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Abstract
The human visual system (HVS) plays an important role in stereo image quality perception.

Therefore, it has aroused many people’s interest in how to take advantage of the knowledge

of the visual perception in image quality assessment models. This paper proposes a full-ref-

erence metric for quality assessment of stereoscopic images based on the binocular differ-

ence channel and binocular summation channel. For a stereo pair, the binocular summation

map and binocular difference map are computed first by adding and subtracting the left

image and right image. Then the binocular summation is decoupled into two parts, namely

additive impairments and detail losses. The quality of binocular summation is obtained as

the adaptive combination of the quality of detail losses and additive impairments. The qual-

ity of binocular summation is computed by using the Contrast Sensitivity Function (CSF)

and weighted multi-scale (MS-SSIM). Finally, the quality of binocular summation and binoc-

ular difference is integrated into an overall quality index. The experimental results indicate

that compared with existing metrics, the proposed metric is highly consistent with the sub-

jective quality assessment and is a robust measure. The result have also indirectly proved

hypothesis of the existence of binocular summation and binocular difference channels.

Introduction
In the past several years, we have witnessed a rapid development of stereo and multi-view system
and a widespread application of these systems [1–4]. However, various distortions may be intro-
duced during the creation, transmission, processing and display of stereoscopic contents, which
will affect the quality perception and result in the visual fatigue and visual discomfort [5, 6]. Con-
sequently, it is important to build an effective tool to measure the quality of stereoscopic images.
Stereoscopic image quality assessment (SIQA), which is similar to the two dimensional (2D)
quality assessment (2D-IQA), can be categorized into subjective and objective methods [7]. Since
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human eyes are the terminal receiver of visual signals, it is reasonable to regard the subjective
assessment, which represents the directional reflection of the HVS, as the most convincing way
to evaluate image quality. During the recent year, the research on the subjective experiment has
processed steadily, and various factors that may affect the stereoscopic perception have been
found and investigated. Zhou offered a standard procedure to evaluate the distortions introduced
during the process of transmission and compression [8]. Lee et al. proposed a paired comparison
based on the subjective experiment which intended to minimize the effect of the subject’s limited
3D experience [9]. IJsselsteijn et al. investigated how the camera configurations settings impact
the visual quality [10]. Wöpking et al. figured out the threshold of the binocular disparity and the
depth of focus that may cause viewing discomfort [11]. However, the subjective tests based on
the specific standard procedure need repeated experiments with a great number of participants
[12]. Therefore, the definition of the objective metric, which can be used to reliably predict the
perceived quality of stereo images, has drawn great attention of scholars and experts.

However, designing an accurate objective metric is not an easy matter. There are many chal-
lenges. Firstly, during the procedure of image processing, various distortions are introduced, if
not impossible. It is hard to design a metric that is effective for every type of distortion. Sec-
ondly, since the visual signals have various contents, it will lead to sophisticated distortion
masking. Lastly, after entering the eyes, the visual signals are decoupled and interpreted by the
HVS. However, the HVS and its mathematical modeling have not been realized due to the
great complexity. Nevertheless, the research on SIQA has aroused many experts’ efforts to
make it a reality.

The 2D-IQA has been widely researched and there are many quality assessment metrics
such as structural similarity (SSIM) [13], peak signal-to-noise ratio (PSNR) and visual informa-
tion fidelity (VIF) [14]. A straightforward way is to extend these 2D metrics to SIQA. The earli-
est pioneers who attempted to evaluate the quality of stereo images followed this strategy. Boev
et al. combined the monoscopic quality component and the stereoscopic quality component
for stereo quality assessment [15]. Considering that the stereoscopic images are different from
the plane images because of the additional information of depth, YOU et al. investigated the
capabilities of some common 2D quality metrics in SIQA, and added the depth information
into quality assessment [16]. A similar approach was proposed by Benoit et al., where two mea-
sures of 2D quality SSIM and C4 were augmented with disparity information by computing the
square root of the difference between the reference and distorted disparities to predict the qual-
ity. However, these metrics are inefficient in predicting the perceived quality because the sti-
muli toward the perceived depth are quite different from those for 2D image quality [17]. Bosc
et al. first questioned if it was appropriate to use 2D objective metrics and 2D subjective proto-
cols to evaluate the quality of 3D contents [18].

During the recent years, the concept of Quality of Experience was proposed and widely used
to reflect the overall quality experience of the subjects that were accessing and using the service
provided. Some experts introduced this concept in the SIQA. The QoE of 3D refers to the
unique aspects such as visual comfort, visual fatigue and other visual experience. Chen et al.
proposed a 3D QoE by constructing visual experience as a weight sum of the image quality,
depth quality and visual comfort [19]. Lin et al. adopted three quality components in their met-
ric to evaluate the quality of stereoscopic video, namely the cyclopean view, binocular rivalry,
and the scene geometry [20]. Qi used the relationship between the left and right views to reflect
the QoE, and represented the structure of low-level features by using the phase congruency and
saliency map [21].

Furthermore, some authors have taken a perceptual route in the development of SIQA algo-
rithms. Shen et al. transformed the image by using the Laplacian pyramid and a directional fil-
ter-bank to simulate the multi-channels of HVS and then computed the Minkowski
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summation of the error between the reference and distorted images to derive a quality [22].
Maalouf et al. integrated the left and right images into a cyclopean image to simulate the brain
perception, and used the contrast sensitivity coefficients of the cyclopean image to lead a qual-
ity [23]. Ha et al. proposed a scheme for quality assessment of stereo images by considering the
factors of temporal variation and disparity distribution [24]. Wang et al. proposed a SIQA met-
ric by taking into account of the binocular spatial sensitivity to reflect the binocular fusion and
suppression properties [25]. Bensalma et al. modeled the simple cells and complex cells of
vision system, where the quality is given as the difference of associated binocular energy [26].
Shao et al. divided stereo images into monocular region, binocular fusion region and binocular
suppression region, where the overall quality is given as the linear summation of three regions
[27]. All the above metrics considered the characteristics of the HVS, either low-level or high-
level. However, the key step of those metrics considering low-level characteristics of the HVS is
stereo matching which needs an enormous quantity of calculations and is still an unsolved
problem in stereo-related research. High-level HVS processing mechanism is still mysterious.
Theories used in these models are generally the common knowledge and assumptions about
the high-level HVS characteristics, which makes their quality prediction not convincing.

Recently, a new study has found the evidence that the HVS has separately adaptable channels
for adding and subtracting the neural signals from the two eyes, supporting an unconventional
view of the initial stages of stereopsis [28]. The study overthrew the traditional thought that ste-
reopsis was achieved by combining signals from neurons that simultaneously detected objects in
disparate parts of the two eyes’ images and verified that binocular neurons that encoding the
sum and the difference between the two stereo-halves are used for stereopsis. In our previous
research, we evaluated the quality of stereo images from two perspectives:the objective quality of
either image of the viewpoint pair and corresponding stereo sense among viewpoints [29]. In
our experiment, we found that there was a strong correlation between the difference map and
correlated disparity. In other words, difference map can be treated as an alternative of binocular
disparity to evaluate the stereopsis which can also be called the stereo sense quality. While the
summation contains the information of both views, the measurement of the summation can be
regarded as the evaluation of image quality. The combination of the image quality and stereo
sense quality derives from the overall perceived quality. In this paper, based on this new study
and some low-level characteristics of the HVS, a full reference objective quality assessment met-
ric is proposed for stereo images. Main contributions of our paper are as follows: 1). Analyze
and present a brief introduction of related binocular visual characteristics. 2). Propose a novel
idea of separately evaluating the quality of binocular summation and binocular difference. The
former can be regarded as the image quality and the latter can be deemed as the stereo sensing
quality. 3). In our metric, we do not estimate a disparity map, but use difference map instead.
This innovation improves the efficiency of the proposed metric greatly and provides directions
for the design of stereoscopic image quality algorithm without estimating a disparity map.

The rest of this paper is organized as follows. Section II introduces the theory of binocular
addition and subtraction briefly. Section III presents the detailed implementation of the pro-
posed metric. Section IV describes the experimental results and analysis. In Section V, we sum-
marize our conclusions.

Binocular Summation Channel and Binocular Difference Channel
The human visual system (HVS) is a complicated self-adapted optical nervous system which
responds to the stimulation of external light signal and forms visual sense [30]. Our eyes view
the world from slightly different angle, and the resulting small differences between the images
in the two eyes are the basis of the stereopsis. Traditionally, it is believed that the stereopsis was
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achieved by combining the signals from the neurons that simultaneously detect the objects in
disparate parts of the two eyes’ images (shown in Fig 1(a)) [31]. However, an alternative view
suggests that the binocular neurons first encode the summation and the difference between the
two stereo halves and use them for stereopsis [32]. The speculation of the summation channel
and difference channel has a long history. Until recently, an ingenious experiment designed by
May et al. has produced convincing evidence that such channels exist [33]. The binocular sum-
mation channel (called the B+ channel) and binocular difference channel (called the B− chan-
nel) are independently adjustable (shown in Fig 1(b)). If there is no difference between the two
stereo views, the binocular difference map would be blank, so the binocular difference map
reveals the disparity between the two stereo views which are detected by the brain and used to
construct the three-dimensional view. The binocular summation map shows the superposition
of two views. With the help of binocular summation map, the system gets the ability to inde-
pendently adjust the gains, or respond to strengths of the two channels which enable the system
to compensate for the relatively weak B− signal found in the images of natural scenes. There
are two advantages of having B+ and B− channels:

1. Because the left and right images of the stereo-pair are very similar and highly correlated,
there is plentiful redundancy in the responses to the visual neurons that encode them. One
way to reduce the redundancy is to convert the responses into sums and differences, as
these are uncorrelated.

2. By taking the sums and differences of cone signals, the HVS produces a luminance-sensitive
channel and color-sensitive channels, separately. These channels enable the HVS to ‘decou-
ple’ the cone signals to improve the efficiency of information transmission along the visual
pathway and enhance the ability to distinguish the luminance from color.

1 The Proposed Metric
The proposed metric is a full-reference objective methodology that works with luminance only
and color inputs will be converted into gray scale for further analysis. The frame work of the
proposed metric is shown in Fig 2. The process of our metric can be summarized into four
steps: 1. Obtain binocular summation map and binocular difference map, and analyze their

Fig 1. Two alternative hypothesis of the process of stereopsis, (a) Schematic diagram of traditional view, (b)
Schematic diagram of recent discovery.

doi:10.1371/journal.pone.0145800.g001
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characteristics. 2. Simulate the multi-channels and decouple binocular summation into two
parts for further assessment. 3. Calculate the coefficient value by using the contrast sensitivity
function and contrast masking. 4. Obtain the overall assessment by the nonlinear mapping and
the adaptive combination of the quality of binocular summation and difference. Each section
and the structure of the proposed metric are interpreted in details in the following parts.

Binocular Summation and Binocular Difference
The experiments conducted in our previous work discovered that the absolute difference map
of the viewpoint pair with human standard disparity was an approximate contour which
implies that disparity performs most obviously on the edge of the objects [34]. Similar to the
dense depth map, the absolute difference map also contains the high correlation information of
stereo images and can be an alternative choice of the depth map to evaluate depth. The binocu-
lar summation map of test stereo pair contains the summation of both additive impairments
and detail losses. Detail losses refer to the loss of useful visual information in the test stereo
pair, while additive impairments refer to the redundant visual information which does not
exist in the original but appears in the test pair only. By decoupling detail losses and additive

Fig 2. Structure of the proposedmetric.

doi:10.1371/journal.pone.0145800.g002
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impairment from the binocular summation of the test image and comparing the difference
with the reference summation, we can evaluate the quality of binocular summation.

Given L (left image) and R (right image), the binocular summation (S) map and binocular
difference (D) map of a pair of stereo images can be calculated based on Eq (1) (shown in Fig 3).

D ¼ jL� Rj
S ¼ Lþ R

ð1Þ
(

Simulating Multi-channels and Decoupling Binocular Summation
Different types of neurons will be selectively sensitive to certain types of stimulation, such as
the patterns of a particular frequency or orientation [35]. The visual psychology and physiology
experiments have proven that there exist several independent frequency processing units in the
HVS, which we call the multi-channels. Vimal and Ram found that there were several multiple
frequency channels between 30° and 60° in human black-and-white vision; for human color
vision, the similar channels are also found between 60° to 130° [36]. The existence of these
independent channels has explained a variety of perceptual phenomena and offered a sugges-
tion to divide visual excitation into several subbands at first for further process. To simulate
this feature, we took process of discrete wavelet transform (DWT) to simulate this property
(shown in Fig 4). In DWT, the inputting map is decoupled into different frequency subbands
along with three different orientations (horizontal, vertical and diagonal).

As discussed in the previous section, the binocular summation of the test stereo pair con-
tains the summation of both additive impairments and detail losses of two views. However,
how to decouple the detail losses from the additive impairments was a key problem we were
faced with. The algorithm proposed by Li makes it possible for us [37]. By using this algorithm,
a test image is decoupled into two parts: the restored image (exhibits the same quantity of detail
losses as the test image but is additive impairment free) and the additive impairments (contain
no original image content but additive noises only) (shown in Fig 5). There are two advantages
of using this decoupling algorithm:

1. Unlike some other existing restoration algorithms used for de-noising, de-blocking, de-blur-
ring, super-resolution, etc., which intend to recover the original image as perfectly as possi-
ble by compensating the detail losses, the decoupling algorithm exhibits the same number
of detail losses as the test image.

2. The decoupling algorithm is easy to implement with a small number of calculations.

Fig 3. Summation and difference of stereo pair (a) Left view, (b) Right view, (c) binocular difference map and
(d) binocular summation map.

doi:10.1371/journal.pone.0145800.g003
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By separately evaluating the quality of restored image and additive impairment and combin-
ing them in a proper way, we can easily gain the quality of binocular summation.

The DWT coefficients of original summation Os(λ, θ, i, j) and test summation Ts(λ, θ, i, j)
are given, where ((λ, θ, i, j)) is the index of DWT subbands, λ is the level of the conversion, θ =

Fig 4. Subbands indexing of DWT. Each subband is indexed by a level λ and an orientation θ. θ = 2, 3, 4
denote the vertical, horizontal, and diagonal subbands, respectively.

doi:10.1371/journal.pone.0145800.g004

Fig 5. Decoupling Result of Test Binocular Summation.

doi:10.1371/journal.pone.0145800.g005
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1 indicates the approximate subband, θ = 2, 3, 4 denotes the horizontal, vertical and diagonal
subbands, respectively. We can decouple Ts(λ, θ, i, j) as according to Eq (2).

Rðl; y; i; jÞ ¼ Tsðl; y; i; jÞ; y ¼ 1

kðl; y; i; jÞ � Osðl; y; i; jÞ; otherwise
ð2Þ

(

Where, R(λ, θ, i, j) indicates the DWT coefficients of restored images which contain detail
losses of the test summation, k(λ, θ, i, j) indicates the scaled factor of each DWT coefficient of
test summation and is constrained as: k(λ, θ, i, j) 2 [0, 1]. k(λ, θ, i, j) is determined by the Eq
(3).

kðl; y; i; jÞ ¼ min max
Tsðl; y; i; jÞ

Osðl; y; i; jÞ þ 10�30 ; 0

� �
; 1

� �
ð3Þ

where the constant 10−30 is introduced to avoid dividing by zero. Since DWT is a linear opera-
tion, we can directly get the DWT coefficient of additive impairment from the Eq (4).

Aðl; y; i; jÞ ¼ Tsðl; y; i; jÞ � Rðl; y; i; jÞ ð4Þ

For some special cases like the contrast enhancement, the visual quality will be improved
instead of degradation, as long as the image contrast is too high to look natural. For these cases,
instead of relaxing the constraint on the value, we use Eq (5) to distinguish the contrast
enhancement. Each pair of DWT coefficient of original summation (Os(λ, θ = 2, i, j) and Os(λ,
θ = 3, i, j)) can be represented by using a point in the angular space.

ctðl; i; jÞ ¼ arctan
Osðl; y ¼ 2; i; jÞ

Osðl; y ¼ 3; i; jÞ þ 10�30

� �
þp� uð�Osðl; y ¼ 3; i; jÞ

ð5Þ

Where u(•) refers to the unit step function. Similarly, the angle of test summation is
obtained. Then the absolute angle difference can be gained from Eq (6).

cdiff ðl; i; jÞ ¼ jctðl; i; jÞ � coðl; i; jÞj �
180

p
ð6Þ

Different from other types of distortions, contrast enhancement will result in very small
ψdiff(λ, i, j). In our experiment, the threshold of ψdiff(λ, i, j) is set to 1°. Therefore, Eq (2) can be
replaced by Eq (7).

Rðl; y; i; jÞ ¼
Tsðl; y; i; jÞ; y ¼ 1 or cdiff < 1

�

kðl; y; i; jÞ � Osðl; y; i; jÞ; otherwise
ð7Þ

8<
:

1.1 Contrast Sensitivity Function and Contrast Masking
Contrast sensitivity refers to the minimum contrast value for a viewer to detect a stimulus. It is
also the reciprocal of the contrast threshold. In psychovisual experiments of CSF, the subjects
are required to view the sequential simple stimuli, like sine-wave gratings or Gabor patches
[38]. These stimuli are presented with its contrast which gradually increases or decreases. The
contrast is determined when the stimulus is just perceived or unperceived by the observers.
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The experiments indicate that the contrast sensitivity of the HVS depends on the character-
istics of the stimuli such as orientation, and spatial frequency. The CSF curve peaks at the mid-
dle frequency and drops with both increasing and decreasing frequencies. Fig 6 shows the CSF
curves of horizontal or vertical orientation and diagonal orientation. In our experiments, we
used the CSF model proposed by Zhang [39] The CSF model can be generalized as follows:

HðoÞ ¼ ðaþ b � oÞ � expð�c � oÞ ð8Þ

Where, a = 0.31, b = 0.69, c = 0.29 and ω is the spatial frequency in cycles per degree (cpd) of
visual angle. The nominal spatial frequency F(λ, θ) of each level λ can be obtained from Eq (9).

Fðl; yÞ ¼ p � fs � d
180 � h � 2l y ¼ 2; 3

Fðl; yÞ ¼ p � fs � d
180 � h � 2l � ffiffiffi

2
p ; y ¼ 1

ð9Þ

8>>><
>>>:

By calculating the contrast sensitivity function, the CSF weighed factors can be obtained and
assigned to each subband.

Contrast Masking (CM) is the visibility threshold caused by the presence of a masker signal.
Masking occurs when a stimulus that is visible by itself can no longer be perceived due to the
presence of another stimulus [39]. In psychovisual experiment, the threshold is derived by
superposing the target signal onto the masker signal. Generally, the experiment reveals that
masker contrast is higher, and similarity between the target and the masker in spatial frequency
is closer, and that orientation or phase leads to a higher target visibility threshold. Watson sug-
gested that the contrast masking should be calculated over a broad range of orientation but
only a limited range of space and spatial frequencies [40]. Therefore, we simply used Eq (10) to

Fig 6. CSF curve.

doi:10.1371/journal.pone.0145800.g006
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calculate the CM thresholds.

MTl ¼
X3

y¼1

jMðl;yÞj � w ð10Þ

Where, |M(λ, θ)| is the absolute DWT sub-band of masker signal, w is a 3 × 3 weighting
matrix (shown in Fig 7) and operator� indicates convolution. For restored image and additive
impairment, one’s presence will affect the visibility of the other. Therefore they are treated as
the masker of each other. While for the binocular difference of the test image, the original bin-
ocular difference map can serve as the masking signal to adjust the distortions. We simply took
it as the masker.

Finally, we got the result of contrast masking(A0, R0,Td
0) by taking the absolute CSF-

weighted DWT coefficients, to subtract the corresponding CM threshold obtained from Eq
(10), and clip the resultant negative values to 0. For original binocular summation and differ-
ence, we just calculated their CSF-weighted coefficients for further calculation without contrast
masking processing.

1.2 Overall Assessment Performance
After CSF-weighting and contrast masking, we can get the masked additive impairments of
binocular-summation A0, restored image of binocular-summation R0 and masked test image of
binocular-difference Td

0. For the assessment of binocular summation, we adopted the Min-
kowski merger to pool the detail loss and additive impairment. The pooling equivalent is given

Fig 7. Weightingmatrixw used in contrast masking.

doi:10.1371/journal.pone.0145800.g007
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in Eq (11).

q1 ¼

X4

l¼1

X4

y¼2

X
i;j�center

R0ði; j; l; yÞbs
" #1=bs

X4

l¼1

X4

y¼2

X
i;j�center

O0
sði; j; l; yÞbs

" #1=bs

q2 ¼

X4

l¼1

X4

y¼2

X
i;j�center

A0ði; j; l; yÞbs
" #1=bs

N

ð11Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Where N is the number of pixels and i, j 2 centermeans that only the central region of each
subband is used in the pooling. It is used to overcome the edge effect of the wavelet transform.
βs is the polling factor determined. The final assessment score of binocular-summation can be
gained from Eq (12) by combining q1 with q2.

Qs ¼ q1 þ a1 � 0:5� 1

1þ expða2 � q2Þ
� �

ð12Þ

For the assessment of binocular difference, as discussed in section II − A, the absolute dis-
parity map is an approximate contour which contains the high correlation information of ste-
reo images. Therefore, we adopted the CSF-weighted structural similarity metric to evaluate
the quality of the binocular difference as shown in Eq (13).

Qd ¼
X4

l¼1

X4

y¼1

ol;y �
ð2mx;y þ C1Þð2sx;y þ C2Þ

ðm2
x þ m2

y þ C1Þðs2
x þ s2

y þ C2Þ
ð13Þ

Where, μx and μy are the average of Td(λ, θ) and Od(λ, θ), respectively. σx and σy are their
variance, σx y is their covariance, ωλ, θ is the CSF-weighted factor assigned to each orientation
of each sub-band, C1 and C2 are constants determined in the experiments.

In order to combine the assessment of binocular summation with the assessment of binocu-
lar difference, a necessary step is nonlinear mapping. The nonlinear function applied in our
experiment is as shown in Eq (14).

Q0 ¼ b1 � 0:5� 1

1þ expðb2 � ðQ� b3ÞÞ
� �

þ b4 � Qþ b5 ð14Þ

After nonlinear mapping, the overall quality score can be expressed as Eq (15).

Q ¼ osQ
0
s þ odQ

0
d ð15Þ

Where Qs
0 and Qd

0 are the nonlinear mapping result of Qs and Qd, respectively. ωs and ωd

are constants determined by the experiment and restricted by Eq (16).

os þ od ¼ 1

0 < os < 1

0 < od < 1

ð16Þ

8>>><
>>>:
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Experimental Result and Analysis

Stereo Database
The stereo subjectively-rated image database used in our experiment is LIVE 3D Image Quality
Database of the University of Texas at Austin (phase 1) [19]. The main interest of this database
is the availability of subjective scores which allows the study on the correlation between the
experimental results and human judgment. Besides, the most existing metrics for stereoscopic
images work on the database of their own, which are either private or unavailable for us to
compare or lack in subjective ratings. To get a more objective and impartial evaluation, we
adopted the third party database. We selected 20 pairs of original stereo images (shown in Fig
8) and 365 pairs of distorted stereo images for comparison. Distorted stereo pairs contain five
types of distortions, including JEPG, JEPG2000 compression, additive white noise, blur and
fast fading (shown in Fig 9).

Performance Measures and Parameters Determination
To evaluate the predictive performance of the proposed metric, four common performance
measures, including the Pearson linear correlation coefficient(PLCC), the root mean squared
error (RMSE), the Spearman rank-order correlation coefficient (SROCC) and Kendall rank-
order correlation coefficient (KROCC), were adopted. The PLCC and RMSE are used to mea-
sure the prediction accuracy and are defined in Eqs (17) and (18). The SROCC and KROCC are
used to evaluate the prediction monotonicity. For a perfect match of objective and subjective

Fig 8. 20 left views of original stereo image pairs.

doi:10.1371/journal.pone.0145800.g008

Fig 9. One of the original left view images and the corresponding five types of distortion. (a) Original
left view. (b) JEPG compressed. (c) JEPG 2000 compressed. (d) White noise. (e) Blur. (f) Fast fading.

doi:10.1371/journal.pone.0145800.g009
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scores, RMSE = 0 and PLCC = SROCC = KROCC = 1.

PLCCCðX;YÞ ¼

Xn

i¼1

ðXi � �XiÞðYi � �YiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðXi � �XiÞ2
Xn

i¼1

ðYi � �YiÞ2
s ð17Þ

RMSEðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðXi � YiÞ2
s

ð18Þ

In the proposed metric, five parameters need to be determined i.e., the pooling component
βS in Eq (12), α1, α2 in Eq (13), and weighting factors ωS, ωd in Eq (18). The strategy we used in
parameterization is to select the parameters, which depends on how well the resulting models
match the physiological and psychophysical experiment. The parameter result is βS = 3, α1 =
1.1, α2 = 515, ωS = 0.465, and ωd = 0.535.

Overall Performance
In this section, we compared the performance of the proposed metric with several implementa-
tions of commonly used 2D metrics i.e. PSNR, SSIM and ADM [37], and two existing schemes
for stereo images, Benoit’s scheme [17], Chen’s scheme [19] and Lin’s scheme [20]. The score
measured by 2D metrics will be given as the average score of the left and right view. For
Benoit’s scheme, we adopted the d1 metric proposed in the paper, in which the 2D metric is
SSIM and disparity distortion is estimated by using the global correlation coefficient between
the original and distorted disparity maps. For Chen’s scheme, the 2D metric adopted is SSIM.
Since all schemes require estimated disparity maps, we use the same stereo matching algorithm
[41] to create the disparity maps. Fig 10 shows the scatter plots of six metrics respectively. The
vertical axis denotes the subjective score of perceptual quality and the horizontal axis denotes
the predicted score of each metric. From the scatter plots, we can see that the scatter points of
the proposed metric are more concentrated to the diagonal than other metrics. The PSNR per-
forms the worst compared with the other metrics, because the scatter points are chaotic and
not obviously correlated with DMOS. The maximum error between PSNR and DMOS is up to
47% and the mean error is 30%. Therefore, the PSNR should not be used as a metric to evaluate
the quality of stereo images. The scatter points of SSIM is more concentrated to the diagonal,
but the maximum error and mean error are still high up to 43% and 26%, respectively. The
maximum error and mean error of the proposed metric are 17% and 9% respectively, which
are the lowest among all metrics.

To provide an intuitive instructions of each metric, Table 1 shows the values of PLCC,
RMSE, SROCC and KROCC of each metric where the indicator that gives the best performance
is highlighted in bold. From the table we can see that the proposed metric is more prominent
than the other metrics. The decouple algorithm used in our metric is from [37] but our metric
performs much better. It proves that stereo sensing quality plays an important role in predict-
ing the quality of stereoscopic images. The performance of the Benoit’s scheme is lower than
the 2D-IQA ADM but is better than its related 2D-IQA SSIM. On one hand it emphasizes the
importance of stereo sensing quality in predicting the perceived quality of stereoscopic images
and the addition of disparity can improve the performance to a certain extent; on the other
hand, it reveals the deficiency of these metrics that the quality of the estimated disparity is
highly dependent on the stereo matching algorithms. In our metric, we do not need to estimate
a disparity map. Instead we use the difference map which is another form to show stereo
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sensing as a replacement. The use of difference maps not only reduces our risk that the perfor-
mance of the metric depends on the stereo matching metric used, but also saves time of esti-
mating a disparity map. The run time of each metric is given as Table 2 where the Total Time
is the total elapsed time to predict the quality of all distorted stereoscopic images included in

Table 1. Performance comparison.

PSNR SSIM ADM Benoit’s scheme Lin’s Scheme Chen’s scheme Proposed

PLCC 0.8345 0.8725 0.9119 0.8829 0.8645 0.9166 0.9303

SROCC 0.8341 0.8757 0.9083 0.8862 0.8559 0.9157 0.9263

KROCC 0.6297 0.6792 0.7187 0.6907 0.6559 0.7368 0.7536

RMSE 12.0480 10.6841 8.9752 10.2681 10.9898 8.7406 8.0189

doi:10.1371/journal.pone.0145800.t001

Fig 10. Scatter plots of objective scores versus subjective scores for the eight metric, (a)SSIM, (b)PSNR, (c)
ADM, (d) Benoit’s scheme, (e) Chen’s scheme, and (f) Proposed scheme.

doi:10.1371/journal.pone.0145800.g010

Table 2. Run Time of eachmetric.

PSNR SSIM ADM Benoit’s scheme Lin’s scheme Chen’s scheme Proposed

Total Time (s) 34.734 s 92.081 s 143.257 s 9268.470 s 9846.461 9309.223 s 207.127 s

Average Time (s) 0.095 s 0.252 s 0.463 s 25.393 s 26.976 25.505 s 0.567 s

Self Time (s) 3.272 s 3.149 s 2.7132 s 6.155 s 2.561 s 0.624 s 1.105 s

doi:10.1371/journal.pone.0145800.t002
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the stereo database, Average Time is the average time spent to predict the quality of a single
pair, Self Time is the time spent of the main function excluding the time spent in its child func-
tions. Self Time also includes overhead resulting from the process of profiling. From the table
we can see that the running-speed of the proposed metric is faster than Benoit’s scheme and
Chen’s scheme because both schemes need to estimate a disparity map. The running-speed of
the proposed metric is lower than 2D-IQA but is not far behind.

However a good performance of overall quality prediction does not necessarily mean a good
performance for a certain distortion type. Table 3 shows the value of PLCC, RMSE, SROCC
and KROCC of each distortion type. From the table we can see that PSNR is a useful measure
only for additive white noise. Chen’s scheme performs better for distortion of blur and fast fad-
ing. Shao’s scheme is not very capable in dealing with the distortion of “noise”. The proposed
scheme is less effective in predicting JEPG, JEPG2000 compressed distorted image quality but
the overall performance of the proposed metric is better than the Benoit’s scheme and Chen’s
scheme in general.

To better illustrate the relationship between the DMOS and objective metrics discussed in
this paper, the statistic results of 18 distorted image pairs of a stereo pair are shown in Fig 11.
From the statistic results, we can see that the trend of the proposed metric is the closest to the
trend of DMOS among all metrics. The Lin’ scheme, Benoit’s scheme, Chen’s scheme and
ADM also show high correlation with DMOS. There’s no obvious relationship between the
trend of PSNR and DMOS.

Since the proposed metric contains two parts, the performance of each part is also evaluated.
Fig 12 shows performance of each part and the overall quality, the binocular summation part is
named Scheme A while the binocular difference part is named Scheme B. In order to illustrate
clearer, the RMSE value is reduced tenfold. It is obvious that the overall quality yield a higher
correlation with the subjective value than both part. We further investigated the role that

Table 3. Performance comparison of each distortion.

Distortions Criteria PSNR SSIM ADM Benoit’s scheme Lin’s scheme Chen’s scheme Proposed

JEPG PLCC 0.2187 0.4871 0.6719 0.5579 0.2866 0.6342 0.6777

SROCC 0.2183 0.4347 0.5926 0.5189 0.2996 0.5582 0.6010

KROCC 0.1797 0.2818 0.4009 0.3490 0.2461 0.3718 0.4805

RMSE 8.5079 7.6146 6.4578 7.2360 8.3531 6.7433 6.4111

JEPG2000 PLCC 0.7851 0.8650 0.9333 0.8897 0.8381 0.9164 0.9376

SROCC 0.7993 0.8581 0.9008 0.8701 0.8388 0.8956 0.9026

KROCC 0.5918 0.6563 0.7158 0.6696 0.6386 0.7139 0.7259

RMSE 10.6954 8.6632 6.0009 7.8853 9.4210 6.9136 6.0037

White Noise PLCC 0.9349 0.9384 0.9211 0.9360 0.9280 0.9432 0.9213

SROCC 0.9316 0.9387 0.9236 0.9347 0.9284 0.9481 0.9264

KROCC 0.7665 0.7848 0.7608 0.7753 0.7614 0.8025 0.7620

RMSE 7.8700 7.6623 8.6342 7.8058 8.2618 7.3690 8.6231

Blur PLCC 0.9156 0.9607 0.8987 0.9256 0.9475 0.416 0.9511

SROCC 0.9020 0.8793 0.8891 0.8967 0.9345 0.9261 0.9217

KROCC 0.7333 0.7192 0.7859 0.7354 0.7859 0.7717 0.7576

RMSE 7.7594 7.6206 5.3549 7.3052 6.1721 6.4977 5.9619

Fast Fading PLCC 0.7026 0.7207 0.8549 0.7514 0.7086 0.7575 0.8272

SROCC 0.5875 0.5871 0.8154 0.6142 0.6581 0.6879 0.7734

KROCC 0.4168 0.4308 0.6289 0.4561 0.4719 0.5118 0.5865

RMSE 11.7900 11.4857 8.5957 10.9314 11.6895 10.8152 9.3087

doi:10.1371/journal.pone.0145800.t003
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binocular summation and binocular difference played that contribute to this result and found
that for JEPG, JEPG 2000 compression and additive white noise distortions, the score of binoc-
ular summation is high, while the score of binocular difference is relatively low. The reason is
that these types of distortions make greater distortions for binocular summation but small
structure distortion for binocular difference which is opposite to blur and fast fading. The over-
all score absorbs the advantages of binocular summation and binocular difference, which
makes the overall performance consistent with subjective scores. This result however in some
ways have prove the existence of binocular decouple channels of binocular difference and bin-
ocular summation at the initial phase of stereopsis.

Result On Other Database
To further verify the proposed method, more 3D IQA Database need to be used. However,
some of 3D IQA Databases are either not publicly available or absent of subjective assessment
value. To solve this problem, the SVBL 3D IQA Database (Stereo Image Database of Stereo
Vision and Bio-Optics Laboratory from School of Electronic and Information Engineering,
Tianjin University [29]) was used to further verify the proposed method. The SVBL 3D IQA
Database contains 360 distorted stereopairs and 30 original stereopairs. Each stereoscopic

Fig 11. 10 statistic results of 18 distorted pairs of an original pair.

doi:10.1371/journal.pone.0145800.g011

Fig 12. Performance comparison of each part and overall.

doi:10.1371/journal.pone.0145800.g012
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image in this database has bee evaluated by human subjects, and assigned a quantitative subjec-
tive quality score [42]. The performance numbers (PLCC, SROCC, KROCC and RMSE) of 2D
metrics and compared 3D QA models on SVBL 3D IQA database is given in Table 4.

From the table we can conclude that the proposed metric performs best among all metrics.
Both the proposed metric and Chen’s scheme perform better than 2D IQA metrics. Chen’s
scheme performs well because it also consider some characteristics of human visual system.
However the Chen’s scheme only considered binocular combination characteristic and failed
in investigating the stereopsis produce process. Though Lin’s scheme considered binocular
integration behaviors, its performance is mediocre. That is because on the one hand, the algo-
rithm was specifically designed to predict the quality of 3D image compression and could not
be applicable to other types of distortions, on the other hand it ignored the procedure of stere-
opsis. Benoit’s Scheme failed in both database, from which we can conclude that it doesn’t
work to derive a stereo quality assessment metric by simply combine existing 2D metric with
disparity map without considering stereoscopic visual characteristics.

Conclusion
According to the human eye’s two processing channels: binocular summation channel and bin-
ocular difference channel, this paper proposes an objective quality assessment metric for ste-
reoscopic images. The proposed metric introduces the binocular visual characteristics which
can greatly improve the performance of the metric. Also, the proposed metric is free of depth
map which makes our metric more efficient and effective. The experiment results based on
LIVE 3D database and SVBL database indicate the effectiveness of the proposed quality metric
in matching subjective ratings. The prosed metric have indirectly proved the existence of bin-
ocular decouple channel which are binocular summation channel and binocular difference
channel which also inspire us to prove hypothesis by reasonable application. Our future work
will explore application of some other HVS characteristics in quality assessment of stereoscopic
images. Verify some hypothesis of stereoscopic visual characteristics by some experiments or
applying the into our metric and extend our metric to stereoscopic video quality assessment.
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