmed/24385149
http://dx.doi.org/10.1109/65.620517
http://dx.doi.org/10.1109/65.620517
http://www.sciencedirect.com/science/article/B6T08-4WNGW6V-4/2/1836146d5752dbc7a170f3aa19a436ca
http://www.sciencedirect.com/science/article/B6T08-4WNGW6V-4/2/1836146d5752dbc7a170f3aa19a436ca
http://dx.doi.org/10.1016/j.neunet.2009.06.028
http://www.ncbi.nlm.nih.gov/pubmed/19615853
http://gpucomputing.net/?q�=�node/429
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240344/
http://dx.doi.org/10.1186/1471-2202-12-S1-P239
http://dx.doi.org/10.3389/fninf.2011.00019
http://dx.doi.org/10.3389/fninf.2011.00019
http://www.ncbi.nlm.nih.gov/pubmed/22007166
http://informahealthcare.com/doi/abs/10.3109/0954898X.2012.730170

35. Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation. Parallel Computing. 2012 Mar; 38(3):157–174.
Available from: http://www.sciencedirect.com/science/article/pii/S0167819111001281. doi: 10.1016/j.
parco.2011.09.001

36. Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, et al. NeuroML: A Language for
Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail. PLoS
Comput Biol. 2010 Jun; 6(6):e1000815. doi: 10.1371/journal.pcbi.1000815 PMID: 20585541

37. Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, et al. OpenMPI: Goals, Concept,
and Design of a Next Generation MPI Implementation. In: Proceedings, 11th European PVM/MPI
Users’Group Meeting. Budapest, Hungary; 2004. p. 97–104. Available from: http://dx.doi.org/10.1007/
978-3-540-30218-6_19.

38. NVIDIA. CUDA Toolkit 4.0 Readiness for CUDA Applications. NVIDIA; 2011. Available from: http://
developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_4.0_Readiness_Tech_
Brief.pdf.

39. NVIDIA. Kepler GK110Whitepaper. NVIDIA; 2012. Available from: http://www.nvidia.com/content/
PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

40. Lazar AA, Ukani NH, Zhou Y. The Cartridge: A Canonical Neural Circuit Abstraction of the Lamina Neu-
ropil—Construction and Composition Rules; 2014. NK RFC #2. Available from: http://dx.doi.org/10.
5281/zenodo.11856.

41. Lazar AA, Psychas K, Ukani NH, Zhou Y. A Parallel Processing Model of the Drosophila Retina; 2015.
NK RFC #3. Available from: http://dx.doi.org/10.5281/zenodo.30036.

42. Kirschfeld K. Die projektion der optischen umwelt auf das raster der rhabdomere im komplex auge von
musca. Experimental Brain Research. 1967; 3:248–270. doi: 10.1007/BF00235588 PMID: 6067693

43. Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM
Journal on Scientific Computing. 1998; 20(1):359–392. doi: 10.1137/S1064827595287997

44. Thibeault C, Hoang R, Harris F Jr. A Novel Multi-GPU Neural Simulator. In: Proceedings of 3rd Interna-
tional Conference on Bioinformatics and Computational Biology 2011. New Orleans, LA; 2011. Avail-
able from: http://www.cse.unr.edu/*fredh/papers/conf/107-anmgpuns/paper.pdf.

45. Nere A, Franey S, Hashmi A, Lipasti M. Simulating cortical networks on heterogeneous multi-GPU sys-
tems. Journal of Parallel and Distributed Computing. 2012;Article in press. Available from: http://www.
sciencedirect.com/science/article/pii/S0743731512000408.

46. Minkovich K, Thibeault C, O’Brien M, Nogin A, Cho Y, Srinivasa N. HRLSim: A High Performance Spik-
ing Neural Network Simulator for GPGPUClusters. IEEE Transactions on Neural Networks and Learn-
ing Systems. 2014; 25(2):316–331. doi: 10.1109/TNNLS.2013.2276056 PMID: 24807031

47. Szigeti B, Gleeson P, Vella M, Khayrulin S, Palyanov A, Hokanson J, et al. OpenWorm: an open-sci-
ence approach to modelling Caenorhabditis elegans. Frontiers in Computational Neuroscience. 2014;
8:137. doi: 10.3389/fncom.2014.00137 PMID: 25404913

48. White JG, Southgate E, Thomson JN, Brenner S. The Structure of the Nervous System of the Nema-
tode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London B, Biological
Sciences. 1986 Nov; 314(1165):1–340. PMID: 22462104. Available from: http://rstb.
royalsocietypublishing.org/content/314/1165/1. doi: 10.1098/rstb.1986.0056 PMID: 22462104

49. Palyanov A, Khayrulin S, Mike V. Sibernetic fluid mechanics simulator [Internet]; 2015. Available from:
http://openworm.github.io/sibernetic/.

50. Goodman DFM, Brette R. The Brian Simulator. Frontiers in Neuroscience. 2009 Sep;Available from:
http://frontiersin.org/neuroscience/paper/10.3389/neuro.01/026.2009/.

51. Carnevale NT, Hines ML. The NEURON Book. Cambridge; New York: Cambridge University Press;
2006. Available from: http://dx.doi.org/10.1017/CBO9780511541612.

52. Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, et al. PyNN: a common interface
for neuronal network simulators. Frontiers in Neuroinformatics. 2009; 2:11. doi: 10.3389/neuro.11.011.
2008 PMID: 19194529

53. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, et al. A Large-Scale Model of the Func-
tioning Brain. Science. 2012 Nov; 338(6111):1202–1205. Available from: http://www.sciencemag.org/
content/338/6111/1202. doi: 10.1126/science.1225266 PMID: 23197532

54. Gleeson P, Steuber V, Silver RA. neuroConstruct: A Tool for Modeling Networks of Neurons in 3D
Space. Neuron. 2007 Apr; 54(2):219–235. Available from: http://www.sciencedirect.com/science/
article/pii/S0896627307002486. doi: 10.1016/j.neuron.2007.03.025 PMID: 17442244

55. Bernardet U, Verschure PFMJ. iqr: A Tool for the Construction of Multi-level Simulations of Brain and
Behaviour. Neuroinformatics. 2010 Jun; 8(2):113–134. doi: 10.1007/s12021-010-9069-7 PMID:
20502987

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 24 / 25

http://www.sciencedirect.com/science/article/pii/S0167819111001281
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1371/journal.pcbi.1000815
http://www.ncbi.nlm.nih.gov/pubmed/20585541
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_4.0_Readiness_Tech_Brief.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_4.0_Readiness_Tech_Brief.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_4.0_Readiness_Tech_Brief.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://dx.doi.org/10.5281/zenodo.11856
http://dx.doi.org/10.5281/zenodo.11856
http://dx.doi.org/10.5281/zenodo.30036
http://dx.doi.org/10.1007/BF00235588
http://www.ncbi.nlm.nih.gov/pubmed/6067693
http://dx.doi.org/10.1137/S1064827595287997
http://www.cse.unr.edu/∼fredh/papers/conf/107-anmgpuns/paper.pdf
http://www.sciencedirect.com/science/article/pii/S0743731512000408
http://www.sciencedirect.com/science/article/pii/S0743731512000408
http://dx.doi.org/10.1109/TNNLS.2013.2276056
http://www.ncbi.nlm.nih.gov/pubmed/24807031
http://dx.doi.org/10.3389/fncom.2014.00137
http://www.ncbi.nlm.nih.gov/pubmed/25404913
http://rstb.royalsocietypublishing.org/content/314/1165/1
http://rstb.royalsocietypublishing.org/content/314/1165/1
http://dx.doi.org/10.1098/rstb.1986.0056
http://www.ncbi.nlm.nih.gov/pubmed/22462104
http://openworm.github.io/sibernetic/
http://frontiersin.org/neuroscience/paper/10.3389/neuro.01/026.2009/
http://dx.doi.org/10.1017/CBO9780511541612
http://dx.doi.org/10.3389/neuro.11.011.2008
http://dx.doi.org/10.3389/neuro.11.011.2008
http://www.ncbi.nlm.nih.gov/pubmed/19194529
http://www.sciencemag.org/content/338/6111/1202
http://www.sciencemag.org/content/338/6111/1202
http://dx.doi.org/10.1126/science.1225266
http://www.ncbi.nlm.nih.gov/pubmed/23197532
http://www.sciencedirect.com/science/article/pii/S0896627307002486
http://www.sciencedirect.com/science/article/pii/S0896627307002486
http://dx.doi.org/10.1016/j.neuron.2007.03.025
http://www.ncbi.nlm.nih.gov/pubmed/17442244
http://dx.doi.org/10.1007/s12021-010-9069-7
http://www.ncbi.nlm.nih.gov/pubmed/20502987

56. Djurfeldt M. The Connection-Set Algebra—A Novel Formalism for the Representation of Connectivity
Structure in Neuronal Network Models. Neuroinformatics. 2012 Jul; 10(3):287–304. doi: 10.1007/
s12021-012-9146-1 PMID: 22437992

57. Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM. ModelDB: A Database to Support
Computational Neuroscience. Journal of Computational Neuroscience. 2004 Aug; 17(1):7–11. PMID:
15218350. doi: 10.1023/B:JCNS.0000023869.22017.2e PMID: 15218350

58. Gleeson P, Piasini E, Crook S, Cannon R, Steuber V, Jaeger D, et al. The Open Source Brain Initiative:
enabling collaborative modelling in computational neuroscience. BMCNeuroscience. 2012 Jul; 13
(Suppl 1):O7. Available from: http://www.biomedcentral.com/1471-2202/13/S1/O7/.

59. Shreejoy T, Richard G, Judy S, Nathaniel U. NeuroElectro.org: a community database on the
electrophysiological diversity of mammalian neuron types. Frontiers in Neuroinformatics. 2013; 7. doi:
10.3389/conf.fninf.2013.09.00070

60. Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, et al. Run-Time Interoperability
Between Neuronal Network Simulators Based on the MUSIC Framework. Neuroinformatics. 2010 Mar;
8(1):43–60. PMID: 20195795 PMCID: 2846392. doi: 10.1007/s12021-010-9064-z PMID: 20195795

61. Pecevski D, Natschläger T, Schuch K. PCSIM: a parallel simulation environment for neural circuits fully
integrated with Python. Frontiers in Neuroinformatics. 2009; 3:11. doi: 10.3389/neuro.11.011.2009
PMID: 19543450

62. Silver R, Boahen K, Grillner S, Kopell N, Olsen KL. Neurotech for Neuroscience: Unifying Concepts,
Organizing Principles, and Emerging Tools. The Journal of Neuroscience. 2007 Oct; 27(44):11807–
11819. Available from: http://www.jneurosci.org/content/27/44/11807.abstract. doi: 10.1523/
JNEUROSCI.3575-07.2007 PMID: 17978017

63. Stewart TC, Tripp B, Eliasmith C. Python scripting in the Nengo simulator. Frontiers in Neuroinfor-
matics. 2009; 3:7. doi: 10.3389/neuro.11.007.2009 PMID: 19352442

64. Rast AD, Jin X, Galluppi F, Plana LA, Patterson C, Furber S. Scalable event-driven native parallel pro-
cessing: the SpiNNaker neuromimetic system. In: Proceedings of the 7th ACM international conference
on Computing frontiers. CF’10. New York, NY, USA: ACM; 2010. p. 21–30. ACM ID: 1787279. Avail-
able from: http://dx.doi.org/10.1145/1787275.1787279.

65. Preissl R, Wong TM, Datta P, Flickner M, Singh R, Esser SK, et al. Compass: a scalable simulator for
an architecture for cognitive computing. In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. SC’12. Los Alamitos, CA, USA: IEEE Computer
Society Press; 2012. p. 54:1–54:11. Available from: http://dl.acm.org/citation.cfm?id = 2388996.
2389070.

66. Lazar AA, Slutskiy YB. Functional Identification of Spike-Processing Neural Circuits. Neural Computa-
tion. 2014 February; 26(2). doi: 10.1162/NECO_a_00543 PMID: 24206386

67. Lazar AA, Slutskiy YB. Channel Identification Machines for Multidimensional Receptive Fields. Fron-
tiers in Computational Neuroscience. 2014; 8. doi: 10.3389/fncom.2014.00117

68. Lazar AA, Zhou Y. Volterra Dendritic Stimulus Processors and Biophysical Spike Generators with
Intrinsic Noise Sources. Frontiers in Computational Neuroscience. 2014; 8. doi: 10.3389/fncom.2014.
00095

69. Lazar AA, Slutskiy YB. Spiking Neural Circuits with Dendritic Stimulus Processors. Journal of Computa-
tional Neuroscience. 2015; 38(1):1–24. doi: 10.1007/s10827-014-0522-8 PMID: 25175020

70. Lazar AA, Slutskiy YB, Zhou Y. Massively Parallel Neural Circuits for Stereoscopic Color Vision:
Encoding, Decoding and Identification. Neural Networks. 2015; 63:254–271. doi: 10.1016/j.neunet.
2014.10.014 PMID: 25594573

71. Fidjeland A, Shanahan M. Accelerated simulation of spiking neural networks using GPUs. In: Neural
Networks (IJCNN), The 2010 International Joint Conference on; 2010. p. 1–8. Available from: http://dx.
doi.org/10.1109/IJCNN.2010.5596678.

72. Givon LE, Lazar AA, Ukani NH. Neuroarch: A Graph-Based Platform for Constructing and Querying
Models of the Fruit Fly Brain Architecture. Frontiers in Neuroinformatics. 2014 Aug;(42:). Available
from: http://dx.doi.org/10.3389/conf.fninf.2014.18.00042.

Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain

PLOS ONE | DOI:10.1371/journal.pone.0146581 January 11, 2016 25 / 25

http://dx.doi.org/10.1007/s12021-012-9146-1
http://dx.doi.org/10.1007/s12021-012-9146-1
http://www.ncbi.nlm.nih.gov/pubmed/22437992
http://dx.doi.org/10.1023/B:JCNS.0000023869.22017.2e
http://www.ncbi.nlm.nih.gov/pubmed/15218350
http://www.biomedcentral.com/1471-2202/13/S1/O7/
http://dx.doi.org/10.3389/conf.fninf.2013.09.00070
http://dx.doi.org/10.1007/s12021-010-9064-z
http://www.ncbi.nlm.nih.gov/pubmed/20195795
http://dx.doi.org/10.3389/neuro.11.011.2009
http://www.ncbi.nlm.nih.gov/pubmed/19543450
http://www.jneurosci.org/content/27/44/11807.abstract
http://dx.doi.org/10.1523/JNEUROSCI.3575-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.3575-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17978017
http://dx.doi.org/10.3389/neuro.11.007.2009
http://www.ncbi.nlm.nih.gov/pubmed/19352442
http://dx.doi.org/10.1145/1787275.1787279
http://dl.acm.org/citation.cfm?id = 2388996.2389070
http://dl.acm.org/citation.cfm?id = 2388996.2389070
http://dx.doi.org/10.1162/NECO_a_00543
http://www.ncbi.nlm.nih.gov/pubmed/24206386
http://dx.doi.org/10.3389/fncom.2014.00117
http://dx.doi.org/10.3389/fncom.2014.00095
http://dx.doi.org/10.3389/fncom.2014.00095
http://dx.doi.org/10.1007/s10827-014-0522-8
http://www.ncbi.nlm.nih.gov/pubmed/25175020
http://dx.doi.org/10.1016/j.neunet.2014.10.014
http://dx.doi.org/10.1016/j.neunet.2014.10.014
http://www.ncbi.nlm.nih.gov/pubmed/25594573
http://dx.doi.org/10.1109/IJCNN.2010.5596678
http://dx.doi.org/10.1109/IJCNN.2010.5596678
http://dx.doi.org/10.3389/conf.fninf.2014.18.00042

