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Abstract

Introduction

Left ventricular dysfunction is a frequent and potentially severe side effect of many tyrosine
kinase inhibitors (TKI). The mode of toxicity is not identified, but may include impairment of
mitochondrial or sarcomeric function, autophagy or angiogenesis, either as an on-target or
off-target mechanism.

Methods and Results

We studied concentration-response curves and time courses for nine TKils in three-dimen-
sional, force generating engineered heart tissue (EHT) from neonatal rat heart cells. We
detected a concentration- and time-dependent decline in contractile force for gefitinib, lapa-
tinib, sunitinib, imatinib, sorafenib, vandetanib and lestaurtinib and no decline in contractile
force for erlotinib and dasatinib after 96 hours of incubation. The decline in contractile force
was associated with an impairment of autophagy (LC3 Western blot) and appearance of
autophagolysosomes (transmission electron microscopy).

Conclusion

This study demonstrates the feasibility to study TKI-mediated force effects in EHTs and
identifies an association between a decline in contractility and inhibition of autophagic flux.
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Introduction

The side effect profile of TKIs differs substantially from conventional anti-cancer drugs. How-
ever, a number of side effects were revealed and structural (in contrast to proarrhythmic) cardi-
otoxicity is frequent among these [1,2]. The relatively frequent occurrence of TKI-associated
cardiotoxicity was not anticipated since highly proliferative tumor cells and terminally differ-
entiated cardiomyocytes display fundamental differences in cellular biology. More detailed
studies, however, revealed that the underlying molecular mechanisms of cancer cell- and cardi-
omyocyte-biology display a substantial degree of similarity [3]. In particular, high-energy con-
sumption and active cellular recycling pathways (autophagy) are peculiar characteristics of
both.

The first indication for structural cardiotoxicity mediated by TKIs appeared when patients
treated with imatinib developed heart failure [4]. Histologically, mitochondrial abnormalities
and cytoplasmic vacuoles were detected and linked kinase inhibition with mitochondrial dys-
function. Follow up studies in cultured cardiomyocytes and animal models provided further
evidence that imatinib was associated with mitochondrial insufficiency resulting in cyto-
chrome c-release and compromised energy generation, decline in ATP concentrations and
cell death. Retroviral gene transfer of an imatinib-resistant mutant of c-ABL partially rescued
this toxicity, suggesting that c-ABL is involved in the mechanism of toxicity [4,5]. Morpho-
logically imatinib cardiotoxicity in rats was characterized by cytoplasmic vacuolization and
myofibrillar loss [6]. Further studies in rodents and zebrafish identified inhibition of AMPK
and RAF 1/BRAF as key cardiotoxic mechanisms for sunitinib and sorafenib, respectively
(7,8].

Modulation of autophagy has been proposed as one potential mechanism of kinase inhibitor
mediated action/side effects [9]. Autophagy is a catabolic process that leads to the sequestration
and degradation of misfolded proteins and cellular organelles. The initiation of autophagy
results in the generation of phagophores. This process involves cleavage of microtubule-associ-
ated protein 1 light chain 3 (LC3) by autophagin-4 (Atg-4) to generate LC3-I. Through the
action of Atg-3 and Atg-7, LC3-I is further processed to LC3-II. Finally, autophagosomes are
formed and fuse with lysosomes, resulting in degradation of cargo material.

In part, the poor understanding of structural cardiotoxicity mediated by kinase inhibitors
is a consequence of the lack of good animal and in vitro models and the relatively low fre-
quency of this side effect in patients, suggesting that often risk factors must come together to
cause this problem. In fact, the cardiotoxicity of kinase inhibitors has not been discovered
during preclinical drug development, but only in clinical trials with these compounds. Stud-
ies in rodents suggest that it is challenging to demonstrate left ventricular dysfunction upon
treatment with sunitinib in the absence of pressure overload [7,10]. This could indicate that
compensatory mechanisms of the organism contribute to the low sensitivity of this model.
Zebrafish models may have a higher sensitivity and have proven to be useful to demonstrate
ventricular dysfunction of sunitinib and sorafenib [8] but species differences may limit wide-
spread use.

The engineered heart tissue (EHT) model is a three-dimensional, force-generating cardiac
tissue model, generated with high levels of standardisation and reproducibility from dissociated
heart cells and fibrin matrix between flexible silicone posts [11]. In this study, we analyzed the
effect of nine small molecule kinase inhibitors on EHT's from neonatal rat cardiomyocytes
(NRCM) by analyzing contractile function, immunohistology, transmission electron micros-
copy, and clinical chemistry.
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Materials and Methods
Generation of EHTs

EHT were generated as previously described [11]. Briefly, ventricular heart cells from neonatal
Wistar and Lewis rats (balanced numbers, postnatal day 0 to 3) were isolated by fractionated
DNase/Trypsin digestion. Direct comparisons between Wistar- and Lewis-EHTs did not reveal
systematic differences (unpublished own data). Heart cells were resuspended in a mastermix
containing Dulbecco's Modified Eagle's Medium (DMEM) and fibrinogen (5 mg/ml). Agarose
casting molds were created with custom-made teflon spacers and liquid agarose (2% in phos-
phate buffered saline, PBS). After solidification teflon spacers were removed and silicone racks
were placed on 24 well plates, ensuring that pairs of silicone posts reached into the casting
molds. 97 pl of the mastermix (containing 0.41x10° cells) were briefly mixed with 3 pl of
thrombin (3 U/ml) and pipetted into the casting molds. After two hours fibrin was polymerized
and formed a gel between the silicone posts. Silicone racks were transferred to new 24 well
plates and were maintained under cell culture conditions for two weeks (37°C, 7% CO, and
40% O,). EHT medium consisted of DMEM (Biochrom F0415), 10% horse serum (Gibco
26050), 2% chick embryo extract, 1% penicillin/streptomycin (Gibco 15140), insulin (10 pg/
mlL, Sigma-Aldrich 19278) and aprotinin (33 pg/mL, Sigma-Aldrich A1153) and was changed
on Mondays, Wednesdays and Fridays. Development of contractile force was monitored by
video-optical recording and analysis as recently described [11-13]. Fibroblast EHT's were gen-
erated by plating dissociated neonatal rat heart cells on 0.1% gelatine—coated cell culture flasks.
They were expanded for four passages by 1:3 trypsin-based split of confluent cell layers
(medium: DMEM Biochrom F0415), 10% fetal calf serum, 1% penicillin/streptomycin, 1% L-
glutamine). Dissociated passage 4-cells were used to generate fibroblast EHT's according to the
heart cell EHT protocoll using 0.41x10° cells per construct. TKI incubation was started 3 days
after casting. All experimental procedures were reviewed and approved by Ethics Committee,
University Hamburg (approval number ORG238).

Analysis of TKls

TKIs were purchased from LC Laboratories (dasatinib D-3307, erlotinib E-4007, gefitinib G-
4408, imatinib I-5508, lapatinib L-4899, lestaurtinib L-6307, sorafenib S-8599, sunitinib S-
8803, vandetanib V-9402) and solubilized in dimethyl sulfoxide (DMSO). Four logarithmi-
cally-diluted concentrations per TKI were analyzed (each group n = 4). DMSO was diluted
with the TKI, and the DMSO concentration in vehicle control was the same as in the group
with the highest TKI/DMSO concentration. TKI DMSO stock concentrations were adjusted
according to maximal solubility, resulting in maximal study concentrations of 10-100x total
therapeutic plasma concentration (TPC). Exceptions were dasatinib and lapatinib with maxi-
mal study concentrations of 250x and 136xTPC, respectively. Lestaurtinib was studied at a
maximal concentration of 100 uM (12xTPC) despite higher DMSO solubility because pilot
experiments indicated a high toxicity (e.g. decline in contractile force) for lestaurtininb in this
model. Effects of TKIs were always compared with the respective vehicle control (1% DMSO
for erlotinib, lapatinib, vandetanib, lestaurtinib and 0.1% DMSO for dasatinib, gefitinib, suniti-
nib, imatinib and sorafenib). S1 Table lists the TKI concentrations used in this study and the
corresponding TPC. TKI concentrations were adjusted in EHT medium and the effect on EHT
contractility (systolic force development) was analyzed. Video-optical recordings in the pres-
ence of TKI and controls were performed after 2, 48 and 96 hours of incubation. Cell culture
medium was sampled after 48 and 96 hours for analysis of lactate dehydrogenase (LDH). After
96 hours, EHT were further processed for histological, transmission electron microscopic and
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western blot analysis. S1 Fig illustrates the experimental design of this study and the relation-
ship between study concentration and TPC. For the time series experiments, EHTs were sam-
pled daily between 24 and 96 hours of incubation and processed in analogy to endpoint
analysis after 96 hours.

Clinical chemistry

Analysis of LDH- and CK-activity in cell culture medium supernatant was performed in EHT
medium containing phenol red-free DMEM (Gibco, 11880-028). Medium was sampled after
48 and 96 hours and centrifuged (5 min at 300 g, Eppendorf 5415R). Supernatant was trans-
ferred into a new tube and stored at -20°C. Samples were thawed, centrifuged (10's, 13200 g,
Eppendorf 5415R) and analyzed (Roche P-Module).

Histology

EHTSs were washed with pre-warmed PBS twice for 5 minutes and fixed in 4% formalin over-
night. After a brief wash with tris-buffered saline (TBS), EHT's were detached from silicone
posts and embedded in 4% agarose to adjust the position in the paraffin block. Dehydration
was performed with a Leica ASP 300s instrument. After paraffin embedding, 4 um longitudinal
sections were prepared. Sections for staining and analysis had a distance of approximately

100 pm to the tangential cut of the tissue. This procedure accounts for the inhomogeneity of
cell density throughout EHTs and allowed direct comparisons. Anti-o.-sarcomeric actin, Dako-
Cytomation M0874, 1:200 and active caspase-3, R&D Systems AF835, 1:100, staining was per-
formed with a Benchmark XT instrument (Ventana Medical Systems).

Transmission electron microscopy

EHTSs were incubated for 10 min in 2,3-butanedione monoxime (30 mM, PBS) to relax the myo-
fibrils. The EHT's were fixed in glutaraldehyde (Agar scientific AGR1010, 2.5% in PBS, 1 mM
CaCl,, pH 7.4) overnight at 4°C. Samples were further fixed and dehydrated by the EMP-5160
Automatic Tissue Processor (RMC products). EHT's were embedded in glycid ether (Serva).
Semithin and ultrathin slices with longitudinal orientation were prepared with an ultramicro-
tome (Ultracut E, Reichert-Jung). The ultrathin slices were transferred to copper/rhodium grids
(Cu/Rh, 3 mm, 200 mesh) and stained with uranyl acetate and lead citrate. The grids were
observed with a transmission electron microscope (Jeol 1200 EX) fitted with a Tietz FastScan
CCD camera (1024x1024 pixels). For stereological analysis of the organelles in the cells, mosaics
were assembled from overlapping images recorded at 3000x magnification. Mosaics were com-
posed of 4-9 single overlapping EM pictures of a representative area (~1000-1500 um?) in the
EHT. For the stereological analysis, cross-sectional area for myofibrils, healthy mitochondria,
cytoplasm, disarray/autophagy was marked and quantified (Image J).

Western blot

To measure autophagic flux, EHTs were cultured in the absence or presence of the lysosome-
inhibitor bafilomycin A (Sigma-Aldrich B1793, 100 nM, 2 hours). EHT were removed from sil-
icone posts, snap-frozen in liquid nitrogen and stored at -80°C. Protein extraction was per-
formed with 60 pl extraction buffer per EHT (M-PER, Thermo Scientific #78501, Mini-
Complete protease inhibitor, Roche 11837580001; PhosSTOP, Roche 04906837001). Tissue
was lysed with the Qiagen Tissue Lyser. Proteins were separated by standard sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted onto polyvinylidene fluo-
ride (PVDF) membrane in a semidry blotting chamber (Hoefer Semiphor, Semidry transfer

PLOS ONE | DOI:10.1371/journal.pone.0145937 February 3, 2016 4/18



@’PLOS ‘ ONE

Cardiotoxicity of Tyrosine Kinase Inhibitors

unit). The membranes were blocked in milk powder (5%, Tris-Buffered Saline plus Tween 20,
0.1% [TBST]). The membranes were washed (3 times, 5 min, TBST) and incubated on the
roller mixer (Stuart) with the primary antibody (LC3, Novus Biologicals NB100-2331, 1:500) at
4°C overnight. The membranes were washed (3 times, 10 min, 0.1% TBST), incubated with the
secondary antibody for one hour at room temperature (RT), washed again (3 times for 5 min
in TBST 0.1%) incubated with chemiluminescence substrate (Pierce ECL Western blotting sub-
strate, Thermo scientific 32106) and exposed to X-ray film. Bands were quantified with a Syn-
gene Chemidoc.

Statistical analysis

Results are presented as means+SEM. All statistical tests were performed in GraphPad Prism
version 5.02. In detail, one/two-way ANOVA and Bonferroni's or Dunnett's post-test was used.
P-values <0.05 were considered statistically significant and indicated in the graphs (*).

Results

EHTs started to beat coherently 7-10 days after casting. Experiments were started at day 14
when contractile force had reached a stable level, average force value was 0.17 mN + 0.03 across
all analysis at this point (mean + SD). After addition of TKI at 4 logarithmic concentrations or
DMSO (0.1 or 1%), contractile force was monitored in the presence of TKIs/DMSO for 96
hours (Fig 1A). Pilot experiments indicated that the onset of decline in contractility was rapid
for some TKIs. Accordingly, three recording time points were defined: 2, 48 and 96 hours of
incubation. Over this period, control and DMSO-treated EHT's showed stable contractile force
(Fig 1A, S2 Fig). Erlotinib and dasatinib were not associated with reduction in contractile force
at any concentration studied. In contrast, gefitinib (10 pM, 86xTPC), lapatinib (150 uM,
136xTPC), sunitinib (10 uM, 50xTPC), imatinib (100 pM, 50xTPC), and sorafenib (100 uM,
15xTPC), vandetanib (10, 100 uM, 5xTPC, 50xTPC) and lestaurtinib (1, 10, 100 uM,
0.12xTPC, 1.2xTPC, 12xTPC) led to a significant decline in contractile force. The decline
occurred rapidly (after 2 hours of incubation) for vandetanib (100 uM, 50xTPC), lestaurtinib
(100 uM, 12xTPC) and sorafenib (100 uM, 15xTPC) and delayed for all other conditions (Fig
1A, S2 Fig). Based on the variability of contractile force development under control conditions
across all time points a threshold of >40% reduction in contractile force was defined as a toxic
effect. Accordingly, toxic threshold concentrations (TTC) and safety margins (SM: TTC/thera-
peutic plasma concentration, TPC) were defined for all TKIs and listed in Fig 1B. We also ana-
lyzed frequency, contraction and relaxation time but did not identify additional concentration-
and time-dependent effects which were not related to changes in contractile force (S2 Fig)
except for a prolongation of relaxation time with erlotinib. This could indicate that erlotinib is
inhibiting repolarising potassium channels since prolongation of repolarisation leads to pro-
longation of relaxation in the rat EHT system [14].

Lactate dehydrogenase (LDH) and creatin kinase (CK) were measured in cell culture
medium after 48 and 96 hours of incubation at the highest two to three TKI concentrations (S3
Fig). A minimal but statistically significant increase in LDH activity was determined after 48 h
for 0.1% DMSO and after 48 and 96 hours for 1% DMSO. Compared to vehicle control, no
increase in LDH activity was detected for dasatinib, erlotinib, gefitinib and sunitinib. After 48
hours, a significant and substantial increase in LDH was determined for vandetanib (100 uM,
50xTPC, 4.8 fold), lestaurtinib (100 uM, 12xTPC, 4.6 fold) and lapatinib (150 uM, 136xTPC,
4.1 fold). LDH was modestly increased by sorafenib (100 uM, 15xTPC, 1.8 fold) and lestaurti-
nib (10 uM, 1.2xTPC, 1.5 fold) and slightly elevated by imatinib (100 uM, 50xTPC, 1.3 fold).
LDH elevations were accentuated after 48 hours and declined after 96 hours of TKI incubation
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Dasatinib 0.04 yM 2 n/a n/a
Gefitinib 0.116 uM 3 6.29 uM 54
Lapatinib 1.1 uM 5 31.38 uM 29
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Lestaurtinib 7.7uM? 0.28 yM 0.04

Fig 1. TKl effect on EHT contractility. (A) Depiction of concentration-effect curves (curve-fitted) of 9 TKls after 96 hours of TKl incubation (4), normalized to
vehicle control (A). The toxic threshold (black dashed line) is defined as a decline in contractile force of >40% vs. baseline (BL). Mean values + SEM; n = 4;
*p<0.05 vs. baseline, two-way ANOVA and Bonferroni's multiple comparison post-test. (B) Total therapeutic plasma concentration (TPC), toxic threshold
concentration (TTC: TKI concentration leading to >40% reduction in EHT contractile force) and safety margin (SM: TTC/TPC), n/a: not applicable.

doi:10.1371/journal.pone.0145937.g001
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except for vandetanib, which increased from 48 to 96 hours. CK activity was significantly
higher in vehicle controls (0.1% DMSO: 48 h, 1.4 fold; 1% DMSO: 48 h, 3.6 fold, 96h, 1.9 fold)
than in controls (S3 Fig). Compared to vehicle control, lapatinib (150 mM, 136xTPC, 1.1 fold),
sunitinib (10 uM, 50xTPC, 1.4 fold), lestaurtinib (100 uM, 12xTPC, 1.2 fold), sorafenib

(100 uM, 15xTPC, 2.1 fold) and vandetanib (100 uM, 50xTPC, 1.5 fold) resulted in increased
CK activity after 48 hours. After 96 hours lower concentrations of sunitinib (1 pM, 2 fold), les-
taurtinib (10puM, 2 fold, 1 uM, 1.5 fold), and vandetanib (10 pM, 2 fold) as well as gefitinib

(10 uM, 86xTPC, 1.6 fold) and erlotinib (100 uM, 40xTPC, 1.7 fold, 10 uM, 1.6 fold) led to
increased CK activity (S3 Fig).

Longitudinal sections of EHTs incubated with the highest concentration of TKIs for 96
hours were stained with antibodies against a-sarcomeric actin (Fig 2A). Sections from controls
and DMSO-treated EHT's showed a dense network of aligned, a-sarcomeric actin-positive cells
without apparent differences between the three groups. Dasatinib-treated EHT's did not differ
from controls and erlotinib (100 pM, 40xTPC)- and gefitinib (10 uM, 86xTPC)-treated EHT's
showed moderate alterations (lower cell density in erlotinib, reduction of cross-striation). In
contrast, in the presence of imatinib (100 uM, 50xTPC), lapatinib (150 uM, 136xTPC), suniti-
nib (10 uM, 50xTPC), lestaurtinib (100 uM, 12xTPC), sorafenib (100 uM, 15xTPC) or vandeta-
nib (100 uM, 50xTPC), the cellular density and o.-sarcomeric actin-positivity cells was
substantially reduced.

Due to the high-grade immunohistological alterations in the presence of the highest TKI
concentration, electron microscopic longitudinal sections of the second highest TKI concentra-
tions were analyzed for gefitinib (1 pM, 8.6xTPC), imatinib (10 uM, 5xTPC), lapatinib (15 puM,
13.6xTPC), sunitinib (1 uM, 5xTPC), lestaurtinib (10 uM, 1.2xTPC), sorafenib (10 puM,
1.5xTPC) and vandetanib (10 uM, 5xTPC) and the highest concentration for erlotinib
(100 uM, 40xTPC) and dasatinib (10 uM, 250xTPC). Important findings were sarcomeric -, Z-
line—and mitochondrial alterations and increased autophagy. Representative images are
depicted in Fig 2B-2F. Sarcomeric alterations consisted of a reduction in the number of parallel
sarcomeric bundles, loss of symmetry, reduced alignment, condensation and loss of regularity
of Z-lines. Markers for mitochondrial abnormalities were structural irregularities, inclusion of
vacuoles and foreign bodies and the frequency of transformation to multilamellar bodies.
Autophagy was assessed by the appearance of autophagolysosomes and residual bodies. The
most peculiar difference between controls and TKI-EHTs was detected for markers of autop-
hagy (autophagolysosomes and residual bodies), suggesting that this is a morphological marker
of TKI effect.

Autophagy was further analyzed by immunoblot analysis for LC3-1, -1I in EHT's after 96
hours of incubation with vehicle control (DMSO) or TKIs. Representative Western blots and
statistical analysis are shown in Fig 3. Time matched controls and vehicle controls (0.1%, 1%
DMSO) displayed a strong LC3-I and weak LC3-II band. LC3-II/I ratios were 0.6, 0.5 and 0.8,
respectively. TKIs led to a concentration-dependent increase in LC3-II/1 ratio. This increase
was low and not significant for erlotinib (10/100 uM; 0.4, 0.7). Moderate-strong effects were
observed with dasatinib (1/10 uM; 1.3, 2.6), gefitinib (1/10 uM; 0.7, 17.4), lapatinib (15/

150 uM; 1.6, 74.7), sunitinib (1/10 pM; 0.6, 30.2), imatinib (10/100 uM; 1.5, 6.8) and sorafenib
(10/100 pM; 0.6, 6.6) resulting in significantly higher LC3-II/1 ratios for the higher concentra-
tion for each TKI. The strongest effects were demonstrated for vandetanib (10/100 uM; 8.9,
20.0) and lestaurtinib (10/100 uM; 5.8, 3.7) with significantly increased LC3-II/I ratios for both
concentrations. All TKI effects on contractility, LDH- and CK-release and LC3-II/I ratio are
summarized in Table 1.

To dissect the kinetics of microstructural alterations, a time series for 96 hours was per-
formed with sorafenib (100 uM), imatinib (100 uM) and sunitinib (10 uM). These three TKIs
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Fig 2. (A) a-sarcomeric actin staining of longitudinal EHT sections in the presence of TKls and controls after
96 hours of incubation. Cross-striation (CS), extracellular matrix (ECM), nucleus (N). (B-F) Representative
images of EM alterations in EHTs in the presence of TKls. (B) Regularly structured sarcomere with Z-band
(Z, 0.1% DMSO); (C) sarcomere with sarcomeric disarray, widened Z-band, (Zw, imatinib 10 uM); (D)
mutilamellar bodies (MB, imatinib 10 pM); (E) mitochondria with structural defects (Md), vacuoles and
inclusion bodies (IB, sunitinib 1 uM); (F) autophagy (A, vandetanib 10 uM), scale bar 1 ym.

doi:10.1371/journal.pone.0145937.g002
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A CTR DMSO Dasatinib Erlotinib Lapatinib
0.1% 1% 1yM  10pM  10uM  100pM  15pM 150 uM
----..--—: B
- . AR - csa
0.2 0.5 0.5 0.6 11 0.4 0.4 1.2 7.0 LC3-ll/l ratio
CTR Imatinib Gefitinib Sunitinib Lestaurtinib
10pM  100pM  1uM  10uM 1uM_ 10uM  10uM 100 uM
- : - . - LC3-
- — LC3I
0.2 1.0 4.3 0.7 2.0 0.7 16.4 9.4 5.8 LC3-lI/l ratio
CTR Sorafenib Vandetanib
10pyM  100uM  10pM 100 uM
e LC3-1
- LC3-lI
0.1 0.3 1.8 6.3 71 LC3-Il/l ratio
B 110 - * * * * * * * % * *

LC3-1l/l ratio

Fig 3. (A) LC3-Il/l ratio Western blot of EHTSs after 96 hours incubation: (vehicle) control or TKls at two concentrations as indicated. LC3-1 and -l band
densities were quantified and LC3-I/I ratios were calculated. (B) Quantitative analysis of LC3-1l/I ratios. Results are presented as meanstSEM, n =13
(controls), n = 3-5 (TKIs). One-way ANOVA and Dunnett's post-test (compared to vehicle control) were used. P-values <0.05 were considered statistically

significant and indicated in the graphs (*).

doi:10.1371/journal.pone.0145937.9003
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Table 1. Correlation of biochemical (LDH, CK) or autophagic (LC3-1I/l) markers with contractility of EHTs. Significantincrease or decline at any time
point is marked by +. Correlation of LC3-1I/I ratio with contractility is higher (Phi coefficient @ = +0.894) than LDH with contractility (¢ = +0.798) or CK with con-
tractility (¢ = +0.707).

Compound Concentration LDH increase CKincrease LC-3 I/l increase Contractility decline
Erlotinib 10 uM - + o -
100 pM - + o -
Dasatinib 1uM - - = -
10 uM - - + -
Gefitinib 1 uM - = - -
10 uM - + + +
Lapatinib 15 uM - - = -
150 uM + + + +
Sunitinib 1uM - + o -
10 uM - + + -
Imatinib 10 uM - - o -
100 pM + + + +
Sorafenib 10 uM - = o -
100 pM + + + +
Vandetanib 10 uM + + 4= +
100 uM + + + +
Lestaurtinib 10 uM + + + +
100 uM + + + +

doi:10.1371/journal.pone.0145937.t001

were chosen because all lead to reduction of contractile force but with different kinetics (sorafe-
nib: 2 hours, sunitinib: 48 hours, imatinib: 96 hours) and additional aspects of their modes of
cardiotoxicity were described recently. Samples for transmission electron microscopy and
Western immunoblot analysis (+/- bafilomycin A) were harvested at each sampling time point.
One EHT per condition and time point was subjected to transmission electron microscopy
analysis. The results are summarized in S2-S6 Tables. Mosaics composed of 4-9 single EM pic-
tures are illustrated in S4-S7 Figs. They describe well-defined sarcomeres and mitochondria
with little disarray and intact structures for (vehicle) control conditions. Activity of autophagy,
determined by the number of autophagolysosomes and residual bodies was low. The changes
did not show incremental tendencies over time. In contrast, sorafenib, imatinib and sunitinib
led to a substantial increase in sarcomeric disarray, damaged mitochondria and autophagy
activity. The onset of these alterations was 24-48 hours for sorafenib and imatinib and 96
hours for sunitinib. Quantitative analyses of these alterations are expressed as percentage of
cross-sectional area and shown in Fig 4. These results were complemented by immunoblot
analysis for LC3-1II/I of heart cell and cardiac fibroblast EHTs. Representative Western blot
analysis and statistical analysis are shown in Fig 5. For heart cell EHT's LC3-II/1 ratio values
were unchanged for control and vehicle control conditions with maximal LC3-II/I ratio values
of 0.9 and 0.7, respectively (Fig 5G). LC3-II band density increased in the presence of bafilomy-
cin A resulting in LC3-II/I ratio values of 1.6 and 2.0. In contrast, imatinib, sorafenib and suni-
tinib led to a shift and enhancement of the LC3 II band and an increase of the LC3-1II/I ratio
(18.0, 11.5, 10.0; Fig 5G) with onset already after 24 hours (24 hours- 96 hours: sorafenib: 32.5,
10.6, 23.1, 5.3; imatinib: 8.5, 6.1, 4.2, 27.4; sunitinib: 3.2, 2.5, 14.4, 19.9) without additional bafi-
lomycin A effect (Fig 5A-5G). To discriminate if this effect is specific to cardiomyocytes, EHT's
were generated from the fibroblast fraction and analyzed accordingly. This analysis revealed
that fibroblast EHT's show a very similar pattern ([vehicle] control: low LC3-II/I ratio (1.3, 1.2),
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Fig 4. Quantification of cross-sectional area of included region (%) for disarray/autophagy (A), mitochondria (B), cytoplasma (C) and myofibrils (D) in mosaic
transmission electron microscopy images after 24, 48, 72 and 96 hours of incubation under (vehicle) control conditions and with sorafenib (100 uM), imatinib
(100 pM) and sunitinib (10 uM). Mosaic TEM images are shown in S4-S7 Figs. EM alterations are described in S2—-S6 Tables.

doi:10.1371/journal.pone.0145937.9004

bafilomycin A sensitivity (6.5, 7.0), sorafenib, imatinib, sunitinib: high LC3-II/I ratio (6.8, 13.6,
16.2), bafilomycin A insensitivity (8.9, 10.9, 10.3; Fig 5H-5M, values shown in Fig 5M). Active
caspase-3 immunohistochemistry was performed on the same series, demonstrating no cyoto-
plasmic caspase-3 positivity or cellular rarefication in the 96 hour time course for vehicle con-
trol. In contrast, cytoplasmic caspase-3 positivity and cellular rarefication was present in TKI
samples (Fig 6). In addition, nuclear caspase-3 positivity was seen for all time points, suggesting
a fixation artefact.

Discussion

Structural cardiotoxicity is a frequent side effect of TKIs. This study presents, to the best of our
knowledge, the largest head-to-head examination of TKI toxicity on contractility in cardiac tis-
sue done so far. Other interesting candidates like trastuzumab were not included due to sub-
stantial differences in species specificity [15]. Analysis revealed a decline in contractility for six
out of seven cardiotoxic TKIs. This was an encouraging, but imperfect overlap with clinical
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Fig 5. LC3 Western blot analysis of heart cell EHT and cardiac fibroblast EHT after 24—-96 hours of TKl incubation in the absence and presence of

bafilomycin A (B) (100 nM, 2 hours incubation). LC3 band densities were quantified and LC3-I1/l ratios were calculated. (A) Representative Western blot for
heart cell EHT analysis, (B-G) Quantitative analysis of LC3-Il/I ratio in heart cell EHTs (B-G) and fibroblast EHT (H-M). (G, M) Comparison of LC3-II/I ratio of
all time points for heart cell EHTs (G) and cardiac fibroblast EHTs (M). Results are presented as means+SEM. (B-F), (H-L): n = 3-4; (G, M): n = 16—20. One-
way ANOVA and Bonferroni's post-test was used to analyze statistical significance. P-values <0.05 were considered statistically significant and indicated in

the graphs (*), ns: not significant.

doi:10.1371/journal.pone.0145937.9005
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Fig 6. Active caspase-3 immunohistochemistry of time series (24 h-96 h) for vehicle control DMSO 0.1% (DMSO), sorafenib (100 pM), imatinib
(100 pM), and sunitinib (10 uM) on heart cell EHTs. Arrows indicate cytoplasmatic caspase-3 staining. Please note nuclear caspase staining for vehicle
control interpreted as fixation artifact. Scale bar 100 pm.

doi:10.1371/journal.pone.0145937.9006

apportion in cardiotoxic and cardiosafe TKIs. Dasatinib is cardiotoxic in patients but appeared
safe with this assay. On the other hand, gefitinib is not considered cardiotoxic but was associ-
ated with a decline in EHT contractile function. Potential reasons include species-specific dif-
ferences in sensitivity. In fact, recent studies on dasatinib cardiotoxicity in rat (H9¢2) and
human (induced pluripotent stem cell-derived cardiomyocyte) 2D-cell tests revealed a higher
sensitivity of the human assay [16,17] and other studies reported a low sensitivity of rat cardio-
myocytes for TKI mediated LV dysfunction [7,10]. A recent study in freshly isolated canine
cardiomyocytes demonstrated that dasatinib, at a concentration that was without effect in
short term incubation and in our assay (10 uM), reduced contractility when incubated for 4
days. Similarly, sunitinib had already effects at 1 uM. The data suggest higher sensitivity of the
isolated myocyte assay, which may be due to differences in maturity and species [18], but, con-
versely, could also indicate higher compensatory capacity of a 3D tissue-like construct. A criti-
cal question is how these assays perform in terms of specificity and positive and negative
predictive values. This requires the testing of numerous drugs with or without cardiotoxic
potential and remains to be done. Immaturity is evident in neonatal cardiac myocytes as pres-
ent in EHTs, known to exhibit a surprising degree of resistance against hypoxia [19] and imma-
turity of mitochondria [20], arguing for predominantly anaerobic cellular respiration. This is
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reducing the impact of mitochondria on cardiomyocyte biology. In fact, studies in H9¢2 cell
cultures revealed an increase in cardiotoxicity for some TKIs when galactose-containing media
was used, resulting in a higher degree of aerobic cellular respiration [16]. However, galactose-
based media compositions are not optimized for contractile EHT' so far. Other potential rea-
sons are the relatively short incubation time of this study (4 days), and the use of serum con-
taining cell culture media.

Transmission electron microscopic analysis of subcellular organelles in the presence of TKI
revealed a diversity of putative morphological targets (Fig 2B-2F). Among these were alter-
ations in sarcomeres, Z-lines and mitochondria. Furthermore, an increase in autophagolyso-
somes and residual bodies suggested that autophagy was either activated or autophagic flux
was inhibited in the presence of TKIs. A more precise quantification of autophagic activity was
performed by LC3 Western immunoblot analysis and determination of LC3-II/I ratio values of
the two highest TKI concentrations after 96 hours of incubation (Fig 3). This experiment con-
firmed the concentration-dependent increase in LC3-II/I ratio values for TKIs.

The severity of contractility decline in this model was expressed as a safety margin, calcu-
lated as the ratio between TPC and TTC (Fig 1, SI Table). Erlotinib and dasatinb were not asso-
ciated with decline in contractility and led to no or moderate increase in LC3-II/I ratio. TKIs
with a smaller SM (gefitinib, lapatinib, sunitinib, imatinib, sorafenib) were also characterized
by stronger increase in LC3-II/I ratio values. TKIs with the smallest SM (vandetanib, lestarti-
nib) also had the strongest effect on LC3-II/I ratio (significant increase in LC3-II/I ratio for
both tested concentrations). Correlation with SM rank order (S1 Table) revealed that LDH
increase was not detected for TKIs with a high SM (erlotinib, dasatinib, gefitinib) and reliably
detected for TKIs with a small SM of 10 and below (imatinib, sorafenib, vandetanib, lestarti-
nib), suggesting that LDH release is an indicator for more severe toxicity. Phi coefficient ¢ cor-
relation revealed a strong association between decline in contractility and LC3-II/I increase
(+0.894) and less strong association with LDH- (+0.798) or CK-release (+0.707) (Table 1). His-
tological analysis of the highest TKI concentrations after 96 hours of incubation supported the
contractility data in the sense that the decline in contractility was associated with poor cardio-
myocyte morphology (o-sarcomeric actin).

An additional time series experiment was performed with sorafenib, imatinib and sunitinib.
The experiments revealed that sarcomeric disarray and damaged mitochondria were already
established at the early time points (24-48 hours) for sorafenib and imatinib, but needed 96
hours for sunitinib. This finding was substantiated by caspase-3 staining, demonstrating TKIs
to lead to cytoplasmic caspase 3 activity and cellular rarefication (Fig 6). To further dissect the
chronology of autophagy impairment, LC3-II/I ratio was analyzed in protein extracts from the
same time points. The low LC3-1I/I ratio and strong bafilomyocin An effect under (vehicle)
control conditions provides evidence for active autophagic flux in control EHTs. In contrast,
autophagic flux was maximally inhibited in EHTs in the presence of imatinib, sorafenib and
sunitinib, already after 24 hours of incubation (Fig 5B-5G). However, the parallel analysis and
similar impairment of autophgic flux of heart cell EHT's and fibroblast EHTs (Fig 5SH-5M)
demonstrates that TKI mediated impairment of autophagic flux is not specific for
cardiomyocytes.

Inhibition of autophagy has been proposed to be mediated by tyrosine kinase inhibitors and
evidence was provided in several different experimental models for sorafenib, sunitinib and
imatinib [21-26]. Hu et al. suggested that this effect might depend on physicochemical proper-
ties based on the observation that analogues of imatinib without kinase inhibitory activity but
similar physicochemical properties had cardiotoxic potential. The authors proposed that accu-
mulation of TKIs in lysosomes causes inhibition of autophagic flux and that this causes toxicity
[27].
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The TKI-mediated early onset autophagy impairment is compatible with autophagy as one
mechanism of TKI-cardiotoxicity, but does not prove it. The time course of transmission elec-
tron microscopy alterations and the decline in contractility was approximately parallel in the
case of sunitinib and imatinib, but not for sorafenib, where force declined after 2 hours. This
fast timeline in the latter case argues against autophagy flux inhibition as the primary mecha-
nism of acute toxicity and suggests that effects like kinase inhibition or unidentified effects pri-
marily lead to a decline in contractility in this case (Fig 1A). Thus, the molecular mechanism,
and the question as to whether autophagy inhibition is a primary or secondary mechanism of
toxicity, requires further studies. Dissecting this mechanism is difficult, since autophagy is a
central regulatory pathway with complex interconnections. In particular, autophagy
impairment is linked to mitochondrial damage and myofilament disarray, since mitochondrial
and sarcomeric integrity strongly depends on functional autophagic flux [28]. Mitochondria
are particularly sensitive to autophagy (mitophagy) and impairment is associated with dis-
turbed mitochondrial homeostasis since mitochondria generate, and neutralize, reactive oxy-
gen species. Dysfunction (e.g. during hypoxia) can turn the “power plant” of the
cardiomyocytes into producers of excessive reactive oxygen species and up-regulators of pro-
death proteins [29].

A limitation of this study is the high TKI concentrations compared to TPC. This discrep-
ancy could be due to several reasons. Tissue concentrations of the highly lipophilic TKI are
likely much higher than plasma concentrations. This also means that the toxic threshold in
EHTSs may have been lower if even longer periods of incubation would have been chosen
and drugs would have accumulated to a larger extent. The use of neonatal rat cardiomyo-
cytes and the lack of co-morbidities often present in patients (e.g. increased afterload [7],
diabetes and tachycardia) might contribute to the relatively low sensitivity. A second limita-
tion could result from the EHT being less than perfectly supplied by oxygen. This might
result in a high turnover of mitochondria and therefore high sensitivity for impairment of
auto/mitophagy.

In conclusion, this study demonstrates the feasibility to study TKI-mediated cardiotoxicity
in a medium-throughput assay, which is based on contractility and allows secondary analyses
such as immunohistochemistry, transmission electron microscopy and Western blot for mech-
anistic insight. TKIs induced a decline in contractile force in a time and concentration-depen-
dent manner. This was associated with inhibition of autophagic flux. However, this toxicity
was not cardiomyocyte-specific. The study paves the way for more detailed and comprehensive
studies on molecular mechanisms in human induced pluripotent stem cell-derived EHTs.

Supporting Information

S1 Fig. Experimental outline of the analysis of TKI effects on EHT.
(PDF)

S2 Fig. TKI effect on EHT contractility.
(PDF)

S3 Fig. Analysis of lactate dehydrogenase (LDH) and creatin kinase (CK).
(PDF)

$4 Fig. Electronmicroscopical EHT mosaic images after 24 hours of incubation.
(PDF)

S5 Fig. Electronmicroscopical EHT mosaic images after 48 hours of incubation.
(PDF)
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