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Abstract
Insulin resistance (IR) and type 2 diabetes mellitus (T2DM) have been found to be associ-

ated with postprandial hypertriglyceridemia (PPHTg). However, whether PPHTg can cause

IR and diabetes is not clear. We therefore investigated the role of PPHTg in development of

T2DM in rat model of T2DM. 96 male Wistar rats were randomized into four groups (24 rats

each). Control Group A, high sucrose diet (HSD) Group B, HSD+Pioglitazone (10mg/kg/

day) Group C and HSD+Atorvastatin (20mg/kg/day) Group D. Fat and glucose tolerance

tests were done at regular intervals in all groups besides insulin and body weight measure-

ment. At 26 weeks, low dose streptozotocin (15mg/kg,i.p.) was given to half of the rats. All

rats were followed up till 48 weeks. PPHTg developed as early as week 2 in Group B and

stabilized by week 14. Group B displayed highest PPHTg compared to other groups. Ator-

vastatin treatment (Group D) abolished PPHTg which became comparable to controls, pio-

glitazone treatment partially blunted PPHTg resulting in intermediate PPHTg. Group B with

highest PPHTg showed highest subsequent IR, glucose intolerance (GI) and highest inci-

dence of prediabetes at week 26 and diabetes at week 34 and 46 compared to other groups.

Group D rats displayed lower IR, GI, low incidence of prediabetes and diabetes at these

time points compared to Groups B and C. ROC analysis showed that triglyceride area

under the curve of each time point significantly predicts the risk of diabetes. Present study

provides the evidence that PPHTg predicts the development of IR, GI and T2DM in rat

model of diet induced T2DM.

Introduction
Postprandial hypertriglyceridemia (PPHTg) has emerged as an important independent risk
factor for atherosclerosis particularly in patients with type 2 diabetes. Insulin resistance and
type 2 diabetes mellitus have been reported to cause postprandial hypertriglyceridemia [1,2].
Whether PPHTg can lead to insulin resistance and type 2 diabetes is not known.
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In recent years, some studies have shown that PPHTg is an early abnormality in the natural
history of T2DM [1] and has been reported in newly detected type 2 diabetes patients, predia-
betes subjects [3] as well as in genetically predisposed first degree relatives of type 2 diabetes
patients [4]. These observations suggest that PPHTg may possibly be occurring much before
the onset of T2DM. Short term experimental studies [5] and human case reports [6] also sup-
port our hypothesis that PPHTg could predict insulin resistance and glucose intolerance. The
human evidence regarding the causal role of triglycerides in T2DM comes from the case report
of triglyceride induced diabetes, where very high levels of triglycerides resulted in insulin resis-
tance and diabetes and complete reversal of the overt diabetes and near complete reversal of
insulin resistance occurred when lipid malabsorption was induced by bilio-pancreatic diver-
sion which substantially lowered the triglyceride levels [6].

However, despite the growing evidence of a possible causal link between PPHTg and insulin
resistance and T2DM, studies on its role in the pathogenesis of T2DM are few and preliminary.
Further these studies were in patients with preexisting genetic defects which had resulted in
extreme familial hypertriglyceridemia who had then developed glucose intolerance and diabe-
tes [1,6]. Hence these results cannot be extrapolated to the general population.

In the present longitudinal experimental study we tested whether diet induced PPHTg in
the absence of any genetic predisposition/specific genetic defects could lead to insulin resis-
tance, glucose intolerance and type 2 diabetes mellitus. This we believe is the most common
scenario of type 2 diabetes seen in clinical practice as specific genetic defects account for less
than 5% of all type 2 diabetes cases [7]; therein lies the originality of this study.

The diet induced model of type 2 diabetes mellitus chosen for the study mimics and exhibits
all the classical features that are known to occur in the natural history of human type 2 diabetes
mellitus [8,9]. The rats chosen were wild wistar rats in whom no specific genetic predisposition
is expected which is expected to provide evidence on any association between postprandial
hypertriglyceridemia and diet induced glucose intolerance/diabetes. This could help to under-
stand the precise role of postprandial hypertriglyceridemia in the pathogenesis of insulin resis-
tance and type 2 diabetes mellitus.

Materials and Methods
This study was approved by Institutional Ethics Committee—Animal Research (IEC-AR),
University College of Medical Sciences, Delhi (IEC-AR approval letter no. UCMS/CAH/2010/
82A-4, dated January 6, 2010). All the experiments were conducted in conformity with Public
Health Service (PHS) policy and guidelines of Institutional Ethics Committee—Animal
Research (IEC-AR), University College of Medical Sciences, Delhi. Ninety six selectively bred
male Wistar rats (Rattus norvegicus) (6 weeks old) were procured from institutional central
animal house facility. All the animals were housed under controlled environmental conditions
(temp 20–25°C, humidity 50±20%) and diurnal cycle (12-h light/dark). After 2 weeks of accli-
matization animals were randomized into stratified groups ensuring equal body weight means
among them.

Ninety six male Wistar rats were randomized into four groups (24 rats each). Control group
A was given standard chow diet, high sucrose diet group B, high sucrose diet + pioglitazone
(10 mg/kg/day oral, USV pharmaceuticals) group C and high sucrose diet + atorvastatin
(20 mg/kg/day oral, Zydus Cadila) group D. Group A and B were given vehicle (0.5% carboxy-
methyl cellulose) only. After overnight fasting (12 hour), oral fat challenge tests [10] at week
2,6,10,14,18,22,26,32,48 and oral glucose tolerance tests [11] at week
4,8,12,16,20,24,26,28,30,34 and 46 were done in all the four groups. In oral fat challenge test,
2 ml/kg olive oil was given orally following fasting blood sampling and then blood samples
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were collected from tail vein after 2, 4, 6 and 8 hours of olive oil loading. Similarly, for oral glu-
cose tolerance test, 2 g/kg glucose was given orally following fasting blood sampling and then
blood samples were collected from tail vein after 30, 60, 90 and 120 minutes of glucose loading.
Body weight was recorded at the time of every fat challenge test and oral glucose tolerance test.
Fasting serum insulin was also measured at the time of every fat challenge and oral glucose tol-
erance test. Fasting blood sugar levels were also measured at the time of every fat challenge test.
At week 26, low dose streptozotocin (15 mg/kg, intraperitonial, Sigma chemicals) was given to
half of the rats in each group (i.e., 12 rats in each group) to induce partial beta cell destruction
[9] and an equal volume of vehicle (citrated buffer, pH 4.5) was given to remaining half rats in
each of the four groups. At week 48, half of the rats from each group/subgroup were killed
humanely using carbon dioxide inhalation under veterinary supervision. Visceral fat, subcuta-
neous fat and hepatic fat content were measured in killed rats at week 48 and pancreas were
stored in 10% formalin for histopathology. Incidence of diabetes was also observed in remain-
ing/surviving rats at week 72.

After two weeks of acclimatization i.e., day one of study, control group A was given control
diet. Groups B, C and D were given high sucrose diet used by Rene et al. [8] with slight modifi-
cation in view of the long term follow up period of 72 weeks. Experimental diet used in our
study had 230 gm added sucrose per 1000 gm of diet. Sixty percent of total calorie intake was
from carbohydrate source (including sucrose), 15% of total calorie intake was provided by pro-
tein and 25% by fat. All the rats were given their respective diet and water ad libitum unless
specified.

Blood glucose was measured by glucometer (One Touch, Sure Step Life Scan, Johnson &
Johnson). Triglyceride and total cholesterol in serum samples were measured by commercially
available kits (Merck-Labkit, Spain, coefficient of variation for triglyceride and cholesterol
was<1% within the assay and<2% between the assays) and HDLc was estimated by direct
method (Accurex biomedicals, India, coefficient of variation<1% within the assay and<2%
between the assays). Each time Quality control sera (BioRad, USA) were run along with
unknown samples. The LDLc was calculated as following (Friedwald equation); LDL = [Total
CHL–(HDL +TG/5)]. Serum insulin levels were measured by commercially available RIA kits
(Millipore, USA, coefficient of variation<5% within the assay and<10% between the assays)
and HOMA-IR was calculated as applicable to rats [12], HOMA-IR = [Fasting insulin (μU/ml)
x Fasting glucose (mg/dl)]/2430.The cut offs of blood sugars values for diagnosis of prediabetes
and diabetes are similar as applicable to humans [8,13] i.e., for diabetes; fasting blood sugar
�7 mmol/L or 2 hour postprandial�11.1 mmol/L or both and for prediabetes fasting blood
sugar 5.55 mmol/L mg/dl to<7 mmol/L mg/dl or 2 hour postprandial 7.77 mmol/L to
<11.1 mmol/L or both.

Visceral fat was defined as the fat located inside the abdominal cavity and packed between
the organs i.e., stomach, liver, intestines, kidneys. Visceral fat was excised and weighed imme-
diately in sacrificed rats and calculated as Visceral fat % = (Excised visceral fat (gm) / Total
body weight (gm)) x 100 [14,15]. Subcutaneous fat mass (SF) was defined as fat in the subcuta-
neous area of the abdominal wall and calculated as Subcutaneous Fat % = (Subcutaneous fat
(gm) / Total body weight (gm)) x 100[14,15].

Hepatic fat content was measured by Folch method [16], for this purpose, volume of tissue
sample was computed on the assumption that the tissue has the specific gravity of water i.e.,
the volume of 1 gm of tissue is 1 ml.

Pancreas were stored in 10% formalin until staining. Routine histopathology processing was
done and obtained sections were stained with haematoxylin and eosin staining. Islet cell mass
was analyzed on light microscopy (binocular).
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Statistical Analysis
Area under the curve was calculated by trapezoidal rule. To compare the variables viz lipid
parameters, glucose intolerance, insulin, insulin resistance and body weight between the groups
and within the groups at different time points, generalized estimating equation followed by
least significant difference pair wise comparisons were applied using SPSS 20.0. Comparison of
incident diabetes and prediabetes between the groups was done by Chi-square test. Receiver
operating characteristic (ROC) curve analysis was used to evaluate the validity of postprandial
triglyceride for predicting the risk of diabetes. Values were considered significant if P =<0.05.

Results
All the parameters at baseline were found to be similar between the control group A and each
of the three groups given a high sucrose diet.

Postprandial triglyceride area under the curve (PPTg—AUC) was observed to be signifi-
cantly higher in high sucrose diet (HSD) fed rats as early as week 2 which stabilized by week 14
and remained high till week 48 as compared to the control group (Table 1). Postprandial tri-
glyceride responses as indicated by PPTg—AUC to fat challenge in HSD fed rats were signifi-
cantly blunted both by atorvastatin and pioglitazone (Table 1). With atorvastatin the blunting
occurred after week 2 and was nearly complete approaching control values for most of the
study till week 48 (Table 1). However, with pioglitazone the blunting occurred only after 10
weeks and remained significant for remainder of the study but was less complete when com-
pared to atorvastatin at most of the time points (Table 1).

From these observations it can be concluded that postprandial triglyceridaemic burden over
the follow up period of the study was lowest in control group A and atorvastatin treated HSD
fed rats (group D). Postprandial triglyceridaemic burden over the follow up period of the study

Table 1. Triglyceride area under the curves in all the four groups at different time points.

Time
points
(week)

Group A Mean±SD
(mmol L-1 8 hr) (n = 24,
25%)

Group B Mean±SD
(mmol L-1 8 hr) (n = 24,
25%)

Group C Mean±SD
(mmol L-1 8 hr) (n = 24,
25%)

Group D Mean±SD
(mmol L-1 8 hr) (n = 24,
25%)

Significance

2 11.55±2.50 15.71±2.84 15.95±2.57 14.17±2.13 a = <0.001, b = <0.001, c =
<0.001, d = ns, e = 0.03,
f = 0.01

6 12.85±1.64 16.31±4.20 16.66±5.67 13.59±3.37 a = <0.001, b = 0.002, c = ns,
d = ns, e = 0.01, f = 0.02

10 15.83±3.84 22.19±5.22 17.87±4.95 15.49±3.77 a = <0.001, b = ns, c = ns,
d = 0.005, e = <0.001, f = ns

14 16.91±6.14 24.10±3.98 20.04±5.72 16.49±3.95 a = < 0.001, b = ns, c = ns,
d = 0.006, e = <0.001, f = 0.01

18 17.41±5.18 26.70±6.16 22.52±5.50 17.97±3.82 a = <0.001, b = 0.001, c = ns,
d = 0.01, e = <0.001, f = 0.001

22 18.59±7.61 27.05±3.69 21.65±3.80 18.21±2.68 a = <0.001, b = ns, c = ns, d =
<0.001, e = <0.001, f = <0.001

26 18.25±2.88 28.35±4.50 21.97±3.40 19.04±3.70 a = <0.001, b = <0.001, c = ns,
d = <0.001, e = <0.001,
f = 0.006

32 17.86±3.78 28.95±4.16 18.76±3.86 17.85±3.87 a = <0.001, b = ns, c = ns, d =
<0.001, e = <0.001, f = ns

48 14.01±2.89 27.84±2.58 18.52±5.23 14.81±4.27 a = <0.001, b = 0.001, c = ns, d
= <0.001, e = <0.001, f = 0.01

a = Group A vs Group B, b = Group A vs Group C, c = Group A vs Group D, d = Group B vs Group C, e = Group B vs Group D, f = Group C vs Group D

doi:10.1371/journal.pone.0145730.t001
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was highest in HSD fed rats given no intervention (group B). Postprandial triglyceridaemic
burden in pioglitazone treated HSD fed rats (group C) was lower than group B but slightly
higher than groups A and D. These observations are also applicable for peak triglyceride levels
which were found to be significantly higher in group B compared to group A and group D at
all time points. Peak triglyceride levels were also significantly higher in group B compared to
group A at all time points (Table 2). Fasting triglyceride (FTG) levels were found to be normal
in group B till week 10 even as significant postprandial hypertriglyceridemia was well docu-
mented from as early as second week. However, after week 10 FTG levels were also found to be
significantly higher in group B compared to group A till week 48 (P =<0.05).

We did not observe any significant trend in any of the other lipids (total cholesterol, HDL
and LDL) in fasting and postprandial state throughout the study.

Glucose area under the curve was not significantly different from baseline until week 12 in
any of the four groups studied. Glucose area under the curves were observed to be significantly
higher overall in high sucrose diet fed rats compared to controls from week 12 to week 24 and
26. There were no significant differences in glucose area under the curves between atorvastatin
treated rats and controls in the same period. In the pioglitazone treated rats glucose area under
the curve was observed to be similar to controls at week 12. However, it was found to be higher
at week 24 and 26 as compared to controls (Table 3). Overall, glucose—area under the curve
was highest in high sucrose diet fed group when compared with (i) standard chow diet fed rats,
(ii) high sucrose diet + Atorvastatin treated rats and (iii) high sucrose diet + Pioglitazone
treated rats. Also, it has been observed that triglyceride area under the curves and glucose area
under the curves were highest in high sucrose diet group B rats followed by pioglitazone treated
group C compared to groups A and D throughout the study period (Fig 1A and 1B).

Significantly higher (82.6%; 19/23) rats in high sucrose diet group B and 70.8% (17/24) pio-
glitazone treated rats in group C had impaired glucose tolerance (prediabetes) compared to

Table 2. Peak triglyceride levels during fat challenge test in all the four groups at different time points.

Time points
(week)

Group A Mean±SD
(mmol L-1) (n = 24,
25%)

Group B Mean±SD
(mmol L-1) (n = 24,
25%)

Group C Mean±SD
(mmol L-1) (n = 24,
25%)

Group D Mean±SD
(mmol L-1) (n = 24,
25%)

Significance

2 2.26±0.84 3.34±1.13 3.18±0.65 2.62±0.56 a = 0.002, b = 0.02, c = 0.01,
d = ns, e = 0.03, f = 0.008

6 2.26±0.47 2.85±0.65 3.31±0.59 2.23±0.71 a = 0.02, b = 0.01, c = ns,
d = 0.02, e = 0.005, f = 0.02

10 3.09±1.23 3.69±1.03 3.18±1.03 2.60±0.77 a = 0.02, b = ns, c = 0.04,
d = 0.04, e = <0.001, f = 0.02

14 3.29±1.53 4.16±0.86 3.87±1.62 2.62±0.73 a = 0.01, b = 0.03, c = 0.04,
d = ns, e = <0.001, f = 0.003

18 3.39±1.09 4.59±1.19 4.09±1.14 2.90±0.68 a = 0.009, b = 0.03, c = 0.04,
d = ns, e = <0.001, f = 0.002

22 3.83±1.39 4.28±0.60 3.85±0.66 3.23±0.60 a = 0.04, b = ns, c = 0.02,
d = ns, e = 0.001, f = 0.01

26 2.32±0.63 4.62±0.75 3.43±0.52 3.43±0.74 a = <0.001, b = <0.001,
c = 0.002, d = 0.004, e = 0.003,
f = ns

32 2.66±0.67 4.63±0.72 3.10±0.60 2.93±0.47 a = <0.001, b = 0.04, c = ns, d =
<0.001, e = 0.001, f = ns

48 2.34±0.69 4.40±0.56 2.36±0.83 2.48±0.78 a = 0.007, b = ns, c = ns,
d = 0.005, e = 0.009, f = ns

a = Group A vs Group B, b = Group A vs Group C, c = Group A vs Group D, d = Group B vs Group C, e = Group B vs Group D, f = Group C vs Group D

doi:10.1371/journal.pone.0145730.t002
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control group A, 4.2% (1/24) at week 26 (P =<0.001 for groups B vs. A and groups C vs. A).
Also, incidence of prediabetes in atorvastatin treated group D (12.5%; 3/24) was significantly
lower compared to group B (P =<0.001) and group C (P =<0.001). The incidence of predia-
betes was not significantly different between groups B and C (P = 0.54) and groups D and A
(P = 0.60) at week 26.

Cumulative incidence of glucose intolerance (prediabetes+ diabetes) was significantly
higher (100%; 23/23) in rats fed on high sucrose diet group B and pioglitazone treated rats in
group C (83.33%; 20/24) compared to control group A (41.66%; 10/24) at week 34 (P = 0.001
for groups B vs. A and P = 0.007 for groups C vs. A). Also, incidence of glucose intolerance
in atorvastatin treated group D (50%; 12/24) was significantly lower compared to group B
(P =<0.001) and group C (P = 0.03). The incidence of glucose intolerance was not significantly
different between groups B and C (P = 0.12) and group D and A (P = 0.77).

Similar trend was also observed at week 46 where incidence of glucose intolerance (predia-
betes + diabetes) was significantly higher (100%; 23/23) in rats fed on high sucrose diet group
B and pioglitazone treated rats in group C (87.5%; 21/24) compared to control group A,
(54.16%; 13/24) (P =<0.001 for groups B vs. A and P = 0.02 for groups C vs. A). Also, inci-
dence of glucose intolerance in atorvastatin treated group D (58.33%; 14/24) was significantly
lower compared to group B (P =<0.001) and group C (P =<0.05). The incidence of glucose
intolerance was not significantly different between groups B and C (P = 0.24) and groups D
and A (P = 0.77).

No rat developed overt diabetes in any of the four groups till week 26. At week 34 i.e.,
4 weeks after low dose of streptozotocin, 90.90% (10/11) of rats in high sucrose diet group B

Table 3. Glucose area under the curves in all the four groups at different time points.

Time
points
(week)

Group A Mean±SD
(mmol L-1 2 hr) (n = 24,
25%)

Group B Mean±SD
(mmol L-1 2 hr) (n = 24,
25%)

Group C Mean±SD
(mmol L-1 2 hr) (n = 24,
25%)

Group D Mean±SD
(mmol L-1 2 hr) (n = 24,
25%)

Significance

4 22.21±2.10 23.06±3.81 23.46±3.04 23.57±3.01 a = ns, b = ns, c = ns, d = ns,
e = ns, f = ns

8 24.12±2.41 25.31±2.81 25.72±7.17 24.93±3.70 a = ns, b = <0.001, c = ns,
d = ns, e = ns, f = ns

12 22.99±5.54 25.01±2.89 23.70±3.66 22.81±3.21 a = <0.001, b = ns, c = ns,
d = 0.005, e = <0.001, f = ns

16 23.26±1.61 24.66±2.83 23.28±2.37 22.96±2.38 a = 0.04, b = ns, c = ns, d = ns,
e = 0.04, f = ns

20 23.94±2.86 26.00±2.76 25.76±4.16 23.93±2.52 a = 0.01, b = ns, c = ns, d = ns,
e = 0.02, f = ns

24 24.28±2.81 27.24±2.89 27.50±3.28 24.79±2.62 a = <0.001, b = <0.001, c = ns,
d = ns, e = 0.003, f = 0.01

26 23.18±4.38 27.18±3.09 25.42±2.41 21.44±1.54 a = <0.001, b = 0.02, c = ns,
d = 0.003, e = <0. 001, f =
<0.001

28 25.54±6.07 30.12±5.84 31.65±16.01 26.76±9.30 a = 0.002, b = ns, c = ns,
d = ns, e = ns, f = ns

30 24.57±5.04 31.24±7.95 31.25±16.45 24.70±7.08 a = 0.01, b = ns, c = ns, d = ns,
e = <0.001, f = ns

34 24.75±4.59 30.12±8.10 28.63±11.84 23.81±4.01 a = 0.01, b = ns, c = ns, d = ns,
e = <0.001, f = ns

46 28.13±7.2 31.08±8.63 28.71±17.44 29.00±10.23 a = ns, b = ns, c = ns, d = ns,
e = ns, f = ns

a = Group A vs Group B, b = Group A vs Group C, c = Group A vs Group D, d = Group B vs Group C, e = Group B vs Group D, f = Group C vs Group D

doi:10.1371/journal.pone.0145730.t003
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and 33.33% (4/12) rats in pioglitazone treated group C developed diabetes as compared to only
27.27% (3/11) in control group A (P = 0.009 for groups B vs. A and P = 0.75 for groups C vs.
A). Only 25% (3/12) rats in atorvastatin treated group D developed diabetes at week 34 which
was lower than control group A (P = 0.90) and pioglitazone treated group C (P = 0.65). The
incidence of diabetes in atorvastatin treated group D was significantly lower compared to
group B (P = 0.005). Also, incidence of diabetes in group B was significantly higher than group

Fig 1. Triglyceride and glucose AUCs in all the four groups at different time points.

doi:10.1371/journal.pone.0145730.g001
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C (P = 0.01). These figures broadly reflected the distribution of prediabetes immediately pre-
ceding streptozotocin injection.

The cumulative incidence of diabetes increased further reaching 100% (11/11) in high
sucrose diet group B at week 46 which was significantly higher compared to control group A
45.45% (5/11) (P = 0.01). The cumulative incidence of diabetes at week 46 was found to be 50%
(6/12) in pioglitazone treated group C and 41.66% (5/12) in atorvastatin treated group D
which were both significantly lower than in group B (P = 0.02 for groups C vs. B and P = 0.009
for groups D vs. B). A similar trend of cumulative diabetes incidence was also observed at week
72 in the remaining rats. Even in rats not given streptozotocin ‘STZ non-treated’ about 25%
developed diabetes in group B whereas none of the rats in the other groups developed diabetes
by week 72.

The above findings suggest that high sucrose diet fed group B rats which displayed the high-
est postprandial triglyceride burden also had highest incidence of diabetes in them. The control
group as well as atorvastatin treated group which had the least postprandial triglyceride burden
also had the lowest incidence of diabetes in them. The pioglitazone treated group with interme-
diate postprandial triglyceride burden had diabetes developing in an intermediate number
higher than control and atorvastatin treated groups. Further, receiver operating characteristic
(ROC) curves plotted for triglyceride area under the curve for group B after adjustment for
effect of high sucrose diet passed through the upper left corner (Fig 2). This analysis showed
that triglyceride area under the curve of each time point significantly predicted the risk of dia-
betes. Of all these time points, triglyceride area under the curve of week 26 was the strongest
predictor of diabetes.

There was a progressive increase in body weight throughout the study in all the four groups
with a greater part of weight gain occurring by week 18. Rats in high sucrose diet group dis-
played significantly higher body weight at all time points after week 6 compared to controls or
the atorvastatin treated group. Pioglitazone treated group had intermediate weight gain which
was higher though statistically insignificant than controls and atorvastatin treated rats (Fig 3)
(S1 Table).

Visceral fat content in rats sacrificed at week 48 was found to be significantly higher in all
the three experimental groups fed with high sucrose diet as compared to controls. However,
subcutaneous fat content was similar in all the four groups. Hepatic fat content was found to be
significantly lower in atorvastatin treated group D compared group B and C whereas control
group A had intermediate hepatic fat content (Table 4).

In control group fasting insulin levels increased from baseline till week 10, remained there
till week 14 and then showed a slow decline through week 18 and 22 till week 26 when low
dose streptozotocin was given. This pattern which was observed in all the four groups, may rep-
resent age related effects on insulin levels. Fasting insulin levels were significantly higher in
high sucrose diet group compared to controls from week 4 till week 26. Similar trend was
observed in pioglitazone and atorvastatin treated groups. Although this was significant only
with pioglitazone treated group at week 14 and week 26 (Fig 4) (S2 Table).

Insulin resistance indicated by HOMA-IR was significantly higher in high sucrose diet
group versus control by week 10, and also in pioglitazone and atorvastatin treated groups by
week 14. HOMA-IR remained significantly higher in high sucrose diet fed group and pioglita-
zone treated group compared to controls till week 26. However, HOMA-IR returned to control
levels by week 26 in atorvastatin treated group (Fig 5) (S3 Table). Also, postprandial triglycer-
ide area under the curve of week 10 correlated positively with HOMA-IR of week 18 (r = 0.479,
P = 0.01) in high sucrose diet fed group B.

Histopathology of pancreas in all the four groups revealed no significant difference in beta
cell mass or structure between the groups.
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Discussion
The present study demonstrates that wild male Wistar rats fed high sucrose diet develop signif-
icant postprandial hypertriglyceridemia after fat challenge by 2nd week of sucrose feeding
when compared with those fed standard chow diet and continue to display a significantly
higher postprandial hypertriglyceridemic burden thereafter. These rats also start displaying sig-
nificant insulin resistance from week 10, significantly higher glucose intolerance indicated by
glucose area under the curve from week 12 and a significantly higher incidence of prediabetes

Fig 2. Receiver operating characteristic (ROC) curve plots for TG-AUC predicting diabetes risk.

doi:10.1371/journal.pone.0145730.g002
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by week 26 and overt type 2 diabetes by week 34. Furthermore, insulin resistance, glucose area
under the curve, subsequent incident prediabetes and incident diabetes was highest in high
sucrose diet fed rats who also had the greatest preceding postprandial triglyceride burden.

The demonstration of postprandial hypertriglyceridemia early in this study even when rats
still displayed normal glucose tolerance is in agreement with an earlier study which reported
that postprandial hypertriglyceridemia was prevalent in first-degree relatives of type 2 diabetes
patients despite normal fasting triglyceride levels and normal glucose tolerance [17]. It would
thus appear that whether it results from genetic predisposition in first degree relatives of diabe-
tes patients or from dietary influences in the form of high sucrose diet noted in our study in
rats, postprandial hypertriglyceridemia may play a key role in the development of insulin resis-
tance and consequent glucose intolerance. It is possible that gene-environment interaction
between postprandial hypertriglyceridemia associated genes and environmental factors such as
dietary carbohydrate and fat consumption may result in a cascading effect on incident glucose
intolerance.

Fig 3. Body weight in all the four groups at different time points.

doi:10.1371/journal.pone.0145730.g003

Table 4. Visceral fat, hepatic fat and subcutaneous fat contents in rats killed at week 48.

Parameters Group A Mean
±SD (n = 8)

Group B Mean
±SD (n = 9)

Group C Mean±SD
(n = 10)

Group D Mean
±SD (n = 9)

significance

Hepatic Fat (mg/gm of
tissue)

45.70±10.06 51.62±11.04 47.49±11.13 34.72±14.32 a = ns, b = ns, c = ns, d = ns,
e = 0.01, f = 0.04

Visceral Fat (%) 4.60±0.97 6.82±2.01 6.86±1.22 6.06±1.12 a = 0.01, b = <0.001, c = 0.01,
d = ns, e = ns, f = ns

Subcutaneous Fat (%) 3.27±0.89 3.30±0.76 3.22±0.72 3.44±0.58 a = ns, b = ns, c = ns, d = ns, e = ns,
f = ns

a = Group A vs Group B, b = Group A vs Group C, c = Group A vs Group D, d = Group B vs Group C, e = Group B vs Group D, f = Group C vs Group D

doi:10.1371/journal.pone.0145730.t004
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The sequence of events viz development of postprandial hypertriglyceridemia very early,
followed by insulin resistance and glucose intolerance, provide clear evidence for the first time
in a diet induced rat model of type 2 diabetes mellitus that postprandial hypertriglyceridemia
predicts the development of insulin resistance and subsequent glucose intolerance. Further,

Fig 4. Fasting serum insulin levels at various time points.

doi:10.1371/journal.pone.0145730.g004

Fig 5. HOMA-IR in all the four groups at various time points.

doi:10.1371/journal.pone.0145730.g005
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ROC analysis also showed that triglyceride area under the curve of each time point significantly
predicts the risk of diabetes in high sucrose diet group. These findings point to a critical role
for postprandial hypertriglyceridemia in the pathogenesis of insulin resistance and glucose
intolerance. However, studies on knockout rat models would be required to establish the path-
ogenic role of postprandial hypertriglyceridemia in the development of type 2 diabetes.

The main strength of the present study is that it is a long term follow up study of 48 weeks
which allows inferences on cause effect relationship. Further, this is the first comprehensive
study where postprandial hypertriglyceridemia has been studied so extensively in relation to
insulin resistance and glucose intolerance. Careful designing of the study and the repeated
measurements of key study parameters at regular intervals allowed us to address the key ques-
tion of whether postprandial hypertriglyceridemia plays a role in the development of insulin
resistance and glucose intolerance. Inclusion of two additional groups of high sucrose fed rats
who were given either pioglitazone or atorvastatin allowed us to evaluate the role of postpran-
dial hypertriglyceridemia with greater strength and clarity.

Pioglitazone and atorvastatin were chosen as both are known to reduce postprandial hyper-
triglyceridemia [10,18]. Further, the beneficial effects of pioglitazone have been primarily
observed on triglycerides in both animal [19] and humans [20,21] with minimal effects on
other lipid components [20,21]. Similarly, the lipid lowering effects of atorvastatin in rats and
mice have consistently been documented only on triglycerides [10,22,23]. Also, in most studies
statins do not decrease LDL levels in these animals. This is believed to be due to the fact that
rodents transport most of their serum cholesterol in HDL fraction and not LDL fraction [24]
suggesting profound effects of statins only on triglycerides in rats and mice.

Pioglitazone exerted its beneficial effects possibly by increasing triglyceride accumulation in
adipose tissues and improving their metabolism in liver. Number of clinical as well as experi-
mental studies have shown that treatment with pioglitazone reduces postprandial [18] as well
as fasting triglyceride [25,26] levels. Further, it has been demonstrated that PPAR-γ agonists
decrease the incidence of diabetes significantly when given to subjects with impaired glucose
tolerance [27]. Atorvastatin is believed to accelerate remnants clearance through hepatic low
density lipoprotein receptors resulting in a reduction in fasting and postprandial triglyceride
levels [10,28,29].

In our study we observed significant blunting of postprandial hypertriglyceridemia with
both pioglitazone and atorvastatin when they were co-administered with high sucrose diet.
Progressive blunting of postprandial hypertriglyceridemia from partial to complete by pioglita-
zone and atorvastatin respectively led to a progressive reduction in insulin resistance and glu-
cose intolerance observed in high sucrose diet fed rats. Atorvastatin group which had the least
postprandial triglyceride burden also had the lowest glucose intolerance in subsequent weeks
including week 26 and 34. Pioglitazone pretreated rats who had intermediate postprandial tri-
glyceride burden showed intermediate glucose intolerance in subsequent weeks which was
lower than that of high sucrose diet fed rats but higher than atorvastatin pretreated rat. These
findings further reinforced the hypothesis that insulin resistance and glucose intolerance were
indeed a consequence of postprandial hypertriglyceridemia. However, we cannot completely
rule out other possible effects of these drugs like anti-inflammatory, antioxidant or other pleio-
tropic effects which also could have played a role in reduction of glucose intolerance.

It would thus appear that it is postprandial hypertriglyceridemia that predicts glucose intol-
erance and not vice versa. This hypothesis is further supported by an earlier experimental
study which showed that blunting of postprandial lipaemia by dietary diacylglycerol in Otsuka
Long-Evans Tokushima Fatty (OLETF) rats with overt type 2 diabetes resulted in improvement
of lipid metabolism, glucose tolerance and retardation of diabetes progression [11]. Similarly, a
case report demonstrated that surgical correction of extreme hypertriglyceridemia in two
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sisters were associated with improvements in insulin-stimulated glucose uptake, oxidation and
storage with resultant reversal of diabetes [6], suggesting that insulin resistant diabetes can be
caused by extremely high levels of triglyceride. An acute metabolic study in healthy subjects
which showed a decrease in insulin sensitivity during postprandial lipaemia [30] further vali-
dates our hypothesis. Authors of this study suggested that decreased insulin sensitivity is a con-
sequence of elevated plasma levels of triglyceride-rich lipoproteins independently of plasma
NEFA levels and suggested that postprandial lipaemia could be the cause of insulin resistance
[30].

Histopathological findings of pancreas in our study revealed no significant difference
between standard chow diet fed rats and high sucrose diet fed rats which is in contrast to earlier
study of Del Zotto and co-workers who reported increase in beta cell mass in high sucrose diet
fed rats [31]. This discrepancy can be due to the following; in the long term study by Del Zotto
and co-workers histology of the pancreas was performed in 38 week old rats after a 30 week fol-
low up period at a stage when they were obese and had the metabolic syndrome. Frank glucose
intolerance, prediabetes or diabetes was not reported in them although the random blood
sugar was found to be higher than controls. At this stage beta cell mass is expected to be
increased due to insulin resistance. On the other hand, in the present study we undertook his-
tology of pancreas only in 56 week old rats involving 48 week follow up period. Further this
was 14 weeks after the rats developed overt diabetes and 22 weeks after they were clearly predi-
abetic indicating that the rats in whom beta cell mass was assessed in our study had diabetes/
prediabetes for a significant length of time prior to this assessment. Further these rats were also
older. It is possible that beta cell mass might have increased earlier at a younger age in these
rats at the stage of metabolic syndrome/insulin resistance and prediabetes at week 26. However,
the beta cell mass would be expected to decrease in them with the onset of diabetes and thereaf-
ter [32]. This decline in beta cell mass after diabetes onset could explain the absence of a signifi-
cant increase in beta cell mass in our study. However, it would be difficult to comment about
the beta cell mass with certainty from the results as we did not use immunohistochemistry and
this remains a limitation of our study.

In summary, the findings of the present study clearly show that the postprandial hypertri-
glyceridemia predicts the development of insulin resistance, glucose intolerance and subse-
quently diabetes in a rat model of type 2 diabetes mellitus. Further, findings of present study
suggest that postprandial hypertriglyceridemia may be used as a biomarker for the prediction
of risk of type 2 diabetes.

Supporting Information
S1 Table. Body weight in all the four groups at different time points.
(DOCX)

S2 Table. Fasting serum insulin levels in all the four groups at different time points.
(DOCX)

S3 Table. HOMA IR in all the four groups at different time points.
(DOCX)

Acknowledgments
Authors are thankful to Department of Biomedical Informatics, University College of Medical
Sciences (University of Delhi), Delhi, India for providing statistical assistance in analysis of
data.

Postprandial Hypertriglyceridemia & Glucose Intolerance

PLOS ONE | DOI:10.1371/journal.pone.0145730 January 25, 2016 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145730.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145730.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145730.s003


Author Contributions
Conceived and designed the experiments: SVMMA SA KKS. Performed the experiments:
SVMMA SA VG. Analyzed the data: SVMMA SA KKS. Contributed reagents/materials/anal-
ysis tools: SVMMA SA KKS VG. Wrote the paper: SVMMA SA KKS VG.

References
1. Sane T, Taskinen MR. Does familial hypertriglyceridemia predispose to NIDDM? Diabetes care. 1993

Nov; 16(11):1494–01. PMID: 8299439

2. Beck-Nielsen Groop LC. Metabolic and genetic characterization of prediabetic states. J Clin Invest.
1994 Nov; 94(5):1714–21. PMID: 7962519

3. Madhu SV, kant S, Srivastava S, Kant R, Sharma Sb, Bhadoria DP. Postprandial lipaemia in patients
with impaired fasting glucose, impaired glucose tolerance and diabetes mellitus. Diabetes Res Clin
Pract. 2008 Jun; 80(3):380–5. doi: 10.1016/j.diabres.2008.01.016 PMID: 18321605

4. Sinha B. Role of postprandial lipaemia in first degree prediabetic relatives of type 2 diabetes mellitus.
M.D. thesis, University of Delhi.2008.

5. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, et al. Mechanism of hepatic insulin resistance in
non-alcoholic fatty liver disease. J Biol Chem. 2004 Jul 30; 279(31):32345–53. PMID: 15166226

6. Mingrone G, Henriksen FL, Greco AV, Krogh LN, Capristo E, Gastaldelli A, et al. Triglyceride-induced
diabetes associated with familial lipoprotein lipase deficiency. Diabetes 1999 Jun; 48(6):1258–63.
PMID: 10342813

7. Doria A, Patti ME, Kahn CR. The emerging genetic architecture of type 2 diabetes. Cell Metab. 2008
Sep; 8(3):186–200. doi: 10.1016/j.cmet.2008.08.006 PMID: 18762020

8. Kamgang R, Mboumi RY, N'dillé GP, Yonkeu JN. Cameroon local diet-induced glucose intolerance and
dyslipaemia in adult Wistar rat. Diabetes Res Clin Pract. 2005 Sep; 69(3):224–30. PMID: 16098918

9. Hui JW, Yuan XJ, Wan S, Neng J, Wu T, Li YJ, et al. Low dose streptozotocin (STZ) combined with
high energy intake can effectively induce type 2 diabetes through altering the related gene expression.
Asia Pac J Clin Nutr. 2007; 16 Suppl 1:412–7. PMID: 17392141

10. Fanatsu T, Kakuta H, Takasu T, Noguchi M, Suzuki M, Miyata K. Experimental model of postprandial
hypertriglyceridemia in sucrose fed rats and the effectiveness of atorvastatin in the model. Metabolism
2003 May; 52(5):609–15. PMID: 12759892

11. Mori Y, Nakagiri H, Kondo H, Murase T, Tokimitsu I, Tajima N. Dietary diacylglycerol reduces postpran-
dial hyperlipidemia and ameliorates glucose intolerance in Otsuka Long-Evans Tokushima Fatty
(OLETF) rats. Nutrition 2005 Sep; 21(9):933–9. PMID: 16023327

12. Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP. Validation of simple indexes to assess insulin
sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab. 2008
Nov; 295(5):E1269–76. doi: 10.1152/ajpendo.90207.2008 PMID: 18796548

13. Rajendran A, Narayanan V, Gnanavel I. Evaluation of therapeutic efficacy of Aloe vera sap in diabetes
and treating wounds and inflammation in animals. J Appl Sci Res. 3(11): 1434–36.

14. Rebuffé-Scrive M, Surwit R, Feinglos M, Kuhn C, Rodin J. Regional fat distribution and metabolism in a
new mouse model (C57BL/6J) of non-insulin-dependent diabetes mellitus. Metabolism1993 Nov; 42
(11):1405–9. PMID: 8231834

15. Park SY, Kim YW, Kim JY, Jang EC, Doh KO, Lee SK. Effect of high fat diet on insulin resistance: die-
tary fat versus visceral fat mass. J Korean Med Sci. 2001 Aug; 16(4):386–90. PMID: 11511781

16. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids
from animal tissues. J Boil Chem. 1957 May; 226(1):497–09.

17. Axelsen M, Smith U, Eriksson JW, Taskinen MR, Jansson PA. Postprandial hypertriglyceridemia and
insulin resistance in normoglycemic first-degree relatives of patients with type 2 diabetes. Ann Intern
Med. 1999 Jul 6; 131(1):27–31. PMID: 10391812

18. Chappuis B, Braun M, Stettler C, Allemann S, Diem P, Lumb PJ, et al. Differential effect of pioglitazone
(PGZ) and rosiglitazone (RGZ) on postprandial glucose and lipid metabolism in patients with type 2 dia-
betes mellitus: a prospective, randomized crossover study. Diabetes Metab Res Rev. 2007 Jul; 23
(5):392–9. PMID: 17211855

19. Peng J, Huan Y, Jiang Q, Sun SJ, Jia CM, Shen ZF. Effects and Potential Mechanisms of Pioglitazone
on Lipid Metabolism in Obese Diabetic KKAy Mice. PPAR Res. 2014; 2014:538183. doi: 10.1155/2014/
538183 PMID: 24799887

Postprandial Hypertriglyceridemia & Glucose Intolerance

PLOS ONE | DOI:10.1371/journal.pone.0145730 January 25, 2016 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/8299439
http://www.ncbi.nlm.nih.gov/pubmed/7962519
http://dx.doi.org/10.1016/j.diabres.2008.01.016
http://www.ncbi.nlm.nih.gov/pubmed/18321605
http://www.ncbi.nlm.nih.gov/pubmed/15166226
http://www.ncbi.nlm.nih.gov/pubmed/10342813
http://dx.doi.org/10.1016/j.cmet.2008.08.006
http://www.ncbi.nlm.nih.gov/pubmed/18762020
http://www.ncbi.nlm.nih.gov/pubmed/16098918
http://www.ncbi.nlm.nih.gov/pubmed/17392141
http://www.ncbi.nlm.nih.gov/pubmed/12759892
http://www.ncbi.nlm.nih.gov/pubmed/16023327
http://dx.doi.org/10.1152/ajpendo.90207.2008
http://www.ncbi.nlm.nih.gov/pubmed/18796548
http://www.ncbi.nlm.nih.gov/pubmed/8231834
http://www.ncbi.nlm.nih.gov/pubmed/11511781
http://www.ncbi.nlm.nih.gov/pubmed/10391812
http://www.ncbi.nlm.nih.gov/pubmed/17211855
http://dx.doi.org/10.1155/2014/538183
http://dx.doi.org/10.1155/2014/538183
http://www.ncbi.nlm.nih.gov/pubmed/24799887


20. Aghamohammadzadeh N, Niafar M, Dalir Abdolahinia E, Najafipour F, Mohamadzadeh Gharebaghi S,
Adabi K et al. The effect of pioglitazone on weight, lipid profile and liver enzymes in type 2 diabetic
patients. Ther Adv Endocrinol Metab. 2015 Apr; 6(2):56–60. doi: 10.1177/2042018815574229 PMID:
25941563

21. King AB, Armstrong DU. Lipid response to pioglitazone in diabetic patients: clinical observations from a
retrospective chart review. Diabetes Technol Ther. 2002; 4(2):145–51. PMID: 12079617

22. Zhang N, Huan Y, Huang H, Song GM, Sun SJ, Shen ZF. Atorvastatin improves insulin sensitivity in
mice with obesity induced by monosodium glutamate. Acta Pharmacol Sin. 2010 Jan; 31(1):35–42. doi:
10.1038/aps.2009.176 PMID: 20023693

23. Aoki T, Yoshinaka Y, Yamazaki H, Suzuki H, Tamaki T, Sato F, et al. Triglyceride-lowering effect of pit-
vastatin in a rat model of postprandial lipaemia. Eur J Pharmacol. 2002 May 24; 444(1–2):107–13.
PMID: 12191589

24. Harris WS. n-3 Fatty acids and serum lipoproteins: animalstudies. Am. J. Clin. Nutr. 1997 May; 65(5
Suppl):1611S–6S. PMID: 9129501

25. Derosa G, Cicero AF, D’Angelo A, Gaddi A, Ciccarelli L, Piccinni MN, et al. Effects of 1 year of treatment
with pioglitazone or rosiglitazone added to glimepiride on lipoprotein (a) and homocysteine concentra-
tions in patients with type 2 diabetes mellitus and metabolic syndrome: a multicenter, randomized, dou-
ble-blind, controlled clinical trial. Clin Ther. 2006 May; 28(5):679–88. PMID: 16861090

26. Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, et al. A comparison of lipid and
glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Dia-
betes Care2005 Jul; 28(7):1547–54. PMID: 15983299

27. Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, et al. Human metabolic syndrome
resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated
receptor-gamma. Diabetes 2003 Apr; 52(4):910–7. PMID: 12663460

28. Battula SB, Fitzsimons O, Moreno S, Owens D, Collins P, Johnson A, et al. Postprandial apolipoprotein
B48-and B100-containing lipoproteins in type 2 diabetes: do statins have a specific effect on triglyceride
metabolism? Metabolism 2000 Aug; 49(8):1049–54. PMID: 10954025

29. Burnett JR, Barrett PH, Vicini P, Miller DB, Telford DE, Kleinstiver SJ, et al. The HMG-CoA reductase
inhibitor atorvastatin increases the fractional clearance rate of postprandial triglyceride-rich lipoproteins
in miniature pigs. Arterioscler Thromb Vasc Biol. 1998 Dec; 18(12):1906–14. PMID: 9848883

30. Pedrini MT, Niederwanger A, Kranebitter M, Tautermann C, Ciardi C, Tatarczyk T, et al. Postprandial
lipaemia induces an acute decrease of insulin sensitivity in healthy men indenpendently of plasma
NEFA levels. Diabetologia 2006 Jul; 49(7):1612–8. PMID: 16752179

31. Del Zotto H, Gómez DummCL, Drago S, Fortino A, Luna GC, Gagliardino JJ. Mechanisms involved in
the β-cell mass increase induced by chronic sucrose feeding to normal rats. J Endocrinol. 2002 Aug;
174(2):225–31. PMID: 12176661

32. Jack L Leahy. Β-Cell Dysfunction in Type 2 Diabetes Mellitus. In: Kahn CR, Weir GC, King GL, Jacob-
son AM, Moses AC, Smith RJ, editors. Joslin’s Diabetes Mellitus. 14th edition. Boston: Lippincott Wil-
liams &Wilkins. 2005. Page no. 454.

Postprandial Hypertriglyceridemia & Glucose Intolerance

PLOS ONE | DOI:10.1371/journal.pone.0145730 January 25, 2016 15 / 15

http://dx.doi.org/10.1177/2042018815574229
http://www.ncbi.nlm.nih.gov/pubmed/25941563
http://www.ncbi.nlm.nih.gov/pubmed/12079617
http://dx.doi.org/10.1038/aps.2009.176
http://www.ncbi.nlm.nih.gov/pubmed/20023693
http://www.ncbi.nlm.nih.gov/pubmed/12191589
http://www.ncbi.nlm.nih.gov/pubmed/9129501
http://www.ncbi.nlm.nih.gov/pubmed/16861090
http://www.ncbi.nlm.nih.gov/pubmed/15983299
http://www.ncbi.nlm.nih.gov/pubmed/12663460
http://www.ncbi.nlm.nih.gov/pubmed/10954025
http://www.ncbi.nlm.nih.gov/pubmed/9848883
http://www.ncbi.nlm.nih.gov/pubmed/16752179
http://www.ncbi.nlm.nih.gov/pubmed/12176661

