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Abstract
Because the auditory system is particularly useful in monitoring the environment, previous

research has examined whether task-irrelevant, auditory distracters are processed even if

subjects focus their attention on visual stimuli. This research suggests that attentionally

demanding visual tasks decrease the auditory mismatch negativity (MMN) to simulta-

neously presented auditory distractors. Because a recent behavioral study found that high

visual perceptual load decreased detection sensitivity of simultaneous tones, we used a

similar task (n = 28) to determine if high visual perceptual load would reduce the auditory

MMN. Results suggested that perceptual load did not decrease the MMN. At face value,

these nonsignificant findings may suggest that effects of perceptual load on the MMN are

smaller than those of other demanding visual tasks. If so, effect sizes should differ system-

atically between the present and previous studies. We conducted a selective meta-analysis

of published studies in which the MMN was derived from the EEG, the visual task demands

were continuous and varied between high and low within the same task, and the task-irrele-

vant tones were presented in a typical oddball paradigm simultaneously with the visual sti-

muli. Because the meta-analysis suggested that the present (null) findings did not differ

systematically from previous findings, the available evidence was combined. Results of this

meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distrac-

ters. However, because the meta-analysis was based on small studies and because of the

risk for publication biases, future studies should be preregistered with large samples (n >

150) to provide confirmatory evidence for the results of the present meta-analysis. These

future studies should also use control conditions that reduce confounding effects of neural

adaptation, and use load manipulations that are defined independently from their effects on

the MMN.
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Introduction
The ability to focus on task-relevant events is critical for goal-directed behavior. However, this
focus on task-relevant events increases the risk of missing events that may not be task-relevant
but are still important. For example, while somebody is in a grocery store looking for apples,
the person will respond to the ringing of his or her own mobile phone [1] and also to that of
somebody else’s, despite the fact that responding is not relevant for purchasing apples. While
responding to task-irrelevant environmental cues may not be useful in the context of ones’
goals, it is often unknown whether and when important information may be presented. There-
fore, it seems beneficial to have a general system that continuously monitors the environment.
Hearing seems particularly useful for this task, because unlike vision, is not restricted to a loca-
tion in space.

To study this monitoring system in auditory perception, previous research has presented
series of tones to examine whether the brain detects deviations in these tone series [2]. Most
studies have employed oddballs: One tone is presented repeatedly (the standard) and is
replaced occasionally (e.g., on 20% of trials) by another tone (the deviant). This deviation
results in an auditory mismatch negativity (MMN) in the event-related potential (ERP). That
is, in the difference ERP (computed as the ERP to deviants minus the ERP to standards), the
auditory MMN represents a frontal-central negativity between 100 and 250 ms after tone
onset. Two mechanisms for the MMN have been proposed: sensory memory and neural adap-
tation [3]. In the traditional view as sensory memory (or similar models such as regularity vio-
lation and predictive coding) (for review, see [3]), the MMN reflects the detection of the
mismatch between the auditory sensory memory and the incoming deviant [2, 4, 5]. In terms
of neural adaptation, the MMN reflects a less attenuated N1-response to the (infrequent) devi-
ant than the (frequent) standard [6].

The degree to which the MMN is independent of attention has been debated for several
decades [7, 8]. In most previous studies, subjects showed an auditory MMN even when they
read a book or watched a silent movie [9–20]. In fact, current guidelines recommend recording
the auditory MMN while subjects perform an interesting visual task (e.g., watch a silent movie)
and are told to ignore task-irrelevant auditory stimuli [4]. However, because subjects may not
strongly direct their attention on these tasks, the findings cannot be taken as strong evidence
that the processing of task-irrelevant tones is independent of attention. Further, because in
many studies, the visual stimuli for the main tasks and the tones were presented asynchro-
nously [9–21], subjects may have shifted their attention between the visual stimuli of the main
task and the tones.

In contrast, when subjects performed visual tasks that required them to attend closely to the
visual stimuli, the auditory MMN to simultaneously presented task-irrelevant, auditory odd-
balls decreased (i.e., the MMN amplitude became less negative) in most studies [22–26],
although one study reported no effect [27] and another study reported an increase of the
MMN [28]. In all of these studies, participants performed demanding visual tasks that required
continuous vigilance. Simultaneously, an oddball task was presented in which the task-irrele-
vant tones were either a standard tone (on most trials) or a deviant tone. Also, high and low
visual demands were tested as different levels of the same task. Further, the trials were pre-
sented simultaneously with the visual stimuli to maximize competition between the task-rele-
vant visual stimuli and the task-irrelevant tones. Thus, these studies had a stronger
manipulation of attention than other tasks that permitted subjects to simply alternate their
attention between the visual task and the tones [22]. Results for most studies suggest that when
the demands of the visual task increased, the amplitude of the auditory MMN decreased [22–
26]. These findings suggest that the processes that elicit the MMN require attentional
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resources. That is, processes of standard formation and/or deviance detection [3, 5, 29, 30] or
neural adaptation [3, 6] are impaired by demanding visual tasks.

Despite the apparent decrease of the MMN by visual task demands, an MMN remains even
under high visual demands [22–26]. For example, in a rapid serial visual presentation (RSVP)
task, participants had to monitor rapid sequences (at 11.1 Hz) of letters for the occasional
numeral [22]. During low visual demands, target numerals were shown at 100% contrast and
distracter letters at 5% contrast (for 90 ms each). During high visual demands, all stimuli were
shown at 5% contrast (for 20 ms each). The task-irrelevant tones (standard and deviant) were
presented every fourth visual stimulus. Data were analyzed only for tones that preceded the
first target numeral, while participants attended the letter stream. Results showed that during
the visual task with high demands, the MMN decreased but was not eliminated. This attests to
the robustness of the auditory MMN despite increases in visual task demands.

However, it may be that even stronger manipulations of visual attention might further
reduce, if not eliminate the MMN. An extensive line of research has shown that perceptual
load decreases processing of distracters [31]. According to load theory [32, 33], attentional
resources are limited, and targets and distracters compete for attentional resources. If a main
task consumes all of the available attentional resources (i.e., high perceptual load), then atten-
tion is not drawn to distracters and they are processed less.

In support of strong effects of perceptual load, high perceptual load decreased sensitivity (as
indexed by d0) in detecting concurrent tones [34]. Participants performed a letter identification
task (X or N) within a ring of six letters. During low perceptual load, the target letter was
shown together with smaller Os, whereas during high perceptual load, the target letter was
shown together with other letters (randomly drawn from the set of H, K, M, V, W, and Z).
Simultaneous with the onset of the letter ring, a short tone was presented on some trials. Partic-
ipants were instructed both to detect the tone and to identify the letter. In three experiments
(conducted to rule out potential confounds), the sensitivity to detect tones decreased during
high load. The authors concluded that these findings suggest that high perceptual load pro-
duces inattentional deafness.

Because previous behavioral research suggests that perceptual load decreases distracter pro-
cessing [34], the current study used a similar task to study effects of perceptual load on the
auditory MMN. As in the original study, participants performed a letter detection task with dif-
ferent levels of visual perceptual load while irrelevant tones were presented simultaneously
with the onset of the letter ring. Although we tried to follow the design of the original study as
much as possible, several modifications were implemented in order to optimize the task for
MMN analysis. First, a tone (either standard or deviant) was presented on each trial. Second,
the inter-trial interval (ITI) was reduced to 1 s (from 4.9 s) to increase the number of tone trials
and thus, the signal-to-noise ratio for obtaining an MMN. Third, because of the short ITI (1 s),
a simpler letter detection task (X) rather than the letter identification task (X or N) was used to
ensure reaction times below 1 s (as revealed by pilot testing). Perceptual load was manipulated
such that during low load, six identical letters were shown, and during high load, six different
letters were shown. Fourth, tone intensity was increased to match intensities used in previous
MMN studies in order to maximize sensitivity in obtaining an MMN and to permit compari-
son of the present MMN results with those in previous studies [22–28]. Fifth, participants were
instructed to ignore the tones (rather than to detect the tones as in the original study). Taken
together, our task was not identical to that of Raveh and Lavie but was adapted to optimize it
for the measurement of the auditory MMN and to make its parameters comparable (i.e., tone
on every trial, rather high tone intensity, and instructions to ignore the tones) to those used in
previous MMN studies that manipulated visual task demands [22–28].
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In sum, the present study examined the effects of visual perceptual load on the auditory
MMN to task-irrelevant tones. Because perceptual load tasks decrease detection sensitivity to
concurrent tones [34], we predicted that high perceptual load will reduce—if not eliminate—
the auditory MMN. Although previous studies [22–26] suggested that demanding visual tasks
decrease the MMN, we predicted that effects of perceptual load on the auditory MMNmay be
stronger than those of other manipulations.

Materials and Methods

Participants
Participants (N = 28; mean age = 25.0, SD = 3.3; 9 women) were students from local universities
in Stockholm, Sweden. The study was approved by the Stockholm section of the Central Ethical
Review Board in Sweden and was conducted in accordance with the guidelines in the Helsinki
Declaration. All participants gave written informed consent, were debriefed after the experi-
ment, and were compensated with one movie voucher.

Materials and Procedure
Participants performed a speeded letter detection task (detect X) and were instructed to push
the space bar whenever an X was shown (20% of trials) (see Fig 1). On each 1-s trial, a 6-letter

Fig 1. Illustration of the letter detection task during low load (top) and high load (bottom). Subjects had
to respond when the letter ring included an X (target). Task-irrelevant complex tones (standard and deviants)
were presented simultaneously with the onset of the letter rings. Stn = standard, Dev = deviant.

doi:10.1371/journal.pone.0146567.g001
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ring was shown for 100 ms. The 6 letters were shown at positions 2, 4, 6, 8, 10, and 12 o’ clock.
A small dot was shown at the center of the letter ring throughout the experiment. Participants
were instructed to keep their gaze on this dot while covertly attending to the 6 letters in the
ring. The size of each letter was 0.53 x 0.53 degrees (visual angle), the distance between the cen-
ters of the letters was 0.98 degrees, and the diameter of the ring (for the centers of the letters)
was 3.38 degrees. During low load, the 6 letters were identical, whereas during high load, the 6
letters were different. On each trial, letters were drawn randomly without replacement from
the set of H, K, M, N, V, W, and Z. On 20% of the trials (response trials), the letter X was
shown (six Xs during low load and one X together with 5 other letters during high load). For
each set of five consecutive trials, a response trial occurred only during one of the first three tri-
als (randomly determined). Thus, there were at least 2 nonresponse trials before the next
response trial.

Participants performed 10 blocks of 250 trials each (i.e., 200 nonresponse trials and 50
response trials) with short breaks in between blocks. Between consecutive blocks, low and high
load alternated. Each participant started with either low or high load (counterbalanced across
participants). In total, participants performed 1000 nonresponse trials and 250 response trials
for each load.

While participants performed the letter detection task, tones were presented simultaneously
with the onset of the letter rings. Tones were presented with over-ear headphones (Sennheiser
HD 280 Pro). Participants were instructed to ignore the tones. The standard tone (75 ms) and
the deviant tone (30 ms) were complex tones with f0 = 500 Hz (higher harmonics at 1000 Hz
and 1500 Hz with a drop of 3 dB/harmonic) at 76 dB SPL and with a 5 ms fade in and a 5 ms
fade out. Over trials, 20% of tones were deviants during both response trials and nonresponse
trials. The number of standard trials in between successive deviants ranged from 2 to 6
(mean = 4 trials). For the 1250 trials in each load, 800 trials were standards and 200 were devi-
ants during nonresponse trials, and 200 were standards and 50 were deviants during response
trials. The experiment was programmed in Presentation 14.8 (Neurobehavioral Systems,
Albany, CA).

Before the first block, participants practiced the relevant task (low or high load) until they
felt that instructions were clear and they were ready to start the main task. At the beginning of
each block, between 5 to 8 nonresponse trials with standard tones were presented but were not
analyzed.

Electroencephalography
EEG recording. EEG data were recorded only from six electrodes at standard 10/20 posi-

tions (Fpz, Fz, Cz, M1, M2, and tip of nose) with an Active Two BioSemi system (BioSemi,
Amsterdam, Netherlands). Fpz, Fz, and Cz were recorded with pin electrodes in a 64-electrode
EEG cap; and M1, M2, and the tip of the nose were recorded with flat electrodes attached with
adhesive disks. Two additional, system-specific electrodes were recorded with pin electrodes in
the EEG cap. The CMS (between PO3 and POz) served as the internal reference electrode, and
DRL (between POz and PO4) as the ground electrode. Data were sampled at 512 Hz and fil-
tered with a hardware low-pass filter at 104 Hz. No high-pass filter was used. All physiological
data was processed offline using the FieldTrip toolbox in MATLAB [35]. Continuous data were
re-referenced to the tip of the nose.

ERP analysis. To minimize movement artifacts, ERPs were computed only for correct
rejections (i.e., nonresponse trials without any button presses) (e.g., [36, 37]). Also, standard
tones were excluded if they followed immediately after a deviant [38, 39]. Epochs were
extracted from 100 ms before tone onset to 800 ms after. Each epoch was baseline corrected

Load and MMN

PLOSONE | DOI:10.1371/journal.pone.0146567 January 7, 2016 5 / 27



with the 100-ms interval before tone onset. For each participant, amplitude ranges within indi-
vidual epochs were extracted, and the distribution of these amplitude ranges across epochs was
inspected to exclude apparent outliers. This inspection was blind to the condition (i.e., tone
deviance by load) of individual trials. To identify the MMN, a difference wave was computed
as the ERP to deviants minus the ERP to standards; in this analysis, low and high load were col-
lapsed. On the basis of visual inspection (see Results for more information), the MMN was
defined between 160 and 220 ms after tone onset. For this interval, mean amplitudes were
extracted for Fz and Cz for each condition. Before artifact rejection, at least 637 trials with stan-
dard tones and 190 trials with deviant tones were available for each load condition. After arti-
fact rejection, at least 539 trials (i.e., more than 82.5%) with standard tones and 173 trials (i.e.,
more than 86.5%) with deviant tones were available. For completeness, we also analyzed the
data on all trials (i.e., before artifact rejection, there were 1000 standard trials and 250 deviant
trials for each load condition). Importantly, the results for the MMNmatched those reported
below. For example, for the mean MMN amplitudes (i.e., deviant minus standard) at Fz (with
nose as reference) between 160 and 220 ms, the mean difference (low load minus high load)
was 0.12 μV, 95% CI [-0.64, 0.89]. These findings suggest that our concern about movement
artifacts was unnecessary. Nonetheless, we report results from our (a priori) data processing
strategy.

Data Analysis
In the behavioral analysis, responses faster than 200 ms were excluded. Because the task had a
rapid pace (ITI of 1 s), we were concerned that responses faster than 200 ms may be late
responses to the previous trial. A 200-ms interval rather than a shorter interval was chosen to
ensure that all potentially late responses were excluded. If these late responses were included,
then these responses would have artificially decreased performance, as a late response to a tar-
get trial would count as a false alarm (on the subsequent trial) as well as a miss (on the current
trial). However, when we counted the number of such fast false alarms across all conditions for
each subject, the maximum number was 7 (mean = 2.2 trials). Because the maximum number
of potential false alarms was 1000, this number seems negligible. Although additional analyses
showed that it did not matter for the results whether we included or excluded the fast
responses, we report results after excluding responses below 200 ms. Hit rates and false alarm
rates were computed for each condition (i.e., tone deviance by load). Signal detection analyses
were performed to compute d0 and c [40]. To avoid floor and ceiling effects on hit and false
alarm rates, we added 0.5 trial in the numerator and 1 trial in the denominator [41].

Statistical analyses of our data followed recent guidelines [42, 43]. These guidelines advocate
against null hypothesis significance testing in favor of estimation. In estimation, the data are
used to obtain a point estimate (e.g., observed mean) and an interval estimate (i.e., 95% CI) of
the best estimate of the true (population) effect size. Accordingly, the size of the 95% CI pro-
vides information about the precision of the estimation [42, 43]. Notably, the 95% CI must not
be interpreted as the 95% probability that the obtained CI captures the actual effect size [44]. In
practice, the 95% CI should be viewed as our best estimate of the true effect size, given the pres-
ent data [43]. This estimate may then be evaluated in relation to previous findings by integrat-
ing all studies in a meta-analysis [42]. Strictly speaking however, this interpretation of CI in
terms of precision and likelihood is formally incorrect [45]. But, when t tests are used to evalu-
ate mean differences (as used here), the formally correct likelihood interval (size 1/8) is identi-
cal to a 96% CI [46]. For simplicity and to follow current guidelines, we report the 95% CIs but
discuss them in terms of likelihood intervals (i.e., the range of values that fit best in predicting
the data).
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Results
Table 1 shows means (and SDs) for behavioral performance and mean amplitudes for the four
conditions formed by combining the independent variables tone deviance (standard vs. devi-
ant) and perceptual load (low vs. high). Table 2 shows the results of the repeated-measures
ANOVAs for the main effects (i.e., deviance and load) and their interaction. The table also
shows each effect size expressed as a mean difference (Mdiff) together with the two-tailed 95%
CIs [47]. The interaction between load and tone deviance was captured by the difference score
between difference scores [48]. That is, within each load, a difference score was computed as
responses to deviants minus responses to standards. Then, another difference score was com-
puted as the difference score for low load minus the difference score for high load.

Behavior
As shown in Table 1 and confirmed by the repeated-measures ANOVAs (Table 2), compared
to high load, low load showed better letter detection performance (i.e., larger d0 and shorter
RTs to hits). Also, compared to standard tones, deviant tones lowered performance slightly
(i.e., lower d0). Participants were generally more conservative (i.e., c was more positive) during
high load than low load.

Event-related potentials (MMN)
Fig 2 shows mean ERP waves for the relevant electrodes, separately for the four conditions (i.e.,
Deviance x Load). In the comparison of deviants versus standards at around 200 ms after tone
onset, the ERPs are relatively negative for deviants versus standards at Fz and Cz (top row) and
relatively positive at the mastoids (bottom row). This relative negativity at Fz and Cz with a
polarity reversal at the mastoids is a central feature of the MMN (for review, see [4]). To isolate
the MMN for each load condition, the difference waves were computed as deviants minus stan-
dards at each level of load.

Fig 3 shows the ERP difference waves (deviants minus standards, referenced to the tip of the
nose, with 95% CI) at Fz (top), Cz (middle), and mastoids (bottom) for low and high load
(left), the subsequent difference waves between load conditions (middle), and a scatterplot of
mean amplitudes (160–220 ms) for low and high load across individuals (right). As shown in
the left panel, the MMN was apparent around 200 ms in the negative wave for Fz and Cz (top
and middle) and in the positive wave for the mastoids (bottom). In the present analyses, the
MMN was defined in terms of the first peak (160 to 220 ms).

Table 1. Means (and SDs) for behavioral performance andmean amplitudes for the four conditions (deviance by load).

Variable Low loadstandard Low load deviant High loadstandard High loaddeviant

M SD M SD M SD M SD

d0 4.89 0.49 4.70 0.40 3.41 0.87 3.32 0.86

c 0.25 0.20 0.28 0.22 0.87 0.39 0.74 0.42

RT hits (ms) 447.80 37.79 443.06 36.28 558.62 60.75 552.67 67.23

Mean amps (μV)

Fz (nose) 1.89 2.25 -0.04 2.36 0.62 2.14 -1.27 2.22

Cz (nose) 1.74 2.36 0.17 2.43 -0.11 2.02 -1.34 2.20

Mastoids (nose) -1.55 1.88 -0.49 1.99 -1.99 1.47 -1.07 1.29

Fz (mastoids) 3.44 2.71 0.45 2.21 2.62 2.71 -0.21 2.38

Cz (mastoids) 3.29 2.76 0.66 2.29 1.88 2.55 -0.28 2.21

doi:10.1371/journal.pone.0146567.t001
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Note that Fz and Cz also tended to show a second negative peak at around 240 ms (see Fig
3). Because the mastoids did not show such a second peak, this second peak is probably an N2b
[49]. The N2b peaks about 250–300 ms after tone onset is often observed when participants
attend overtly to the stimuli, but it can also be observed for covert attention [50]. Thus, the
observation that visual task performance was lower when deviants were presented (see Tables 1
and 2) is consistent with the idea that the deviants captured covert attention. Critically, only
the first peak showed a polarity reversal over the mastoids; this is typically considered to be an
indicator for the genuine MMN [49]. Further note that no P3a was apparent; that is, there was

Table 2. Results of repeated-measures ANOVAswith the independent variables Deviance (deviant minus standard), Load (low loadminus high
load), and their interaction on behavioral performance andmean amplitudes.

Variable F p Mdiff 95% CI

Lower Upper

d0

Deviance 8.23 .008 -0.14 -0.24 -0.04

Load 107.66 < .001 1.44 1.15 1.72

Dev x Load 0.96 .335 -0.10 -0.29 0.10

c

Deviance 3.61 .068 -0.05 -0.11 0.01

Load 48.33 < .001 -0.53 -0.69 -0.38

Dev x Load 4.54 .042 0.16 0.01 0.31

RT hits (ms)

Deviance 6.78 .015 -5.34 -9.55 -1.13

Load 213.38 < .001 -110.22 -125.70 -94.74

Dev x Load 0.07 .788 1.22 -8.00 10.43

Fz (nose)

Deviance 57.39 < .001 -1.91 -2.43 -1.39

Load 19.38 < .001 1.25 0.67 1.83

Dev x Load < 0.01 .952 -0.03 -0.91 0.85

Cz (nose)

Deviance 24.33 < .001 -1.40 -1.98 -0.82

Load 36.99 < .001 1.68 1.12 2.25

Dev x Load 0.69 .412 -0.33 -1.16 0.49

Mastoids (nose)

Deviance 35.81 < .001 1.00 0.65 1.34

Load 4.40 .045 0.51 0.01 1.01

Dev x Load 0.18 .676 0.14 -0.55 0.84

Fz (mastoids)

Deviance 126.63 < .001 -2.91 -3.44 -2.38

Load 10.48 .003 0.74 0.27 1.21

Dev x Load 0.51 .481 -0.17 -0.66 0.32

Cz (mastoids)

Deviance 71.29 < .001 -2.40 -2.98 -1.81

Load 25.84 < .001 1.17 0.70 1.65

Dev x Load 4.47 .044 -0.48 -0.94 -0.01

For all ANOVAs, F(1, 27). Deviance refers to the main effect of deviant minus standard, Load refers to the main effect of low load minus high load, and

Dev x Load refers to their interaction (i.e., [deviant–standard for low load]–[deviant–standard for high load]). Mdiff is the mean difference score of the

comparison. It expresses the comparison in its original units (μV) and thus, is an unstandardized effect size measure of the comparison of interest.

doi:10.1371/journal.pone.0146567.t002
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no relative positivity for deviants versus standards at either Fz or Cz about 250 ms after tone
onset (e.g., Zhang et al., 2006).

As shown in the left panel and also in the middle panel (i.e., the difference wave between the
two load conditions), the MMN was comparable for the two load conditions. That is, the ERP
difference wave between high and low load was centered on zero (middle panel), and individual
mean MMN amplitudes for low and high load were distributed symmetrically around the cen-
tral diagonal (right panel).

Fig 4 shows mean amplitudes (referenced to the tip of the nose, with 95% CI) between 160–
220 ms after tone onset for the four conditions (tone deviance by load) at Fz (left) and Cz
(right). As shown in the bottom row, although there was clear evidence for an overall MMN
(i.e., deviant minus standard was negative), there was no evidence for an interaction between

Fig 2. Grandmean (N = 28) ERP waves (referenced to tip of nose) after tone onset for the relevant electrodes, separately for the four conditions
(Deviance x Load). For visualization purposes only, the ERPs were low-pass filtered (30 Hz, 6 dB roll-off, Butterworth). The interval between 160 and 220
ms after tone onset was used to capture the mismatch negativity.

doi:10.1371/journal.pone.0146567.g002
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load and deviance, suggesting that the MMN was comparable during low and high load. As
shown in Tables 1 and 2, mean amplitudes for Fz and Cz and the mastoids (when referenced to
the tip of the nose) provided no evidence for an interaction between tone deviance and load.
For completeness, we also analyzed effects on Fz and Cz when referenced to the mastoids [23,
24]. Because of the polarity reversal of the MMN over the mastoids or ears, the mastoids or
ears may be used as a reference to maximize sensitivity (for review, see [4]). Although no inter-
action was observed for Fz, results provided some evidence for an interaction at Cz. That is, the
MMN was relatively more negative during low load (-2.64 μV) than during high load
(-2.16 μV), and this difference (-0.48 μV) had a 95% CI of -0.94 and -0.01 (this CI did not
include zero, and the effect was thus, significant at p< .05).

Fig 3. Grandmean (N = 28) ERP difference waves (deviant minus standard, referenced to tip of nose) after tone onset at Fz (top), Cz (middle), and
mastoids (bottom) for low and high perceptual load (left), the subsequent difference of low loadminus high load (middle), and a scatterplot of
individual mean MMN amplitudes (i.e., deviant minus standard) for low and high load (right). For visualization purposes only, the ERPs were low-pass
filtered (30 Hz, 6 dB roll-off, Butterworth).

doi:10.1371/journal.pone.0146567.g003
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Discussion
The present study used a perceptual load task with visual stimuli that substantially decreased
behavioral detection sensitivity to simultaneous, task-irrelevant tones [34]. Therefore, we pre-
dicted that this perceptual load would reduce the auditory MMN to simultaneous, task-irrele-
vant tones. Results showed that although high perceptual load decreased task performance
(lower d0 and longer RTs to hits), a robust MMN was observed during both low and high per-
ceptual load with no convincing evidence for differences between low and high load.

The present study found an MMN at Fz and Cz (with a polarity reversal at the mastoids)
during both low and high perceptual load. However, there was no clear evidence that percep-
tual load decreased the MMN. These results were obtained when the MMN was measured with
the tip of the nose as a reference, as recommended [4]. We also measured the MMN at Fz and
Cz referenced to the mastoids to maximize the size of the MMN (for review, see [4]). When

Fig 4. Mean amplitudes (referenced to tip of nose) for the four conditions (Deviance x Load) across 160–220ms after tone onset at Fz (left) and Cz
(right). The top row shows condition means (95% CI for each variable), and the bottom row shows mean difference scores (95% CI for the differences)
between conditions for effects of load (low minus high), tone deviance (deviant minus standard), and the interaction (i.e., [deviant–standard at low load]–
[deviant–standard at high load]).

doi:10.1371/journal.pone.0146567.g004
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referenced to the mastoids, the MMN at Cz (but not at Fz) showed a significant effect of load
(p< .05) in that the 95% CI did not include zero (-0.94 to -0.01 μV). However, if visual
demands actually changed the MMN by as little as -0.01 μV, then this effect would seem to be
as meaningful as no change. Because these findings are tentative at best and were not obtained
at the main electrode (i.e., Fz), these findings do not provide convincing evidence that the
MMN decreases during high perceptual load.

Whereas perceptual load did not seem to affect the MMN, it had large effects on behavioral
performance. High perceptual load decreased detection sensitivity (by about 1.5 SD) and
increased reaction times to hits (by about 110 ms). Notably, Table 1 suggests that across loads,
detection performance decreased slightly when the concurrent tone was a deviant rather than a
standard. This observation matches results for an MMN at both levels of load in that the tones
were apparently processed irrespective of load.

One possible argument for the apparent absence of effects of perceptual load on the MMN
is that the present level of high perceptual load was not high enough to observe effects on the
MMN. Indeed, it is possible that a stronger manipulation of perceptual load might result in
clearer effects of perceptual load on the MMN. Unfortunately, a general criticism of load theory
[32, 33] is that there is no independent criterion for a high level of perceptual load [51]. As
such, the reasoning for effects of load risks becoming circular: If there is an effect of load, then
the level of load was high enough. If there is no effect of load, then it was not high enough [52].
In this study, we used a task that clearly decreased sensitivity (as indexed by d0) in detecting
concurrent tones [34], and participants in our study were instructed to ignore the tones. Thus,
it seemed reasonable to expect similar (or at least any) effects of perceptual load on the MMN.
Also, although we used louder tones than Raveh and Lavie, the present tone intensity was com-
parable to that used in previous studies on effects of demanding visual tasks on the MMN [22–
28]. Thus, the present findings for perceptual load can be readily compared with findings
obtained with other manipulations in this previous MMN research.

Another possible argument for the present findings may be that our main electrodes were
positioned only at midline (Fz, Cz) and were thus, insensitive to potential laterality effects.
However, laterality effects seem to be most apparent for changes in speech stimuli (phoneme
changes) [2] and for laterally presented stimuli [53]. Because we used bilateral tones that dif-
fered only in duration, laterality effects seem unlikely. In support, similar studies in this field
included lateral electrodes but apparently found effects only at midline electrodes [22, 24–28].
So, we chose only Fz and Cz and the mastoids because the MMN is captured well by these elec-
trodes (for review, see [4]). Also, because of limited resources, we decided to use fewer elec-
trodes but run more subjects (our study included 28 subjects whereas previous studies had a
mean of 13 subjects, range = 10 to 20).

In terms of null-hypothesis significance testing, the present findings represent so-called null
findings in the main analyses (because p> .05). However, our study design was appropriate,
the study was carefully conducted, and our results showed clear evidence for an overall MMN.
Therefore, the present results are valid findings. As such, these results should increase our
understanding of the effects of visual demands on the MMN by prompting two questions.
First, do the present findings show that the effect of perceptual load on the MMN is smaller
than that of other, similar visual task demands? According to null-hypothesis significance test-
ing, it may be argued that our study did not find significant effects whereas most previous
research apparently did [22–26]. Thus, we should examine why our study apparently did not
find any effect. For example, is it possible that we did not observe an effect because we used
duration deviance rather than frequency deviance [22–26]? Although this reasoning has a long
tradition in Psychology, it is problematic because even exact replications of studies that sample
from the same population can be expected to vary because of sampling error [43]. If so, the
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present findings may not be surprising or noteworthy because they might simply reflect chance
variability between studies. Simply put, because of chance, the observed effect sizes in different
studies will be bigger or smaller than the true effect size. Thus, it may well be that our study
just happened to sample at the lower end of this range. As described below, a heterogeneity
analysis within a meta-analysis can address quantitatively if the variability in effect sizes
between studies is likely due to chance (i.e., all studies sample from a single effect size popula-
tion) or if there is reason to believe that there is systematic variability (heterogeneity) between
studies (i.e., different effect size populations are sampled). Notably, we originally proposed that
the auditory MMN would be reduced more by perceptual load than by other visual task
demands. A meta-analysis would also be useful to address this question. Specifically, the meta-
analysis should show evidence for systematic variability (heterogeneity) between studies with a
stronger decrease of the MMN from perceptual load than other visual tasks. However, the pres-
ent null findings seem to suggest that if anything, perceptual load had either a weaker or similar
effect on the MMN compared to other tasks. The heterogeneity analysis within the meta-analy-
sis will be helpful in distinguishing between these two possibilities.

Second, do the present null findings challenge the idea of effects of visual task demands on
the MMN? Because Psychology as a discipline has traditionally published only significant find-
ings, this publication bias produces effect sizes that are overestimated [54–56]. Accordingly,
does the combined evidence across the present findings and previous studies with other visual
demanding tasks support the conclusion that the MMN decreases during increased visual task
demands?

In sum, a meta-analysis would be useful to quantitatively determine whether or not the
present findings differ systematically from previous results, and whether or not the evidence
for an effect is changed when present and previous findings are combined [43, 57, 58]. To
address these questions, we performed a meta-analysis of the present results together with pre-
vious studies that used a similar set-up [22–28].

Meta-analysis
We conducted a meta-analysis (with the ESCI software in [43]) of the effects of visual task
demands on the MMN in the EEG. Inspired by an estimation approach [42, 43], we
attempted to quantitatively integrate our findings with those of previous studies with meta-
analytic tools. Meta-analysis is often viewed as a comprehensive quantitative integration of
numerous studies on a rather wide topic. However, meta-analytic tools are already useful to
combine results of at least two studies [43]. Thus, our selective meta-analysis should not be
seen as an attempt to review all available evidence on effects on the MMN, but instead an
attempt to quantitatively integrate only previous, published studies that closely resembled
the present study design. Thus, this meta-analysis was highly selective in that published stud-
ies were included only if they used EEG, the visual task demands were continuous and varied
between high and low load within the same task, and the task-irrelevant tones were typical
standards and deviants (i.e., oddballs) that were presented simultaneously with the visual sti-
muli. Accordingly, studies were excluded for the following reasons (but are mentioned only
once even if they fulfilled several criteria). Studies with other measures such as steady-state
evoked potentials, MEG, or fMRI [59–62], studies in which visual and auditory stimuli were
presented asynchronously [9–21, 63, 64], studies in which subjects had to read (see also [22])
or perform a working memory task [15, 18, 64–66], studies in which different tasks rather
than task levels were compared [17, 67–69], studies with patterned auditory sequences rather
than typical oddballs [70], and studies of clinical populations [69, 71] or altered states of con-
sciousness [72, 73].
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Because results for electrode Fz were reported in all articles, this meta-analysis focused on
mean amplitudes at Fz, consistent with current guidelines [4]. The MMN amplitude at Fz was
recorded between about 100 to 250 ms after stimulus onset and with a reference on the mastoid
or ear [23, 24], tip of the nose [22, 26–28], or the chin [25]. Thus, this meta-analysis quantifies
the published evidence for effects of visual task demands on the auditory MMN in studies that
closely resembled the present study design.

The first meta-analysis combined five studies [22–26]. Although two more studies fit our
selection criteria [27, 28], they were excluded in this first meta-analysis because the predictions
were unclear, as described further below. Table 3 shows the main statistics that were used for
the meta-analysis, and Fig 5 shows a forest plot. In regards to the first five studies, one study
[23] reported only the inferential statistics of the overall ANOVA with three conditions (i.e.,
for baseline, low load, and high load; with F = 4.6 and p< .05) and did not report inferential
statistics for the specific comparison between low and high load. Although the study reported
means and standard deviations (see Table 4 in [23]), the standard deviations refer to the

Table 3. Statistics for amplitudes at Fz used in the meta-analysis.

Study N Low load (μV) High load (μV) Mean Diff (low-high) SD Diff t 95% CI

LL UL

Kramer et al. (1995) 10 -1.05 0.19 -1.24 1.73a -2.26a -2.48a -0.01a

Singhal et al.(2002) 20 -2.80 -2.40 -0.40 0.81 -2.20 -0.78 -0.02

Haroush et al. (2010) 13 -2.20 -1.87 -0.33 0.61 -1.96 -0.70 0.04

Yucel et al. (2005, JoCN) 13 -2.67 -1.06 -1.61 2.69 -2.16 -3.23 0.01

Yucel et al. (2005 NR) 13 -2.75 -2.14 -0.61 1.13 -1.94 -1.30 0.07

Muller-Gass et al. (2007)a 9 - - 0.00 1.51 0.00 -1.16 1.16

Zhang et al. (2006) 11 -1.18 -2.10 0.92 0.79a 3.84a 0.39a 1.45a

Present study 28 -1.93 -1.90 -0.03 2.27 -0.06 -0.91 0.85

aValues were estimated.

doi:10.1371/journal.pone.0146567.t003

Fig 5. Meta-analysis of how visual task demands changed the MMN (forest plot on left and funnel plot on right). The analysis focused on the mean
amplitudes at Fz (between about 100 and 250 ms after stimulus onset) and was expressed in μV (with 95% CI). The overall negative effect shows that the
MMN (i.e., deviant minus standard) was more negative during low than high visual demands (i.e., MMN during low demands minus MMN during high
demands). See main text for references to the individual studies. In the forest plot (left), the size of each square corresponds to the weight in the meta-
analysis.

doi:10.1371/journal.pone.0146567.g005
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variability within each condition and not to the variability of the difference scores between con-
ditions. However, this variability of difference scores between conditions is critical in order to
conduct inferential tests in repeated-measures designs [43, 74, 75]. In an attempt to estimate
these data, we generated random data that matched the reported descriptives for the three con-
ditions (see Table 4 in [23]). This approach worked well to match results for another study
[28], as described below. In contrast, for 20,000 randomly generated data sets that matched the
descriptives for the three conditions in the study [23], the minimum F value was 9.5 and the
maximum p value was .003 (after Greenhouse-Geisser correction). Because we could not simu-
late matching data, we simply assumed that the specific contrast between low and high load
was significant at p = .05.

In the meta-analysis with five studies [22–26] (see Fig 5), a random effects analysis (k = 5,
N = 69) showed that the MMN amplitude (i.e., deviant minus standard) was larger (i.e., more
negative) during low than high visual demands. That is, for the comparison of MMN during
low load minus MMN during high load, the mean amplitude difference = -0.50 μV, 95% CI
[-0.79, -0.22]. Notably, there was no evidence for heterogeneity among the effect sizes, Q(4) =
5.34, p = .25. The proportion of total variance that reflects variation in true effect size was esti-
mated to be 25% (I2 = 25.06%). Therefore, evidence from previous studies suggests that visual
task demands decrease the auditory MMN.

Next, we included our results in the meta-analysis (Fig 5). Overall results of a random effects
analysis (k = 6, N = 97) confirmed that the MMN was more negative during low than high
visual demands, mean difference = -0.46 μV, [-0.72, -0.20]. There was still no evidence for het-
erogeneity among the effect sizes, Q(5) = 6.28, p = .28. The proportion of total variance that
reflects variation in true effect size was estimated to be 20% (I2 = 20.42%). Thus, the present
findings fit in well with those of previous research [22–26].

In the meta-analyses above, we excluded two studies with visual tracking tasks that involved
moving circles [27, 28]. In these studies, several moving circles were shown and subjects had to
track a subset of these circles while remembering which circles to track. This task differs from
that of the other studies [22–26]. In these previous studies, subjects monitored a radar screen
to detect and identify aircrafts during either low or high target density [23], landed an aircraft
while ignoring tones during either low or high turbulence levels [24], used a joystick to center a
moving cursor that changed in velocity (low demand) or acceleration (high demand) [25, 26],
or monitored a rapid visual stream of letters for two numerals with the stimuli at either low
demands (high contrast, long duration) or high demands (low contrast, short duration) [22].
In contrast to these tasks, the visual tracking task with moving circles required subjects to
remember which circles to track and to track several circles at the same time during high visual
demands.

In one study [28], participants had to track continuously one, three, or five moving circles
(out of ten) while irrelevant tones were presented. In contrast to previous research, findings
suggested that high task demands increased (rather than decreased) the MMN. That is, the
mean MMN amplitudes at Fz were -1.18 μV while tracking one circle, -1.43 μV while tracking
three circles, and -2.10 μV while tracking five circles. Thus, the MMN amplitudes increased
(i.e., became more negative) with the number of tracked circles. The authors reasoned that in
contrast to previous studies, their visual tracking task loaded visual spatial working memory
and that this increase in the MMN fits with predictions for cognitive load rather than percep-
tual load. Specifically, whereas perceptual load should decrease distracter processing, cognitive
load should increase distracter processing [33]. However, recent evidence suggests that visual
spatial working memory has the same effects as perceptual load [76–79]. Accordingly, load the-
ory would seem to predict that the visual tracking task (similar to perceptual load) should
decrease the MMN rather than increase the MMN, opposite to the actual findings with the

Load and MMN

PLOSONE | DOI:10.1371/journal.pone.0146567 January 7, 2016 15 / 27



visual tracking task. Because predictions for the visual tracking task are mixed, we excluded
this study in the above meta-analyses. Similarly, the other study [27] was excluded in the above
meta-analyses because it used a similar visual tracking task. Participants tracked either one (of
two) moving circles or two (of four) moving circles.

For completeness, however, these two studies were added in the next meta-analysis [27,
28]. Because one study [27] did not report enough data to compute the relevant statistics,
the mean effect of load on the MMN was estimated as zero and the SD of the difference
scores was estimated as 1.51 (i.e., the pooled SD of the difference scores for the five pub-
lished studies in the first meta-analysis). For the other study [28], the effect of load was
defined in terms of the difference between tracking one versus five circles. Thus, the mean
difference of the MMN was 0.92. However, as for another study discussed above [23], the
authors reported inferential statistics only for the overall ANOVA with three conditions
(i.e., tracking 1, 3, or 5 circles, F = 5.02, p < .03 after Greenhouse-Geisser correction) and
not the specific comparison between one and five circles. To estimate inferential statistics of
this specific comparison, we simulated data for the three conditions with matching descrip-
tives (see Table 4 in [28]). From 20,000 simulations, we selected the data set that had the
closest match with an overall F value of 5.02 and p = 0.029 after Greenhouse-Geisser correc-
tion. Then, results of a paired t test between the conditions with one and five circles were
used in the meta-analysis (see Table 3). The estimated SD of the difference scores was 0.79.
After including these additional studies [27, 28], results of a random effects analysis sug-
gested heterogeneity among the effect sizes (k = 8, N = 117), Q(7) = 32.85, p < .001. The
proportion of total variance that reflects variation in true effect size was estimated to be
79% (I2 = 78.69%). Importantly, it appeared that only the study that found an increase in
MMN contributed to this heterogeneity [28]. When this study was excluded (k = 7,
N = 106), the heterogeneity was small, Q(6) = 6.98, p = .32, I2 = 14.05%. For these remaining
seven studies, the MMN was more negative during low than high visual demands, mean dif-
ference = -0.43 μV, [-0.67, -0.18]. These findings confirm the usefulness of the meta-analy-
sis because it provides quantitative evidence that a different population effect was sampled
in one study [28] than in the remaining studies.

General Discussion
The present study found a MMN at Fz and Cz (with a polarity reversal at the mastoids) during
both low and high load, but the MMN did not differ between low and high load. We performed
a meta-analysis to assess how the present results fit in with the overall evidence for an effect of
demanding visual tasks on the MMN. This meta-analysis did not provide any evidence that the
effect of perceptual load on the MMN in the present study differed systematically from that
observed in previous tasks [22–26]. Such systematic variability would have been expected if the
present perceptual load task was less (or more) effective than other tasks in decreasing the
MMN. Accordingly, the present findings do not suggest that perceptual load differed systemat-
ically from (i.e., was less effective than) other demanding visual tasks in its effect on the MMN.
Further, this lack of variability among effect sizes suggests that the choice of reference electrode
may be irrelevant, as well as the choice of using a duration deviant (in the present study) rather
than a frequency deviant (as in previous studies).

The meta-analysis further allowed us to assess the combined evidence for effects of visual
task demands on the MMN. As shown in Fig 5, the meta-analysis of all available evidence
(k = 6, N = 97) suggested that demanding visual tasks decrease the MMN. So, the combined
evidence that includes our findings supports the idea that demanding visual tasks decrease the
auditory MMN to simultaneous distracters. Therefore, visual task demands disrupt the process
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of sensory memory by either impairing standard formation and/or deviance detection [5, 30,
80], or the process of neural adaptation [6].

However, the present meta-analysis may overestimate the true effect size. Because of publi-
cation bias, studies have traditionally been published in Psychology only if they reported signif-
icant findings [54–56]. Because significant findings tend to have larger effect sizes than non-
significant findings [81–83], the present meta-analysis may overestimate the true effect.
Although tentative, the funnel plot in Fig 5 suggests that there may be a publication bias
because the funnel lacks studies in the lower right corner of the funnel. This corner would
show studies that typically would not be statistically significant because they have smaller (or
even positive) effect sizes and larger sampling error. This observation could not be tested for-
mally because recommendations for common tests of funnel asymmetry require at least 10
studies [84]. However, to reduce the possible effects of publication bias, one approach is to
reduce the asymmetry by excluding studies that contribute most to the asymmetry [85]. When
the two studies on the lower left-hand side of the funnel plot were excluded [23, 25], there
remained an overall effect on the MMN. Before excluding these two studies (k = 6, N = 97),
mean difference = -0.46 μV, [-0.72, -0.20], and after excluding these two studies (k = 4, N = 74),
mean difference = -0.37 μV, [-0.59, -0.15]. Indeed, this limited influence of these two studies is
already apparent in the forest plot of the meta-analysis (Fig 5), as the small size of the dots
shows that their relative contribution to the overall effect is small. Thus, even if publication
biases are considered by excluding two studies, the remaining evidence suggests that demand-
ing visual tasks decrease the MMN to simultaneous auditory distracters. However, the credibil-
ity of this conclusion is discussed further below under limitations.

In the meta-analysis, we excluded two studies with a visual tracking task [27, 28] because
the predictions were not entirely clear. The authors in one study [28] reasoned that because
their visual tracking task loaded visual spatial working memory, this cognitive load should
increase distracter processing [33]. However, in recent modifications of load theory, visual spa-
tial working memory is argued to have similar effects as perceptual load [76–79]. Accordingly,
load theory would seem to predict that the visual tracking task should decrease MMN rather
than increase MMN, which is the opposite of the actual findings from the visual tracking task.
Importantly, when we included the results of the visual tracking tasks [27, 28], there was evi-
dence for heterogeneity among effect sizes (79% of total variance reflects variation in true effect
size). However, this heterogeneity was mainly due to one study [28]. When this study was
excluded, heterogeneity among effect sizes was small (<14%). These findings suggest two pos-
sibilities: First, visual tracking tasks may actually differ in their effects from that of other visual
demands. Second, it is not visual tracking tasks per se but something specific in this study [28]
that resulted in a different effect. Unfortunately, the (null) findings of the other study [27] are
consistent with both possibilities. Similarly, another visual tracking study [70] did not find an
effect of task load (i.e., tracking 1 of 2 compared to 3 of 6 circles) on the MMN. This study did
not use the typical oddball task but used a regular pattern of tones as the standard and the vio-
lation of this pattern of tones as the deviant. Furthermore, close inspection of load theory [32,
33] suggests that theoretically, there is no clear reason why cognitive load in the present task
design should increase attention to tones. According to load theory, attention is required to
focus on the task-relevant stimuli in the context of task-irrelevant distracters. Cognitive load
(in terms of working memory) reduces this attentional focus and thus, increases distraction
[86]. This question has been most commonly tested with dual tasks in that a primary task that
requires focused attention (e.g., Stroop) is combined with a secondary task that increases cogni-
tive load (e.g., working memory) [87]. Because the task design in the visual tracking tasks does
not fit this typical task design (e.g., [88]), it is unclear why visual tracking tasks should increase
the MMN. Nonetheless, because the heterogeneity of effect sizes in the meta-analysis (which
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includes study [28]) provides some evidence that visual tracking tasks may increase the MMN,
future studies are needed to determine whether or not the effects of visual tracking tasks on the
MMNmatch those of other visual task demands.

The main limitation of the present study is that we conducted the meta-analysis only after
conducting this study. Prior to designing this study, we approached the literature from a null
hypothesis significance perspective, which suggested clear effects of visual task demands on the
auditory MMN, as well as clear behavioral effects of perceptual load. We were therefore sur-
prised when our results did not suggest any effects of perceptual load on the MMN, despite the
fact that our sample size was at least twice as the average sample size in previous studies. How-
ever, in hindsight, our null findings are not entirely surprising if the results of our meta-analy-
sis are used to estimate the power of our study. To estimate power, we assumed that the true
effect size was captured in the meta-analysis of the five previous studies [22–26]. The mean dif-
ference was -0.50 μV (k = 5, N = 69). Because t(68) = -3.51, the corresponding effect size in
terms of Cohen’s dz was -0.42 (see equation 7 in [75]). With this effect size, a two-tailed alpha
of .05, and a sample size of 28, power = .57 (estimated with G�Power, [89]). To obtain a power
of .90, at least 62 subjects would have been required. Because of limited power, the present null
findings do not provide convincing evidence for or against an effect of perceptual load on the
MMN. From an estimation perspective [43], the limits of the 95% CI for the present results
(between -0.91 and 0.85 μV) are quite wide and thus, provide only an imprecise estimate of the
true effect size.

Critically, this apparent limitation in knowledge gain was apparent only after conducting
the meta-analysis and was not obvious from the traditional narrative review. Because a narra-
tive review has these limitations, a meta-analysis provides an excellent tool to integrate previ-
ous findings quantitatively [43]. As Gene V. Glass, a pioneer of meta-analysis in Psychology,
wrote: “the proper integration of research requires the same statistical methods that are applied
in primary data analysis” (p. 6, [90]). Indeed, it is surprising that researchers (like us) are
extremely diligent to use statistical methods when analyzing their own data (i.e., primary data
analysis) but use a narrative review when summarizing the previous literature. Because of the
advantages of meta-analytic tools, several journals (e.g., Lancet) now require that researchers
put their study in context by combining previous studies meta-analytically and providing a
pooled estimate of the effect size [91, 92]. Although this places substantial demands on
researchers, it provides a context in which to quantitatively evaluate the knowledge gained
from the new study.

The results of the present meta-analysis are highly informative for future research in this
area. If the true effect size is assumed to be captured by the present results together with previ-
ous studies that showed homogenous effect sizes [22–27], the mean difference was -0.43 μV
(k = 7, N = 106). Because t(105) = -3.46, the corresponding effect size in terms of Cohen’s dz
was -0.34 (see equation 7 in [75]). With this effect size, a two-tailed alpha of .05, and a desired
power of .90 [89], at least 93 subjects would be required.

Whereas power is used in significance testing, precision is used in estimation [42, 43]. Preci-
sion may be more informative than power because it can be used to estimate the expected size
of the confidence intervals in meaningful units. Given t(105) = -3.46 and a mean difference of
-0.43 μV, the SD of the difference scores was 1.28 (p. 200 in [93]). Using the Precision one page
in ESCI [43], we determined that if 1.28 is assumed as the population SD and n = 93, then the
expected average size of the margin of error would be 0.31 μV with 99% assurance. This means
that in 99% of all replications, the 95% CI would extend no more than 0.31 μV above and
below the observed mean effect.

The meta-analysis suggests that to obtain sufficient power, any future study probably needs
to include at least 93 subjects. This study would need to run as many subjects as were run in all
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seven studies that were included in the meta-analysis (k = 7, n = 106) [22–27]. Unfortunately,
there are three reasons to suggest an even larger sample size than n = 100. One reason is that
the above precision analysis suggests that with 99% assurance (i.e., in 99% of replications), a
reasonable estimate for the margin of error will be +/- 0.31 μV. Notably, the present meta-anal-
ysis (k = 7, n = 106) obtained a margin of error of 0.24 μV. Thus, the 95% CI is consistent with
a true effect size of -0.18 μV (i.e., -0.43 +0.24). If this is the true effect size, then the 95% CI in a
future study with n = 100 might well cross zero (i.e., -0.18 + 0.31 = +0.13). Therefore, a preci-
sion of 0.10 μV seems more desirable, but improving precision to 0.10 μV with 99% assurance
would require more than 700 subjects. Such a task seems too demanding for an individual
research lab, but may be tackled in a collaborative project [58].

Another reason to recommend a very large sample size is that in general, a meta-analysis of
many small, published studies tends to overestimate the true effect size (for review, see [83]). In
previous studies, sample sizes varied between 9 and 28 [22–27]. If the results of the meta-analy-
sis (k = 7, N = 106) with Cohen’s dz = -0.34 are assumed as the true effect size, then power for
these studies ranged from .15 to .41. As reviewed in several recent papers [81–83], low power
has several undesirable consequences. One of these consequences is that if significance is
obtained in a low-powered study, then the true effect size is overestimated. This phenomenon
is called the winner’s curse (for review, see [83]). The reason is that if a study has low power,
then an observed effect needs to be much larger than the true effect to yield significance. Thus,
in a meta-analysis of only small published studies, the individual studies may have inflated
effect sizes, and this will inflate the estimated effect when these studies are combined in the
meta-analysis. In contrast, large studies should be less biased when it comes to overestimating
the true effect size [82, 83]. Simulations suggest that at a power of .30, effect size inflation may
be 20% of the actual effect size (for review, see [83]). To adjust for any bias from inflated effect
sizes, we conducted a power analysis in which we simply reduced the observed effect size (dz)
by 20% from -0.34 to -0.27. For this effect size, 150 subjects would be required to obtain a
power of .90 at two-tailed α = .05. In terms of precision, the estimated precision (at 99% assur-
ance) would be 0.23 μV, similar to the observed precision in the present meta-analysis.

A third reason to recommend a large sample size is that small changes in data analytic strat-
egies affect results more strongly in small than large studies. This is referred to as vibration of
effects [55]. If researchers tend to select the most favorable results in their analyses, then the
combined results from many small studies will suggest a stronger effect than the result from a
single large study. Such vibration of effects is a potential problem in EEG research because elec-
trodes and intervals are often not selected a priori but only after looking at the data. Because
details of the data analyses are partly determined by the actual data, this circularity inflates
effect sizes and has been referred to as double dipping [94], nonindependence error [95, 96], or
baloney [97]. To eliminate this error, guidelines recommend selecting electrodes and intervals
only on the basis of previous research [98]. In practice however, researchers often define elec-
trodes and intervals from their own data as well as the previous literature. One reasonable
explanation may be that because the physical parameters differ slightly between studies, the
effects on the EEG might also differ slightly between studies. Nonetheless, this procedure is cir-
cular. Therefore, future studies would provide strong evidence if data processing and selection
of electrodes and intervals are defined a priori and preregistered [99].

Taken together, the present meta-analyses suggest that future studies need to include a large
sample size to improve knowledge gain. One approach would be to conduct this research col-
laboratively [58]. If this is not feasible, all individual studies should be published and made
available for meta-analysis. However, as discussed recently [83], some areas in neuroscience
may have conducted many small studies in the same field that, when taken together, used more
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subjects than would have seemed necessary to address the research question. This raises ethical
considerations as to efficient use of resources.

The present research has at least five other limitations. First, although the meta-analysis
supports the conclusion that demanding visual tasks decrease the MMN, the mechanism for
this decrease is unresolved. The MMN has been proposed to reflect either sensory memory or
neural adaptation (for review, see [3]). Because the traditional oddball task (as used in all stud-
ies in the meta-analysis) potentially confounds both processes, amany standards task (or more
formally called equiprobable sequence) reduces effects of neural adaptation on the MMN [3,
100, 101]. The many standards task is run separately from an oddball task. As in the oddball
task with a single deviant and single standard, the control stimulus is the same stimulus as the
deviant and is presented with the same probability as in the oddball task. To illustrate with an
example [102], in the oddball task, 500 Hz was the deviant (10%) and 550 Hz was the standard;
and in the many standards task, 500 Hz was the control (10%). Thus, the deviant in the oddball
task and the control in the many standards task were presented with equal probability. Differ-
ent from the oddball task, however, the standard is replaced by several other stimuli so that
across all stimuli (including the control), the probability for each stimulus is the same. Because
all stimuli in the many standards task are shown with the same probability, there should be no
sensory memory effect (in contrast to the oddball task). In the example study, the control (500
Hz) was presented together with nine other stimuli (between 550 and 1179 Hz) so that each
stimulus had a probability of 10%. Furthermore, on average, these stimuli should physically
differ more strongly from the control (in the many standards task) than the standard differs
from the deviant (in the oddball task). In the example, the other nine stimuli (between 550 and
1179 Hz) differed more (on average) from the control than the standard (550 Hz). The reason
is that if neural adaptation to these stimuli also leads to neural adaptation to the control
(because the stimuli somewhat resemble the control), then this neural adaptation effect should
be smaller in the many standards task than in the oddball task, as the physical difference
between control and the other stimuli is larger than that between deviant and standard. There-
fore, neural adaptation cannot account for the finding that the response is larger to the deviant
than to the control. So, by computing the response to the deviant in the oddball task minus the
physically identical control in the many-standards task, the resulting difference ERP should be
mainly affected by sensory memory rather than neural adaption [101]. Future research may
want to include this many-standards task, although confounding effects from neural adapta-
tion and lateral inhibition may not be eliminated completely [3, 6]. Further, even if the many-
standards task may be successful in isolating sensory memory effects on the MMN, it would be
unresolved if these changes are caused specifically by changes in standard formation or devi-
ance detection [3, 5, 29]. Last, although the mechanism for effects of attention on the MMN
apparently involve corticofugal pathways, the exact neural mechanism has yet to be determined
[29].

Second, our meta-analysis was highly selective in that we focused on studies that resembled
the current study design as much as possible. That is, we included studies only if they were pub-
lished, used EEG, the visual task demands were continuous and varied between high and low
load within the same task, and the task-irrelevant tones were presented in a typical oddball task
simultaneously with the visual stimuli. Because we included only published studies, our meta-
analysis is mainly an attempt to quantitatively integrate previous research rather than to rely
solely on a narrative review with a focus on significance. Thus, meta-analytic tools with estima-
tion permit more accurate representations of the combined evidence in a field than a narrative
review [43]. This is supported by successful meta-analyses of MMN-relevant studies [103–
107], although this task may be impossible if methods vary too much [108]. Further, the focus
on studies that resembled the current study design as much as possible has the advantage that
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our meta-analysis addresses a specific question. However, our selection criteria may not be
shared by other researchers. For example, it may well be that effects of studies that manipulated
visual demands with different tasks (rather than within levels of the same task) or that pre-
sented patterned auditory sequences (rather than a typical oddball task) do not differ from
those in the present meta-analysis. These questions are beyond the scope of the present study,
because a much more comprehensive meta-analysis would be needed to address these ques-
tions. Because the MMN has been studied extensively, there is an abundance of studies that
could be used to evaluate effects of different paradigms and the role of potential moderators of
the MMN. Such a future meta-analysis should also code for many study features (e.g., study
quality, choice of deviance, task performance, EEG interval and electrodes) to test for moderat-
ing effects of these variables. Because the present meta-analysis was limited to a few studies, the
analysis of moderators was not feasible.

Third, although the present study found strong behavioral effects of perceptual load, it
could be argued that with stronger manipulations of perceptual load, even an effect on the
MMN would be apparent. However, unless there is a criterion for a high level of perceptual
load that is independent from its effects on the MMN, this reasoning is circular (as addressed
above). However, a recent study [51] used the same visual stimuli in a visual search task and in
a flanker task (i.e., perceptual load) and examined the correspondence of the behavioral effects
between visual search task and flanker task. Results showed that inefficient visual search (as
indicated by large search slopes) corresponded with high perceptual load. Because these results
suggest that perceptual load may be defined independently (with reference to visual search),
future studies may employ a similar set up to strengthen the claim for high perceptual load.

Fourth, the present results do not address gender differences. When we designed the present
study, we reviewed previous studies and found no evidence that gender differences were a mat-
ter of concern [22–28]. For example, two studies used either only men [23] or mostly men (9
out of 11)[28]. Because at our university, both genders are not represented equally, we tried to
run as many subjects as possible in the available time rather than to try to counterbalance gen-
der. However, because gender differences on the MMN have been found in related areas [109–
111], the present effects may be moderated by gender. At face value, however, there is no
apparent pattern because the two studies with mostly men reported effects in opposite direc-
tions [23, 28]. Because large sample sizes are recommended for future studies, gender differ-
ences may need to be addressed in a meta-analysis. To facilitate such a meta-analysis, the raw
data should be made available (provided for our study in the S1 File).

Fifth, the present study as well as the meta-analysis focused on a single electrode (Fz) and
thus, did not consider laterality effects. Again, previous studies did not suggest laterality effects
[22–28]. However, studies in other areas reported laterality effects for the MMN [2, 53, 112–
114]. Thus, future studies will need to address potential laterality effects.

Conclusions
We studied the effects of visual perceptual load on the MMN to simultaneous, auditory distrac-
ters in a typical oddball task. The results of the empirical study did not provide evidence for an
effect of perceptual load on the MMN. A subsequent meta-analysis, however, suggested that
the present (null) findings did not systematically differ from previous, similar studies that var-
ied visual task demands. When the available evidence was combined, the meta-analysis con-
firmed that demanding visual tasks reduce the MMN to auditory distracters. However, because
the meta-analysis was based on small studies and because of potential publication biases, future
studies should have large samples (n> 150) to provide confirmatory evidence for the results of
the present meta-analysis. Future studies should also use control conditions that reduce
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confounding effects of neural adaptation, use load manipulations that are defined indepen-
dently and also address gender differences and laterality effects. Last, because the scope of the
present meta-analysis was narrow, a more comprehensive meta-analysis is needed to determine
whether or not the present results can be generalized to different task configurations (e.g., fre-
quency vs. duration deviants, choice of electrodes, working memory tasks, intra- vs. inter-
modal). Because the MMN has been studied extensively, there is an abundance of studies that
may be used to evaluate effects of different paradigms and the role of potential moderators of
the MMN.
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