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Abstract
Cell therapy with recipient Tregs achieves engraftment of allogeneic bone marrow (BM)

without the need for cytoreductive conditioning (i.e., without irradiation or cytotoxic drugs).

Thereby mixed chimerism and transplantation tolerance are established in recipients condi-

tioned solely with costimulation blockade and rapamycin. However, clinical translation

would be substantially facilitated if Treg-stimulating pharmaceutical agents could be used

instead of individualized cell therapy. Recently, it was shown that interleukin-2 (IL-2) com-

plexed with a monoclonal antibody (mAb) (clone JES6-1A12) against IL-2 (IL-2 complexes)

potently expands and activates Tregs in vivo. Therefore, we investigated whether IL-2 com-

plexes can replace Treg therapy in a costimulation blockade-based and irradiation-free BM

transplantation (BMT) model. Unexpectedly, the administration of IL-2 complexes at the

time of BMT (instead of Tregs) failed to induce BM engraftment in non-irradiated recipients

(0/6 with IL-2 complexes vs. 3/4 with Tregs, p<0.05). Adding IL-2 complexes to an otherwise

effective regimen involving recipient irradiation (1Gy) but no Treg transfer indeed actively

triggered donor BM rejection at higher doses (0/8 with IL-2 complexes vs. 9/11 without,

p<0.01) and had no detectable effect at two lower doses (3/5 vs. 9/11, p>0.05). CD8 T cells

and NK cells of IL-2 complex-treated naïve mice showed an enhanced proliferative

response towards donor antigens in vitro despite the marked expansion of Tregs. However,

IL-2 complexes also expanded conventional CD4 T cells, CD8 T cells, NK cells, NKT cells

and notably even B cells, albeit to a lesser extent. Notably, IL-2 complex expanded Tregs

featured less potent suppressive functions than in vitro activated Tregs in terms of T cell

suppression in vitro and BM engraftment in vivo. In conclusion, these data suggest that IL-2

complexes are less effective than recipient Tregs in promoting BM engraftment and in con-

trast actually trigger BM rejection, as their effect is not sufficiently restricted to Tregs but

rather extends to several other lymphocyte populations.
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Introduction
Interleukin-2 (IL-2), originally discovered in the supernatant of activated T cells [1], was first
described to drive the clonal expansion and effector development of antigen activated T cells
[2,3]. Later it was recognized that IL-2 has also a critical function in down-modulating
immune-responses as mice with a defective IL-2 pathway developed lymphoproliferative and
autoimmune disorders [4,5]. This unexpected finding was soon ascribed to the critical function
of IL-2 for regulatory T cells (Tregs) [6,7] which prevent severe autoimmune diseases through-
out the lifespan of mice (and humans) by suppressing auto-reactive T cells that escape thymic
negative selection [8]. IL-2 has consequently become of therapeutic interest for achieving auto-
or transplantation tolerance [9,10].

The compilation and tissue distribution of the IL-2 receptor probably accounts for the dis-
tinct effects of IL-2 to drive both effector and suppressor functions. IL-2 preferentially binds to
its high affinity receptor which is composed of the α- (CD25), β- (CD122) and common γ-
chains (CD132) and with a lower affinity to the dimeric IL-2 receptor consisting of CD122 and
CD132. The high affinity receptor is constitutively expressed on Tregs and rapidly upregulated
on conventional T cells and NK cells upon activation, while resting NK cells and memory CD8
T cells constitutively carry the low affinity receptor [11]. This particular expression pattern of
the IL-2 receptor can be exploited to preferentially target selected arms of the immune system
by using different doses of IL-2. High dose bolus IL-2 is approved by the FDA to treat renal car-
cinoma and melanoma, while low dose IL-2 therapies are currently tested in patients suffering
from chronic graft-versus host disease (GVHD) or diabetes [9,10,12]. High doses of IL-2, how-
ever, carry the risk of vascular leak syndrome [13] and low dose IL-2 therapy requires daily
administration to obtain a therapeutic benefit.

Recently it was shown that the effect of IL-2 can be skewed either towards CD8/NK cells or
towards Tregs by complexing it with distinct clones of mAb against IL-2 (IL-2 complexes) [14–
16]. Due to their extended serum half-life, IL-2 complexes exhibit a high biological activity and
thereby circumvent the major disadvantages of recombinant IL-2 therapy [17]. The α-IL-2
clone JES6-1A12 binds to a specific site on IL-2 that is relevant for its interaction with the low
affinity β chain (CD122) of the IL-2 receptor, which is mainly expressed on resting NK and
CD8 memory T cells, but preserves its binding to the high affinity α-chain (CD25) which is
expressed at the highest levels on Tregs. Thereby the effect of IL-2 when bound to the com-
plexes is preferentially directed towards CD25high regulatory cells rather than CD122+ NK/
CD8 memory cells [16,18]. IL-2/JES6-1A12 complexes have been shown to alleviate several
immune disorders in rodents owing to the extensive expansion and activation of Tregs in vivo.
IL-2 complexes ameliorated collagen-induced arthritis, delayed the onset of experimental auto-
immune encephalomyelitis, alleviated allergic airway disease and induced long term survival of
allogeneic pancreatic islet cells [15,19,20]. Furthermore, IL-2 complexes enhanced the stable
engraftment of MHC-matched allogeneic BM in sublethally irradiated mice [21], but have not
been explored in MHC-mismatched BMT models so far and neither in non-cytotoxic/irradia-
tion-free BMT settings.

Recently our group demonstrated that the adoptive transfer of recipient Tregs obviates the
need for cytoreductive conditioning (i.e. irradiation or cytotoxic drugs) in a fully allogeneic
BMT model when given together with rapamycin and costimulation blockade (α-CD40L,
CTLA4-Ig). This regimen induces durable mixed chimerism and tolerance to skin and heart
allografts [22,23]. However, in terms of clinical translation it would be preferable if individual-
ized cell therapies can be replaced by drugs that selectively expand and activate Tregs in vivo.
Therefore, we investigated the ability of IL-2 complexes to promote the engraftment of fully
mismatched BM under costimulation blockade.
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Material and Methods

Ethics statement
All animals were treated according to European Union guidelines of animal care. All animal
experiments were approved by the internal review board of the Medical University of Vienna
and by the Austrian Ministry of Science and Research (permission number GZ 66.009/0230-II/
3b/2011).

Mice
Female C57BL/6 (H2b) and female BALB/c (H2d) mice were obtained from Charles River Lab-
oratories (Sulzfeld, Germany). C57BL/6-FoxP3tm1Flv/J mice (Foxp3-mRFP reporter mice)
[24] expressing a monomeric red fluorescent protein (mRFP) under control of Foxp3 promo-
tor and B6.SJL-Ptprca Pepcb/BoyJ (CD45.1) mice were purchased from Jackson Laboratories
(Maine, USA) and bred in our own facility. All mice were housed under specific pathogen free
conditions and females were used between 6 and 10 weeks of age with a weight between 15-
20g. Up to 5 animals were kept in individually ventilated polysulfone cages (Tecniplast, Italy)
at a monitored temperature of 20–24°C, with humidity between 50–70%, a constant 12 hour
light and dark cycle and at least 70 air changes per hour. The cages were bedded with decorti-
cated aspen wood and enriched with nesting material (Abedd, Vienna, Austria). Animals were
provided with sterilized water and rodent chow (Sniff, Soest, Germany) ad libitum. All surger-
ies were performed under general anesthesia employing a mixture of Ketamine (100mg/kg)
and Xylazin (5mg/kg) intraperitoneally (i.p.). The concept of 3Rs (replacement, refinement
and reduction) had a fundamental impact on study design of the approved ethical protocol. All
efforts were made to minimize distress and group size. The number of mice in each specific
group is provided in the figure legend.

Preparation of IL-2 complexes
IL-2 complexes were prepared by incubating either 5μg recombinant mouse IL-2 (eBioscience,
San Diego, CA) with 25μg purified α-mouse IL-2 (clone JES6-1A12) (BioXcell,West Lebanon,
NH) or 1μg recombinant mouse IL-2 with 5μg purified α-mouse IL-2 for 30 min at 37°C. IL-2
complexes were administered i.p. in a final volume of 200μl. Exact dosing of IL-2 complexes is
stated in the text and in the figure legends.

In vitro activated Tregs
CD4+CD25+ cells were purified by magnetic bead separation using negative selection for CD4+

and subsequent positive selection for CD25+ by incubating CD4+ enriched cells with PE-conju-
gated α-CD25 (PC61) followed by α-PE microbeads (CD4+CD25+ Regulatory T-cell Isolation
Kit; Miltenyi Biotec, Bergisch Gladbach, Germany). CD4+ CD25+ separated Tregs were cul-
tured for five days in 12-well plates in RPMI 1640 media (Biochrome, Berlin, Germany) sup-
plemented with 200U/ml IL-2 (Sigma), 10% FCS (Linaris, Dossenheim, Germany), PenStrep
(100U Penicillin, 100μg Streptomycin/ml; Sigma), 10mMHepes (MP Biomedicals), 1mM
Sodium Pyruvat (Sigma), 1x non-essential amino acids (Sigma) and 10μM β-Mercaptoethanol
(Sigma). The plates were pre-coated with 10μg/ml α-CD3 (145-2C11) (BioXcell) and 1μg/ml
α-CD28 (37.51) (BioLegend) in PBS overnight at 4°C.
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IL-2 complex expanded Tregs
Naive C57BL/6 mice received IL-2 complexes (5μg IL-2 / 25μg α-IL.2) on three consecutive
days. Two days after the last administration CD4+ CD25+ Tregs were isolated from spleen and
lymph nodes by magnetic bead separation for use in vitro and in vivo.

Bone marrow transplantation protocol
Groups of age-matched C57BL/6 recipients received costimulation blockade consisting of α-
CD40L (CD154) mAb (MR1, 1 mg, d0) (BioXcell) with or without CTLA4-Ig (0.5 mg, d2)
(Bristol Myers Squibb Pharmaceuticals, Princeton, NJ) and 20×106 unseparated BM cells
recovered from naïve BALB/c donors (d0). BM cells were collected in M199 medium (Sigma-
Aldrich, St. Louis, MO) supplemented with 4μg/ml Gentamicin Sulfate (MP Biomedicals,
Santa Ana, USA) and 10mMHepes Buffer (MP Biomedicals) (BMmedium). Selected groups
were administered with a short course of rapamycin (0.1 mg, d-1, d0 and d2) (LC Laboratories,
Woburn MA) and either received in vitro activated or IL-2 complex expanded Treg popula-
tions (3×106) at the time of BMT or IL-2 complexes (d-4, -3 and -2; 5μg IL-2 / 25μg α-IL-2).
Indicated groups of recipients were irradiated with 1Gy total body irradiation (TBI) prior to
BMT (d-1) using a Xylon X-Ray unit [25]. Irradiated mice were additionally treated with or
without IL-2 complexes (d3, d5; 1μg IL-2 / 5μg α-IL-2). All reagents were administered i.p. in a
phosphate buffered solution (PBS) and BM cells were injected intravenously (i.v.) in BM
medium.

In vivo treatment of naïve mice
IL-2 complexes were administered i.p. to naïve C57BL/6 mice at days 0 (first day of administra-
tion), 1 and 2 in a final volume of 200μl [15]. Rapamycin (0.1mg) (LC Laboratories) and a
mutated IL-15-Fc fusion protein competitively inhibiting IL15-triggered signals [26] (4μg)
(Chimerigen, San Diego, CA) were given together with IL-2 complexes i.p. on d0, 1 and 2. α-
IL-6 (MP520F3, 1mg) (BioXcell) was injected i.p. on d-1, 1 and 3. A single dose of the mAb
against both MHC class II molecules I-A/I-E (M5/114, 1mg) (BioXcell) was administered i.p.
on the first day (d0) of IL-2 complex treatment. All reagents were administered i.p in PBS.

Mixed lymphocyte reaction
4×105 splenocytes from naive C57BL/6 mice or mice treated with IL-2 complexes were co-cul-
tured with 4×105 irradiated BALB/c (allogeneic) or C57BL/6 (syngeneic) BM cells for 4 days.
The proliferation was measured every day by staining Ki67 within NK cell and CD8 T cell pop-
ulation. The cells were cultured in RPMI 1640 media (Biochrome) supplemented with 10%
FCS (Linaris), PenStrep (100U Penicillin, 100μg Streptomycin/ml; Sigma), 10mMHepes (MP
Biomedicals), 1mM Sodium Pyruvat (Sigma), 1x non-essential amino acids (Sigma) and 10μM
β-Mercaptoethanol (Sigma).

In vitro suppression assay
4×105 responding splenocytes from congenic CD45.1 mice were stimulated in vitro with 10μg/
ml α-CD3 (145-2C11) (BioXcell) for four days in in RPMI 1640 media (Biochrome, Berlin,
Germany) supplemented with 10% FCS (Linaris, Dossenheim, Germany), PenStrep (100U
Penicillin, 100μg Streptomycin/ml; Sigma), 10mMHepes (MP Biomedicals), 1mM Sodium
Pyruvat (Sigma), 1x non-essential amino acids (Sigma) and 10μM β-Mercaptoethanol (Sigma).
4×105 in vitro activated or IL-2 complex (5μg IL-2 / 25μg α-IL-2) expanded Tregs from
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CD45.2 wildtype mice were added to selected wells. The proliferation of responding (CD45.1)
CD4 and CD8 T cells was measured based on their expression of Ki67.

Flow cytometry analysis
PerCP/Cy5.5 α-mouse CD3 antibody (17A2), APC/Cy7 α-mouse CD4 antibody (RM4-5), PE/
Cy7 α-mouse CD8a antibody (53–6.7), FITC α-mouse/human Helios antibody (22F6), biotin
α-mouse/human CD44 antibody (IM7), PE/Cy7 α-mouse CD25 antibody (PC61), biotin α-
mouse H-2Dd antibody (34-2-12), FITC α-mouse/human CD11b antibody (M1/70), PE α-
mouse CD19 antibody (6D5), FITC α-mouse NK-1.1 antibody (PK136) and PE α-mouse
CD62L antibody were purchased from BioLegend (San Diego, CA). α-mouse Neuropilin-1 PE
(761705) was acquired from R&D Systems (Minneapolis, MN). α-mouse/rat Foxp3 APC (FJK-
16s) and α-mouse/rat Ki-67 PE-Cy7 (SolA15) were obtained from eBioscience. For intracellu-
lar staining the cells were permeabilized with the Foxp3/Transcription Factor Staining Buffer
Set from eBioscience according to the manufacturer’s specification. Flow cytometric analysis
was performed with a BD FACSCanto II or Beckman Coulter FC500 flow cytometer and data
were analyzed by FlowJo (10.0.8) software.

Epifluorescence microscopy
CD4+CD25+ cells were purified from Foxp3-mRFP reporter mice by magnetic bead separation
and spun down onto a glass slide. The cell fluorescence was analyzed by a Zeiss LSM 510 Epi-
fluorescence Microscope (magnification 63x) using a mercury-vapor lamp as light source.

Statistical analysis
Ordinal variables were compared with a Fisher-exact test. A two-sided Student's t-test was used
to compare percentage of donor cells within the myeloid lineage, mean fluorescent intensities
(MFI) and absolute cell numbers. A p-value below 0.05 was considered statistically significant
(� p< 0.5, �� p< 0.01, ��� p< 0.001, ���� p< 0.0001, n.s. p>0.5). Error Bars represent stan-
dard errors of the mean (SEM). Mean values were used to calculate fold changes. Data were sta-
tistically analyzed with GraphPad Prism 5.0.

Results

IL-2 complexes inhibit bone marrow engraftment
The adoptive transfer of polyclonal recipient Tregs (in vitro Tregs) is uniquely potent in pro-
moting the engraftment of allogeneic BM in recipients conditioned only with rapamycin and
costimulation blockade (without irradiation) [22,27]. To test whether IL-2 complexes can sub-
stitute Treg cell therapy in this setting, BMT recipients (C57BL/6) received fully MHC-mis-
matched BALB/c BM (20×106 cells per mouse), costimulation blockade (α-CD154 mAb,
CTLA4-Ig) and rapamycin together with either Treg transfer or IL2 complex (5μg IL2 + 25μg
α-IL-2) treatment (4, 3 and 2 days before BMT). Unexpectedly, none of the mice receiving IL-2
complexes developed chimerism, whereas three of four mice treated with Tregs developed chi-
merism [0/6 vs. 3/4; p = 0.0333] (Fig 1A).

To avoid the potential stimulation of donor-reactive CD8 T and NK cells prior to transplan-
tation, we next administered IL-2 complexes 3 and 5 days after BMT and also reduced the
administered dose to a fifth (1μg IL-2 + 5 μg α-IL-2). This time, we conditioned the recipients
with a regimen of non-myeloablative irradiation (1Gy TBI) and costimulation blockade that is
effective without Treg therapy to distinguish between the two possibilities that either the sup-
pressive capacity of the IL-2 complex was merely insufficient for establishing engraftment (in
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Fig 1. IL-2 complexes promote BM rejection. The ability of IL-2 complexes to replace Treg therapy was tested in different BMTmodels. Donor chimerism
was analyzed in blood 14 days after transplantation by staining the BALB/c specific marker H2-Dd on myeloid (Mac-1) cells. (A) IL-2 complexes were less
effective than Treg therapy in promoting BM engraftment. Naïve C57BL/6 mice were grafted with 20×106 unseparated BALB/c BM cells (d0) under the cover
of costimulation blockade (α-CD154, CTLA4Ig) and a short course of rapamycin. The recipients were additionally treated with either in vitro activated Tregs
(3×106) (n = 4), IL-2 complex expanded Tregs (3×106) (n = 4) or IL-2 complexes (5μg IL-2 / 25μg α-IL-2; d-4, d-3, d-2) (n = 6). Two color flow cytometry plots
are shown from representative BMT recipients (left). Each dot of the scatter diagram represents one mouse from one experiment (right) [in vitro Tregs vs. in
vivo Tregs: p = 0.0341; in vitro Tregs vs. IL-2 complexes: p = 0.0187]. (B) IL-2 complexes enhanced BM rejection. Naïve C57BL/6 mice received a total body
irradiation of 1Gy, costimulation blockade (α-CD154, CTLA4-Ig), as well as 20×106 unseparated BALB/c BM cells (d0) with varying doses (1μg IL-2 / 5μg α-
IL-2, n = 8; 0.5 μg IL-2 / 2.5μg α-IL-2, n = 5, 0.25 μg IL-2 / 1.25μg α-IL-2, n = 5) of IL-2 complexes; (d3, d5) or without IL-2 complexes (n = 11). Two-color flow
cytometry plots are shown from representative BMT recipients (left). Each dot in the scatter diagram depicts one mouse from two individual experiments
(right) [no IL-2 complexes vs. 1μg IL-2 / 5μg α-IL-2 p = 0.0004; no IL-2 complexes vs. 0.5μg IL-2 / 2.5μg α-IL-2: p = 0.7769, no IL-2 complexes vs. 0.25μg IL-2
/ 1.25μg α-IL-2: p = 0.8966]. (C)Omission of CTLA4-Ig did not reverse the detrimental effect of IL-2 complexes. Naïve C57BL/6 mice were irradiated with 1Gy
TBI before receiving costimulation blockade (α-CD154) and 20×106 unseparated BALB/c BM cells (d0) with (1μg IL-2 / 5μg α-IL-2; d3, d5) (n = 6) or without
IL-2 complexes (n = 6). Two-color flow cytometry plots are shown from representative BMT recipients (left). Each dot in the scatter diagram shows one
mouse from one experiment (right) [p = 0.0627]. (D) IL-2 complexes increased the reactivity of CD8 T cells and NK cells toward donor antigens. Splenocytes
from untreated mice or mice treated with IL-2 complexes were stimulated in vitro with irradiated BALB/c (allogeneic) or C57BL/6 (syngeneic) BM cells. The
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non-irradiated recipients) or that indeed IL-2 complexes actively promoted rejection of donor
BM. Mice treated with IL-2 complexes again did not develop chimerism, while in contrast mice
from the control group exhibited high levels of chimerism [0/8 with vs. 9/11 without IL-2 com-
plexes, p = 0.0007] Further reduction of the administered dose (by 50% and 75%, respectively)
also did not improve BM engraftment (Fig 1B).

To exclude the possibility that CTLA4-Ig impaired Tregs expansion or function under IL-2
complexes [28], we excluded the fusion protein from this non-myeloablative protocol (condi-
tioning only with anti-CD40L and 1 Gy TBI). Again, none of the IL-2 complex treated mice
developed chimerism [0/6 with vs. 3/6 without IL-2 complexes; p = 0.627] (Fig 1C).

To directly test whether IL-2 complexes enhance alloreactivity, we stimulated splenocytes
from naïve or IL-2 complex treated mice in vitro with irradiated donor BM cells and analyzed
proliferation based on the expression of Ki67 [29]. CD8 T and NK cells exhibited an increased
rate of proliferation against allogeneic (BALB/c) BM when stimulated with IL-2 complexes [d1:
mean % Ki67 (untreated vs. IL-2 complexes) of CD8+: 2.7% vs. 23.6% and NK1.1+: 32.0% vs.
45.5%] that was distinctly higher than against syngeneic (C57BL/6) implying that IL-2 com-
plexes indeed reinforced alloreactivity (Fig 1D).

In addition, we isolated in vivo expanded Tregs (in vivo Tregs) from IL-2 complex (5μg IL-2
+ 25μg α-IL-2) treated mice to assess their suppressive function in vitro and in vivo. IL-2 com-
plex expanded Tregs were functional but less effective than in vitro activated Tregs in suppress-
ing the proliferation of polyclonal activated T cells in vitro (Fig 1E). Moreover, in contrast to in
vitro Tregs, in vivo expanded Tregs failed to induce BM engraftment when combined with cost-
imulation blockade and rapamycin [0/4 vs. 3/4; p = 0.1429] (Fig 1A).

In summary, these results demonstrate that IL-2 complexes promote the rejection of donor
BM, likely through the activation of CD8 T and NK cells, and therefore cannot replace Treg
therapy for promoting engraftment of allogeneic BM.

IL-2 complexes expand Tregs through proliferation in the thymus and the
periphery
To determine why the activation of CD8 T and NK cells prevailed over the suppression by
Tregs we analyzed the origin and appearance of the expanding Tregs in naïve mice after treat-
ment with IL-2 complexes (5μg IL2 + 25μg α-IL-2; d0, d1, d2). As previously reported [15],
two days (d4) after the last administration, the percentage of CD3+ CD4+ Foxp3+ Tregs in
blood, spleen, lymph nodes and thymus was increased several-fold with up to 55% of all CD4 T
cells expressing Foxp3 [% Foxp3 within CD3+ CD4+ (untreated vs. IL-2 complexes) in spleen:
10.70±1.09 vs. 48.55±2.13, p< 0.0001 and in lymph nodes: 11.80±1.07 vs. 41.18±2.01,
p<0.0001] (Fig 2A upper panels). Furthermore, treatment with IL-2 complexes significantly
increased the intracellular level of Foxp3 expression within the CD4 T cell population, as
assessed by flow cytometry and confocal microscopy of CD4+ CD25+ separated cells expressing
mRFP under the control of Foxp3 promotor. The MFIs of Foxp3 were compared between rest-
ing (Ki67−) and proliferating (Ki67+) Tregs to avoid bias from the increased cell mass of the
dividing cells (Fig 2B). The expanding Tregs exhibited an activated phenotype as determined
by the up-regulation of distinct activation markers (i.e. CD69, CD25, GITR) (Fig 2C). Addi-
tionally, IL-2 complexes also caused a significant, although lesser, expansion of CD3+ CD8+

proliferation of CD8 T and NK cells was assessed by measuring the proliferation marker Ki67. Each symbol represents 2 mice from one experiment. (F)
4×105 responder splenocytes from congenic CD45.1 mice were stimulated in vitro with α-CD3 and co-cultured with equal number of either in vitro activated or
IL-2 complex expanded Tregs.

doi:10.1371/journal.pone.0146245.g001

IL-2 Complexes Cannot Replace Treg Therapy

PLOS ONE | DOI:10.1371/journal.pone.0146245 January 5, 2016 7 / 17



Foxp3+ T cells [% Foxp3 within CD3+ CD8+ (untreated vs. IL-2 complexes) in spleen: 0.20
±0.02 vs. 1.64±0.69, p = 0.0072 and in lymph nodes: 0.21±0.1 vs. 1.12±0.49, p = 0.0129] (Fig
2A lower panels). IL-2 complexes substantially increased Treg proliferation, as assessed by
Ki67 expression, in blood, secondary lymphoid organs and the thymus (Fig 2D). In conclusion,

Fig 2. IL-2 complexes induce Treg proliferation in primary and secondary lymphoid tissues. The effectivity of IL-2 complexes to expand and activate
Tregs in vivowas assessed. Female C57BL/6 mice were injected i.p. for 3 days (d0, d1, d2) with IL-2 complexes (5μg IL-2 / 25μg α-IL-2) or left untreated.
Indicated tissues were analyzed 2 days after the last administration (d4) by flow cytometry. (A) IL-2 complexes increased the proportion of Foxp3+ Tregs
within CD3+ CD4+ (upper panels) and CD3+ CD8+ T cells (lower panels) in blood, spleen, lymph nodes and thymus. Histograms display representative mice
(n = 6). (B) Application of IL-2 complexes (n = 4) increased the intracellular expression of Foxp3 in comparison with untreated mice (n = 4) as determined by
the MFI of Foxp3-APC [Ki67+: p = 0.0012; Ki67−: p = 0.0304]. We compared Foxp3 expression between Ki67+ proliferating and Ki67− resting CD4 T cells to
ensure that the measured effect was truly intrinsic and did not result from the increased cell mass of the dividing cells. Data are pooled from two independent
experiments (left). The increase of Foxp3 was also evident by epifluorescence microscopy of CD4+ CD25+ separated cells purified from Foxp3-mRFP
reporter mice (magnification 63x). Representative pictures are shown (right). (C) In vivo expanded Tregs exhibited an activated phenotype. IL-2 complexes
increased the surface expression of CD69, PD1, ICOS, GITR and CD25 on CD4+ Tregs, as well as their intracellular expression of CTLA4. Representative
mice are shown (n = 4). (D) CD4+ Tregs primarily expand through proliferation in the blood, spleen, lymph nodes and thymus upon IL-2 complex treatment as
determined by their intracellular expression of the proliferation marker Ki67. Representative mice were chosen for histograms (n = 4).

doi:10.1371/journal.pone.0146245.g002
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IL-2 complexes induce a substantial expansion of Tregs in vivo by stimulating their prolifera-
tion in the thymus and the periphery.

We also analyzed the relative proportion of peripheral derived Tregs (pTregs) and thymus
derived Tregs (tTregs) after treatment with IL-2 complexes. IL-2 complexes slightly but signifi-
cantly increased the proportion of Helios+ Neuropilin-1+ (Nrp1) tTregs among Foxp3+CD4+ T
cells [30,31] (Fig 3A). Helios+ Nrp1+ Tregs also exhibited a higher rate of proliferation in
response to IL-2 complexes than their Helios− Nrp1− counterparts (Fig 3B). Helios+ Nrp1+

tTregs expressed higher levels of CD25 than double negative Tregs both before and after treat-
ment with IL-2 complexes (Fig 3C), suggesting that the differential expression of CD25
accounts for the difference in the proliferative response between the two Treg subsets.

To address whether the increased proliferation of tTregs requires the interaction of their T
cell receptors (TCRs) with self-antigens presented by MHC-II, we blocked MHC-II with an
anti-I-A/ I-E mAb. Blocking MHC class II reduced the expansion of Tregs by approx. 25% and
their absolute number by almost 50% but did not completely abolish it (Fig 3D). Since tTregs
exhibit a higher affinity to self-peptide MHC-class II complexes than pTregs [32], we assumed
that they would be more affected by the deprivation of a TCR signal. However, MHC class II
blockade in the course of IL-2 complex treatment had no impact on the proportion of Helios+

Nrp1+ Tregs (Fig 3E). Hence, the TCR signal amplifies the expansion of p- and tTregs upon
IL-2 complex treatment, but to a similar extent. These data provide evidence that in the course
of IL-2 complex treatment signaling via the TCR promotes overall Treg proliferation, while the
surface expression of CD25, which is higher in tTregs, determines the extent of proliferation.

IL-2 complexes primarily target Tregs but also expand other
lymphocytes
As the effect of IL-2 complexes was not exclusively restricted to Tregs we aimed to assess the
expansion of other lymphocyte populations. In line with other reports, treatment with IL-2 com-
plexes caused severe splenomegaly and lymphadenopathy in otherwise naïve mice [14], with the
total number of splenocytes increasing by 120 million cells on average (i.e. two-fold). Tregs, which
increased by more than 20 million cells (ten-fold), accounted for only a sixth of the overall cell
increase (Fig 4A). IL-2 complexes also significantly increased the absolute numbers of conventional
CD4+ Foxp3− T cells, CD8 T cells, NK cells, NKT cells and B cells, which reached the peak of
expansion on day 6 (up to five-fold expansion) (Fig 4B and 4C). In contrast, Tregs exhibited a ten-
fold increase that peaked already on day 4 (Fig 4C). Thus, although IL-2 complexes preferentially
target Tregs they also expand other lymphocyte subsets in naïve hosts, albeit to a lesser extent.

IL-2 complexes mobilize B cells from the bone marrow
IL-2 complexes likely induce the proliferation of CD8 T cells and NK cells directly through
CD122 expressed on these subsets. B cells also strongly expanded even though only very few
(~1%) B cells in the periphery express either the dimeric (CD132, CD122) or trimeric (CD132,
CD122, CD25) IL-2 receptor (data not shown and [33]). Moreover, IL-2 complexes increased
the number of proliferating conventional CD4 T cells, CD8 T cells and NK cells but had no sig-
nificant effect on the proportion of proliferating B cells in the spleen (Fig 5A). As most CD25+

B cells are located in the BM (data not shown and [33]), we measured the proportion and abso-
lute number of CD19+ B cells in the BM and found that both were significantly decreased upon
treatment with IL-2 complexes [proportion of CD19+ B cells within CD45+ leukocyte popula-
tion in the BM (naïve vs. IL-2 complexes): 25.8% ± 7.7 vs. 13.9% ±4.3, p = 0.03)] (Fig 5B).
Taken together, these data suggest that IL-2 complexes stimulate B cells to relocate from the
BM to secondary lymphoid organs such as the spleen.
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Rapamycin attenuates the expansion and activation of CD8 T cells
Next, we determined whether the selectivity of IL-2 complexes could be improved through the
co-administration of additional therapeutics reducing the expansion of CD8 T cells while

Fig 3. IL-2 complexes preferentially induce the proliferation of Helios+ Nrp1+ Tregs. To determine the effect of IL-2 complexes (5μg IL-2 / 25μg α-IL-2)
on thymus derived Tregs, naïve C57BL/6 mice received three successive injections (d0, d1, d2) and Treg specific markers were measured in the spleen two
days (d4) after the last injection. (A) IL-2 complexes (n = 6) slightly raised the amount of thymus derived Helios+ Nrp1+ Tregs compared to untreated mice
(n = 6). Representative mice are displayed in two color dot plots (left). Data are pooled from three independent experiments (right) [p = 0.0287]. (B) Helios+

Nrp1+ Tregs exhibited a higher degree of proliferation than Helios− Nrp1− Tregs as measured by their expression of the proliferation marker Ki67 both before
and after treatment with IL-2 complexes. Histograms show representative mice (left). The bars compare the expression of Ki67 between Helios+ Nrp1+ (n = 6)
and Helios− Nrp1− (n = 6) Tregs upon IL-2 complex treatment (right) [p<0.0001]. Data are pooled from three independent experiments. (C) Helios+ Nrp1+

Tregs exhibit a higher surface expression of CD25. Representative mice were selected for histograms (left). The bars show the MFI of CD25-PE-Cy7 on
Helios+ Nrp1+ and Helios- Nrp1- Tregs before (n = 3) and after (n = 3) IL-2 complex treatment (right) [untreated: p = 0.0003; IL-2 complexes: p = 0.0003]. The
bars represent the mean of three mice from one experiment. (D) Blockade of MHC class II molecules decreased the amount and absolute cell number of
CD4+ Tregs in the spleen compared to single giving of IL-2 complexes. Two color dot plots illustrate representative mice (left). Each bar shows the mean of 3
mice from one experiment (right) [p = 0.0031]. (E) Co-administration of α-MHC-II did not change the proportion of Helios+ Nrp1+ Tregs after IL-2 complex
treatment. Representative mice are shown in the two color dot plots (n = 3).

doi:10.1371/journal.pone.0146245.g003
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leaving Treg expansion unperturbed. For this purpose, we selected the mTOR inhibitor rapa-
mycin [34], an anti-IL-6 mAb (α-IL6) and an antagonistic mutated IL-15-fusion protein (IL-
15-Fc) [26]. Rapamycin promotes the expansion of Tregs while inhibiting the differentiation
and proliferation of effector T cells [35]. Furthermore, rapamycin—which is part of the BMT
protocol using Treg therapy—has recently been shown to synergize with IL-2 complexes in
steering the immune response towards regulation [15,36]. IL-6 has been shown to play a deci-
sive role in determining whether naïve T cells differentiate into Tregs or pro-inflammatory
Th17 cells [37]. Therefore we assumed that blocking IL-6 [38]would direct the effect of IL-2
complexes more towards regulation than inflammation. As IL-15 competes with IL-2 for the
dimeric low-affinity IL-2 receptor (CD122, CD132), but not the high affinity receptor (CD25,
CD122, CD132), we anticipated that administration of a mutated, antagonistic IL-15-Fc would
reduce the effect of IL-2 complexes on CD122+ cells. In line with this, IL-15-Fc promotes toler-
ance induction when combined with an IL-2 fusion protein [39,40]. Co-administration of rapa-
mycin or α-IL-6 with IL-2 complexes significantly reduced the expansion of CD8 T cells,
while IL-15-Fc had no detectable effect 4 days after the last administration of IL-2 complexes

Fig 4. IL-2 complexes also expand lymphocyte populations other than Tregs.Distinct lymphocyte populations were analyzed in the spleen following IL-
2 complex treatment to determine their specificity. Naïve C57BL/6 mice received IL-2 complexes (5μg IL-2 / 25μg α-IL-2) on three consecutive days (d0, d1,
d2) and absolute cell numbers were analyzed 2 (d4) and 4 (d6) days after the last administration. (A) IL-2 complexes increased the absolute number of
splenocytes [p = 0.0009 for d4; p = 0.0027 for d6] and splenic CD4+ Tregs [p <0.0001 for d4; p = 0.0001 for d6] 2 (d4) and 4 (d6) days after the last injection.
The average increase in total splenocytes exceeds the mean increase of Tregs indicating that IL-2 complexes also expand other lymphocytes. Both groups
consisted of 4 mice from 2 independent experiments at each time point. (B) IL-2 complexes also expand splenic CD3+ CD4+ Foxp3− T cells [p = 0.0491 for
d4; p = 0.0028 for d6], CD3+ CD8+ T cells [p = 0.0118 for d4; p = 0.0016 for d6], CD3− NK1.1+ NK cells [p = 0.0009 for d4, p = 0.0004 for d6], CD3+ NK1.1+ NK
cells [p < 0.0001 for d4, p = 0.0012 for d6] and CD19+ B cells [p = 0.0016 for d4, p = 0.008 for d6]. Both groups consisted of 4 mice respectively at each time
point. Data are pooled from 2 independent experiments. (C) Fold change of distinct lymphocyte populations in the spleen at d4 and d6.

doi:10.1371/journal.pone.0146245.g004
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(Fig 6A). IL-2 complexes led to an increased proportion of (central and effector) memory phe-
notype CD8 T cells (CD44hi CD62Lhi or CD62Llo, respectively). Rapamycin (but not α-IL6 or
IL-15-Fc) decreased the proportion of effector memory CD8 T cells (CD44hi CD62Llo) [%
CD44hi CD62Llo among CD8 T cells (IL-2 complexes vs. IL-2 complexes + rapamycin): 39.3%
vs. 16.6%] (Fig 6B). Rapamycin and IL-15-Fc had no clear effect on the fraction of Tregs,
whereas α-IL-6 mAb unexpectedly reduced Treg expansion by one third (Fig 6C). In summary,
it appears that rapamycin reduces the expansion and activation of CD8 T cells, while simulta-
neously preserving the proliferation of Tregs. Thus, beyond rapamycin, which is already part
of our irradiation-free BMT protocol, neither IL-15-Fc nor α-IL6 seems to provide a mechanis-
tic rationale for combination with IL2 complexes to increase specificity.

Discussion
Modulating the balance between regulatory and effector T cells is of high interest for the treat-
ment of immunological disorders. While individualized regulatory cell therapy shows potent
effects in pre-clinical studies, clinical translation faces substantial hurdles [41,42]. Treg-specific
pharmacologic therapies with small molecules or biologics would be a highly attractive
alternative.

In the present study, we explored whether treatment with IL-2 complexes could replace the
transfer of Tregs which is essential for achieving BM engraftment in an irradiation-free setting.
Our results provide evidence that IL-2 complexes enhance rather than alleviate alloreactivity
towards BM actually triggering its rejection. This unintended effect was not abolished by delay-
ing IL-2 complex administration until after BMT, which was beneficial in a sublethal MHC-
matched BMT model [21]. Substantially lowering the IL-2 complex dose, which was effective
in preventing diabetes in pre-diabetic NODmice [43], still was unable to promote BM engraft-
ment. As CTLA4-Ig abrogated the therapeutic effect of IL-2 complexes in a murine MHC class

Fig 5. IL-2 complexes relocate B cells from the bonemarrow to secondary lymphoid organs. The mechanisms of B cell expansion in secondary
lymphoid organs were investigated. Naive C57BL/6 mice received IL-2 complexes (5μg IL-2 / 25μg α-IL-2) for three days (d0, d1, d2) and distinct cell
populations were analyzed in indicated tissues 2 days (d4) after the last dose. (A) CD3+ CD4+ Foxp3− T cells, CD3+ CD8+ T cells, CD3− Nk1.1+ NK cells and
CD3+ NK1.1+ cells but not CD19+ B cells proliferated upon IL-2 complex treatment in the spleen as assessed by their expression of Ki67. Histograms are
shown from representative mice (n = 4). (B) IL-2 complexes (n = 4) reduced the proportion and absolute number of CD19+ B cells within CD45+ leukocytes in
the BM as compared with untreated mice (n = 4). Two color dot plots illustrate representative mice (left). Data are pooled from 2 independent experiments
(right) [p = 0.014].

doi:10.1371/journal.pone.0146245.g005
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II mismatched skin graft model [44], we omitted the fusion protein from our protocol, but nev-
ertheless did not detect a beneficial effect of IL-2 complexes.

We tested the IL-2 complexes in two BMTmodels. First we deployed an irradiation-free
non-cytotoxic one in which BM engraftment is critically dependent on Treg therapy [22] to
directly compare the efficacy of IL-2 complexes with that of adoptively transferred Tregs. Fur-
ther, we used a non-myeloablative model where Treg therapy is not critically required but
improves BM engraftment [45] in order to determine whether IL-2 complexes are just less
effective than Treg therapy or actively promote BM rejection. In both models, IL-2 complexes
failed to induce BM engraftment but instead triggered its rejection. Two factors were identified
that are likely to contribute to this effect: the unintended activation of CD8 T and NK cells and
the reduced suppressor function of IL-2 complex expanded Tregs. Collectively, these results
argue that IL-2 complexes cannot be substituted for Treg cell therapy in a fully MHC-mis-
matched, non-cytotoxic BMT model.

IL-2 complexes consisting of the α-IL-2 clone JES6-1A12 were originally described to pri-
marily expand Tregs and to only modestly increase the number of CD122 positive CD8 T and
NK cells [15]. Another group investigated the effect of IL-2 complexes on the proportion of B

Fig 6. Rapamycin reduces the expansion and activation of CD8 effector cells. IL-2 complexes were combined with selected agents to alleviate the
unintended expansion and activation of CD8 T cells. IL-2 complexes (5μg IL-2 / 25μg α-IL-2) were administered to female C57BL/6 mice three times in
succession (d0, d1,0 d2) together with specified agents. The effect of combined therapy was determined on splenic CD8+ T cells and CD4+ Foxp3+ Tregs 2
(d4) and 4 (d6) days after the last injection. (A) Co-administration of rapamycin (n = 4) reduced the absolute cell number of splenic CD8+ T cells at both
measured time points compared to mice treated only with IL-2 complexes (n = 4) [p = 0.0142 for d4; p = 0.0244 for d6]. Data are pooled from two independent
experiments. Groups receiving α -IL-6 and IL-15-Fc consisted of 2 mice from one experiment at each time point. (B) Rapamycin (n = 4) but not α-IL-6 (n = 2)
or IL-15-Fc (n = 2) considerably decreased the amount of effector memory CD8+ T cells (d6) defined as CD44hi CD62lo compared to IL-2 complex treatment
alone (n = 4). Two color dot plots depict representative mice. (C) Addition of α-IL-6 (n = 2) decreased the fraction of Foxp3+ cells within splenic CD4 T cell
population while rapamycin (n = 4) and IL-15-Fc (n = 2) had no profound effect (d6). Histograms illustrate representative mice of each group.

doi:10.1371/journal.pone.0146245.g006
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and myeloid cells without detecting significant differences [46]. Nevertheless, given the abso-
lute cell numbers of Treg expansion, the massive splenomegaly and lymphadenopathy
observed in mice treated with IL-2 complexes [14] cannot be solely explained by the expansion
of Tregs. Intriguingly, patients receiving IL-2 immunotherapy as cancer treatment also feature
a splenic enlargement [47]. Therefore we analyzed in detail the absolute cell numbers of dis-
tinct lymphocyte subsets in secondary lymphoid organs. Conventional CD4 T cells, CD8 T
cells, NK cells, NKT cells and even B cells expanded after treatment with IL-2 complexes. Con-
ventional CD4 T cells, CD8 T cells, NK cells, NKT cells proliferated in peripheral tissues upon
IL-2 complex treatment although predominantly expressing the low-affinity IL-2 receptor. As
B cells did not proliferate in the periphery but were significantly reduced in the BM, we con-
cluded that IL-2 complexes induce the migration of B cells from the BM to secondary lymphoid
organs, which is consistent with the fact that CD25 expression constitutes a crucial step in pre-
B cell development [48] and IL-2-/- mice exhibit a disrupted B cell development and survival
[49].

However, from all expanding cell populations we were most concerned about CD8 T cells as
they embody crucial mediators of acute BM rejection [50], and because their proliferation in
response to alloantigens was particularly sensitive to IL-2 complexes (Fig 1D) and IL-2
expanded Tregs seem less effective in suppressing CD8 than CD4 cells in vitro (Fig 1E). There-
fore we intended to inhibit their expansion by co-administration of other reagents. In contrast
to IL15-Fc, α-IL-6 and rapamycin reduced the number of expanding CD8 T cells at both mea-
sured time points. Rapamycin was, however, the only agent to preserve the proliferation of
Tregs under IL-2 complexes. The synergistic effect of rapamycin and IL-2 complexes has
already been shown to ameliorate EAE, to promote the expansion of suppressive CD8+ Foxp3+

cells after BMT and to stabilize in vitro induced Tregs in a GVHDmodel [15,36,51]. Rapamy-
cin presumably steers the effect of IL-2 complexes towards Tregs by inhibiting the expression
of CD25 on effector T cells [52]. However, this effect of rapamycin was evidently insufficient to
reverse the deleterious effect of IL-2 complexes in this specific BMT setting. Rapamycin effi-
ciently inhibits the proliferation of NK cells but only has a modest effect on their IFN-γ secre-
tion or cytolytic activity [34]. Accordingly, we speculate that IL-2 complexes enhanced
rapamycin-resistant NK cell mediated donor BM rejection [53].

The effect of IL-2 complexes was partially prevented through the blockade of MHC class II,
decreasing pTregs and tTreg expansion to a similar degree, suggesting that TCR signals
increase the turnover of Tregs without, however, affecting the ratio between p- and tTregs. In
accordance with this observation, the administration of IL-2 complexes could partially restore
the proliferation of adoptively transferred Tregs in a MHC class II deficient host [54], obviating
the need of a TCR signal for Treg proliferation to a certain degree.

The non-cytotoxic BMT protocols yield very low levels of chimerism (~1% myeloid donor
cells in the blood after 2 weeks) wherefore the rejection of only a small number of donor cells
may be sufficient to lead to graft failure. In such a stringent model the unintended activation of
effector cells might thus be more devastating than in sublethal models where higher levels of
chimerism are achieved [21]. In such models the loss of some donor BM cells can more readily
be withstood and does not immediately lead to engraftment failure. Under these circumstances
the beneficial effects of IL-2 might then take hold. Besides, the absence of MHC disparities pre-
vents direct allorecognition by T cells and circumvents NK cell mediated rejection which is
likewise a MHC dependent process [55]. Under these circumstances the beneficial effects of IL-
2 complexes are more likely to emerge.

IL-2 complexes also averted the rejection of fully MHC–incompatible pancreatic islets [15].
We assume that the unintended activation of CD8 T and NK cells through IL-2 complexes is
more detrimental in our BMT model as BM cells infused intravenously (as opposed to islet
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cells transplanted under the kidney capsule) are exquisitely sensitive to rejection through CD8
T cells and NK cells in the spleen before they home to the BM.

In summary this study indicates that IL-2 complexes preferentially induce the proliferation
of Tregs but their effect is not sufficiently specific to replace the adoptive transfer of recipient
Tregs in a non-cytoreductive BMT model.
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