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Abstract

Background

Small GTPase Rap1 has been implicated in a number of basic cellular functions, including
cell-cell and cell-matrix adhesion, proliferation and regulation of polarity. Evolutionarily con-
served, Rap1 has been studied in model organisms: yeast, Drosophila and mice. Mouse in
vivo studies implicate Rap1 in the control of multiple stem cell, leukocyte and vascular cell
functions. In vitro, several Rap1 effectors and regulatory mechanisms have been proposed.
In particular, Rap1 has been implicated in maintaining epithelial and endothelial cell junction
integrity and linked with cerebral cavernous malformations.

Rationale

How Rap1 signaling network controls mammalian development is not clear. As a first step
in addressing this question, we present phenotypes of murine total and vascular-specific
Rap1a, Rap1b and double Rap1a and Rap1b (Rap1) knockout (KO) mice.

Results and Conclusions

The majority of total Rap1 KO mice die before E10.5, consistent with the critical role of Rap1
in epithelial morphogenesis. At that time point, about 50% of Tie2-double Rap1 KOs appear
grossly normal and develop normal vasculature, while the remaining 50% suffer tissue
degeneration and show vascular abnormalities, including hemorrhages and engorgement
of perineural vessels, albeit with normal branchial arches. However, no Tie2-double Rap1
KO embryos are present at E15.5, with hemorrhages a likely cause of death. Therefore, at
least one Rap1 allele is required for development prior to the formation of the vascular sys-
tem; and in endothelium—for the life-supporting function of the vasculature.
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Introduction

The evolutionarily conserved and ubiquitously expressed small GTPase Rapl is at the cross-
roads of signaling pathways that govern key cellular processes. Downstream from multiple
receptors, Rapl activity is spatiotemporally regulated by a network of guanine nucleotide
exchange factors (GEFs) and GTPase activating proteins (GAPs) acting in a tissue-specific
manner [1]. In a GTP-bound form, activated Rapl interacts with a number of effectors to con-
trol cell-substrate adhesion, cell-cell adhesion and junction formation [2], and cell polarity [3].
In vitro studies have implicated KRIT1/CCML1, a protein mutated in cerebral cavernous mal-
formations (CCM), RASIP1 and an actin-cytoskeleton linker Canoe/Afadin as Rap1 effectors
controlling cell-cell junction formation and maintenance.

In particular, Rap1 interaction with KRIT1 [4-7] has raised interest due to its potential sig-
nificance for human disease [8]. KRIT1, one of three proteins whose autosomal mutations
have been linked with CCM; a neurovascular malformation syndrome that leads to seizures
and lethal stroke [9-12], is a multi-domain protein that links cortical actin cytoskeleton with
integral membrane proteins, and interacts with CCM2 [13]. In vitro, in endothelial cells (ECs),
Rapl facilitates localization of KRIT1 to cell-cell junctions and interaction with junctional pro-
teins [5, 14, 15]. However, whether Rap1-KRIT1 interaction plays a physiological role in the
development of CCM is unknown.

Rapl functions in vivo have been studied in several model organisms. In lower organisms,
a single Rap1 ortholog plays a central role in the development of cell polarity: in budding
yeast S. cerevisiae, Rap1 ortholog Bud1/Rsr controls positioning of the bud [16] and in Dro-
sophila, Rap1 controls apico-basal polarity during mesoderm formation and dorsal closure
via its interactions with a protein network involving atypical PKC (aPKC) and Canoe/Afadin
[17-19]. In higher organisms, two highly homologous isoforms of Rap1 exist: Rapla and
Rap1b. The two Rapl isoforms are encoded by separate genes [20, 21] and murine genetic
deletion models of both have been described [8]. Deletion of either isoform leads to partial
embryonic lethality and bleeding [22, 23]. While deletion of either Rap1 isoform does not
limit the lifespan of surviving adult mice, several defects in neurological [24] and immune
responses [23, 25-28] and hematopoiesis [29] have been described. Some of the most signifi-
cant defects observed in Rap1 knockout (KO) mice involve their cardiovascular functions:
platelet function [22], angiogenesis [30, 31], smooth muscle contractility and vessel tone
[32]. The similarity of some of the phenotypes of the two Rap1 isoforms KOs suggested func-
tional redundancy. To determine if the two isoforms have similar functions, we attempted to
generate double Rapla, Raplb KO mice. In this paper, for the first time to our knowledge, we
report on the phenotype of these mice.

Because of the bleeding phenotype in total Rap1-deficient embryos we have been particu-
larly interested in the role of Rap1 in the vasculature. We have made endothelial lineage
restricted Rap1l KO mice and demonstrated a critical role of Rap1 in endothelial cells in angio-
genesis [32, 33] and, more recently, regulation of endothelial function and blood pressure [34].
Interestingly, molecular mechanisms underlying these defects in adult mice implicate Rap1 in
regulation of the signaling aspect of adhesion receptors [32, 33], rather than in their role in pro-
moting cell adhesion. However, the role of Rap1 in vasculature during morphogenesis and
development is not known. To address this knowledge gap, here we describe the phenotype of
Rapl endothelial-specific KO mice and analyze it in the context of Rap1 effectors, KRIT1 and
Afadin.
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Methods
Animal generation and husbandry

All mouse procedures were performed according to approved Medical College of Wisconsin or
Indiana University School of Medicine Institutional Animal Use and Care Committee proto-
cols. Generation of Rap1b” mice and endothelial-specific Rap1 KO mice (EC-Rap1 KOs
Tie2-Cre*’° Raplaf/ f Raplbf/ f (with a mixed 129SvEv/C57BL6, 50%/50% average, background)
has been previously described [22, 33]. RapIb™~ mutant mice were back-crossed with C57BL/6
mice (The Jackson Laboratory, Bar Harbor, ME, USA) for at least 8 successive generations.
Double KO Rapla” Rap1b”™ mice were generated by intercrossing Rap1b” with Rapla™ mice
[23]. Mouse genotypes were determined by PCR on tail DNA as described previously [22, 23,
33].

Determination of embryonic lethality

Timed pregnancies were set up with mid-day of vaginal plug defined as E0.5. Embryos were
collected at specified times and genotypes were determined by PCR of tissue samples. Expected
embryo numbers (Ng) were determined using Mendelian ratios, based on 100% survival of WT
embryos. Embryo survival was defined as observed (Ng) vs. expected (No/Ng*100%); embryo
lethality was defined as (1-No/Ng)*100%.

Histology

Embryos were collected and bright-field images were obtained using Zeiss stereoscope (SteREO
Lumar.V12, Carl Zeiss Microlmaging GmbH, Germany) at 6.4x magnification. Histological
staining was performed as previously described [35, 36]. Briefly, paraffin sections were stained
with hematoxilin and eosin (H&E) or with antibodies to CD31 (PECAM-1, at 1:250 dilution,
clone MEC13.3, BD Biosciences). Improved visualization on paraffin sections was obtained
using a biotinylated tyramide signal amplification (TSA) kit (PerkinElmer) according to the
manufacturer’s instructions.

Results
Partial embryonic lethality of total Rap7b KO mice

Two highly homologous Rap1 isoforms exist encoded by separate Rapla and RapIb genes [20,
21]. We reported partial embryonic and perinatal lethality of Rap1b”" mice on mixed back-
ground [22]. While Rap1 b females (on mixed genetic background) were fertile, litter size was
reduced (4 + 0.28, s.e.m., surviving pups/litter; n = 40 litters from Rap1b”" intercrosses) com-
pared to WT litter size (7.2 + 0.37, s.e.m., surviving pups/litter; n = 40 litters from Rap1b*"*
intercrosses). In about 20% of embryos, starting at E13.5 we observed dispersed subcutaneous
bleeding, and hemorrhages on the side of the head and in liver, accompanied by edema [22].
To better determine the time and cause of embryo lethality, we performed systematic analysis
of Rap1b”” embryos from staged pregnancies. We found that at E13.5 and E15.5, Rap1b”~
embryo number (on mixed genetic background) was not reduced compared to WT embryos
(80-90 embryos analyzed), however about 30-50% Rap1b”~ embryos appeared abnormal, con-
taining hemorrhages or clots. At E18.5 about 20% of Rap1b”~ embryos were found resorbing, Fur-
thermore, we found Rap1b”~ embryo body weight significantly decreased at E15.5 (0.233 + 0.013
vs. 0.273 £ 0.010 g, WT; p<0.05) and at E18.5, (1.119 £ 0.036 g vs. 1.242 + 0.030 g, WT; p<0.05).
The difference in body weight persisted after birth [32]. Observed growth restriction of embryos is
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Table 1. Survival of Rap1b”" and Rap1a™~ mice at weaning.

Mixed C57BI6/129SvEv background C57BI6 background C57BI6 background

Genotype WT  Rapib*"

Mice at weaning 357
Expected */ 357
Viable/Expected

Rapib”™ Total WT  Rapib*” Raplb” Total WT Rapla*”® Rapla”  Total

100 1124 392 522 12 926 92 188 59 339
357 392 784 392 92 184 92
28% 67% 3% >100% 64%

Number of adult mice from Rap1b*’~ or Rap1a™ intercrosses on mixed and C57BI6 backgrounds.
*/Expected number = Total number * Mendelian frequency (1:2:1), based on 100% survival of WT mice.

doi:10.1371/journal.pone.0145689.1001

consistent with a systemic defect, such as in vascular development, and may contribute to
decreased viability at weaning to 28% of expected numbers [22], (Table 1).

Initial observations of Rapla” mice on mixed genetic background did not suggest lethality,
however upon backcross onto C57Bl6 background (F7-11), partial embryonic lethality
occurred [23], see Table 1. We hypothesized that RapIb™™ mice on pure C57BI6 background
may reveal additional phenotype that may not be apparent in the mixed background due to
modifier genes. Upon back-crossing Rap1b”” mice to F8 onto C57BI6 background we exam-
ined survival of Rap1b”™ mice. We found further decreased survival of mice at weaning
(Table 1). To determine the time of embryonic death, we examined homozygous KO embryos
from staged pregnancies (Fig 1). No overt morphological defects were seen before E10.5
Rap1b”; however, at that time, Rap1b”” embryos were smaller in size (Fig 1A).

At E13.5 and E15.5, about 20-50% of Rap1b”~ embryos on C57BI6 background displayed
prominent hemorrhage on the side of the head, indicative of cardiovascular defects, while
other Rap1b” had no overt defects (Fig 1B). Similarly, at E18.5 (Fig 1C) this bleeding pheno-
type was only displayed in about 25% of Rap1b”~ embryos. With 97% lethality at weaning
(Table 1), we conclude that most Rap1b”~ mice die perinatally and Rap1b is not absolutely
required for embryonic development.

Early embryonic lethality of Rap1a, Rap1b KO mice

In lower organisms Rap1 is critical for morphogenesis [18] and deletion of the only isoform of
Rap1 present in these organisms leads to lethality [37]. Since deletion of either Rapla or RapIb
genes is not essential for development, as some KOs survive to adulthood, we hypothesized that
there is a redundancy in Rapla and Rap1b function in vertebrates. To test if either Rapl gene is
essential for development, we attempted to generate a double Rapla, Rap1b KO (“Rapl KO”) by
intercrossing Rapla*"~ and Rap1b*" mice, but no viable Rap1 KO mice were obtained (Table 2).
We therefore examined the effect of Rap1 deletion on embryonic development. We found that at
E8.5 all expected embryos were recovered and appeared grossly normal, which indicates that
Rap1 is not absolutely required for early development. However at E10.5, a reduced number of
Rapl KO embryos was recovered and only about 20% Rap1l KO embryos appeared viable

(Table 3), while the remaining 80% of Rap1 KO embryos appear grossly underdeveloped and
abnormal (Fig 2). Thus, we conclude that, unlike in lower organisms [38], Rap1 in mice is not crit-
ical for early embryonic events, such as gastrulation; but it is required for further development.

Endothelial-specific double KOs are lethal; either Rap1 isoform is
redundant, partial Rap1 deletion leads to partial lethality

Because of the hemorrhaging found in total Rap1-KO embryos (Fig 1) and reduced survival of
Rap1-KO mice (Table 2), we hypothesized that vascular defects contribute to lethality in

PLOS ONE | DOI:10.1371/journal.pone.0145689 December 29, 2015 4/16



@’PLOS ‘ ONE

Rap1 Is Essential for Development and Functional Vasculature Formation

Raplb”

control

Fig 1. Vascular abnormalities in Rap1b™~ embryos on C57BI6 genetic background. Embryos from
pregnancies resulting from Rap1b*'" intercrosses at E13.5 (A-D, left panel) and E18.5 (E-H, right panel) on
C57/BL6 genetic background. Rap1b-deficiency leads to cranial hemorrhage in about 20-50% of embryos
(A, E), edema (C), pale pallor (G), and a smaller body size compared to WT littermate controls (D, H).

Stereoscopic images are representative of 4-6 analyzed pregnancies. Scale bars: 1 mm (A-D) and 2 mm
(E-H).

doi:10.1371/journal.pone.0145689.g001

Rap1-KO embryos. To address the role of Rapl in endothelium during development, we inter-
crossed Tie2-Cre*’’; Rapla”*, Rap1b”* mice [33] to generate endothelial-specific Rap1KO
(Tie2-Cre*’; Rapla”, Rap1b”, EC-Rap1 KO) mice. Tie2-driven Cre recombination leads to
efficient Rap1 protein loss in endothelium and hematopoietic cells [33]. We found that deletion
of either Rap1b alone (EC-Rap1b KO) or Rapla alone (EC-Rapla KO) did not lead to lethality.
However, we did not obtain any double Rapla, Raplb KO (EC-Rapl KO) mice (Table 4), simi-
larly to total Rap1-KO mice (Table 2). Interestingly, mice with only one Rapla allele
(EC-Rapla™, Raplb™") exhibited significantly reduced viability (to 55%) at weaning. In
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Table 2. Survival of offspring from Rap1a*",Rap1b*’~ intercrosses,(on mixed genetic background).

Genotype Total Expected */ Viable/Expected
Rap1a**Rap1b** 13 13 100%
Rap1a** Rapib*" 32 26 >100%
Rap1a** Rap1b™ 6 13 46%
Rap1a* Rap1b** 47 26 >100%
Rapia*” Rap1b*" 76 52 >100%
Rapia* Rap1b” 0 26 0%
Rapia”™ Rap1b™* 22 13 >100%
Rapia” Rapib*" 3 26 12%
Rapia” Rap1b™ 0 13 0%

Number of adult mice from Rap1ia+/-, Rap1b+/- intercrosses, at weaning.

Total animal number = 199

*/ Expected number = Total number * Mendelian frequency (1:2:1;2:4:2;1:2:1), based on 100% survival of
WT mice.

doi:10.1371/journal.pone.0145689.t002

contrast, deletion of all but one Rap1b allele (EC-Rapla™, Rap1b*"") minimally impacted
mouse survival (Table 4).

Endothelial-specific double KOs suffer from hemorrhage but branchial
arch formation appears normal

To determine the cause of death of EC-Rap1 KO mice, we examined embryos from staged
Tie2-Cre™*: Rapla”*, Rap1b”" intercrosses. At E10.5 we found that a significant fraction of
EC-Rap1 KO embryos were defective compared to WT E10.5 embryos (Figs 3 and 4) with a differ-
ent embryo size suggestive of different times of death. The defective embryos displayed tissue
degeneration (Fig 3A-3F) and cranial hemorrhage on their right side (Fig 3D-3F), with vascular
rapture in or around branchial arches as likely cause of death. Furthermore, some EC-Rapl KO
embryos displayed dilated microvessels in the vicinity of the neural tube and vascular engorgement
of perineural vessels (Fig 4A and 4B). However, the remaining 50% of EC-Rap1 KO embryos
appeared viable without obvious vascular or cardiac lesions (Fig 5; normal EC-Rap1 KO). Interest-
ingly, branchial arch formation appeared normal (Fig 5E and 5F) and similar to WT E10.5 mice
(Fig 6E and 6F). This is significantly different from KRIT1 or CCM2 KO mice [35, 36].

The analysis at E15.5 did not reveal any viable EC-Rapl KO embryos (Table 4). Considering
the vascular phenotype at E10.5 (Fig 3), death likely resulted from vascular defects. Further-
more, viability of Rap1l mutants containing only one of four Rap1 alleles was reduced (Table 4).
We observed that about 30% of E15.5 EC-Rapla* Rap1b” embryos displayed cranial hemor-
rhage, which contributed to increased lethality (45%) at weaning (Fig 7). No such hemorrhage
was observed in EC-Rapla” Rap1b*"~ embryos. Considering that Rap1b is the major Rap1 iso-
form in ECs in mice (EC-Rapla*"Rap1lb” contains less Rap1 protein than EC-Rapla™ R-
ap1b*"” mutant) [33], and that neither Rap1 isoform is absolutely required in endothelium for
survival (Table 4), this suggests that it may be a quantitative effect and that a certain minimal
level of Rapl is critical for vessel development.

Discussion

Rapl is a positive regulator of adhesion and a critical regulator of polarity-dependent morpho-
genesis in lower organisms [16, 17, 19]. In this paper we demonstrate that Rapl is essential for
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Table 3. Embryonic lethality of double Rap1 KO mice.

Genotype Total embryo number Expected */ embryo number Abnormal (resorbing) Viable embryos Viable/Expected
Rap1a**Rap1b** 8 8 1 7 92%
Rap1a** Rap1b*" 16 15 4 12 79%
Rapia** Rap1b” 7 8 2 5 66%
Rapia*” Rap1b** 16 15 3 13 85%
Rap1a*” Rap1b*" 36 31 7 29 95%
Rap1a* Rapib™ 15 15 7 8 52%
Rapia” Rap1b** 10 8 3 7 92%
Rap1a’ Rap1b*" 9 15 4 5 33%
Rap1a’ Rap1b” 5 8 4 1 13%

Number of E10.5 embryos obtained from Rapia* Rap1b™ intercrosses per genotype.
Total embryo number = 122.
*/Expected number = Total number * Mendelian frequency (1:2:1; 2:4:2; 1:2:1)

doi:10.1371/journal.pone.0145689.t003

2 7
a .
J‘ > -
@ ~
<
S
+
S
& so0umy
Q
~
> P
x ]
- o= _
~
Q.
S
o
fe0up .
©
| -
o+ 4
C 3
@] D
o y

Fig 2. Double KO of Rap1a and Rap1b leads to lethality of majority of embryos before E10.5.
Stereoscopic images from two (A-C; D-F) of eight analyzed pregnancies resulting from Rap1a*’~, Rap1b*"
intercrosses. About 80% of Rap1a™~; Rap1b™ embryos (A, B, D) fail to develop and pregnancy products are
grossly malformed and non-viable. (E) Deletion of both Rap7b and one Rap1a allele leads to severe growth
restriction; (C, F) littermate Rap7a*/~, Rap1b*"* controls. Scale bar: 0.5 mm.

doi:10.1371/journal.pone.0145689.9g002
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Table 4. Embryonic lethality of endothelial-specific (EC)-Rap1 KO mice.

Genotype Total embryo Expected Abnormal Viable Viable/ Comments
number */ Expected
Tie2-Cre*’° Rap1a” Rap1b™ 2 4.75 2 0 0% Smaller size, hemorrhage at base of
skull

Tie2-Cre”° Rap1a’ Rap1b™ 7 475 1 6 >100%
Tie2-Cre*”® Rap1a” Rap1b” 3 4.75 1 2 42% Hemorrhage, blood clots, edema

+
Tie2-Cre®° Rap1a” Rap1b” 5 475 0 5 >100%
Tie2-Cre*® Rap1a* Rap1b” 7 4.75 2 5 >100%

f
Tie2-Cre®° Rapia”* Rap1b” 7 4.75 1 6 >100%

f
Tie2-Cre*’° Rap1a”™ Rap1b” 5 475 0 5 >100%
Tie2-Cre®° Rapia” Rap1b” 4 4.75 0 4 84%

Number of E15.5 embryos obtained from Rap1a” Rap1b™ x Tie2 Cre*’°; Rap1a’* Rap1b 7* crosses, per genotype.
Total number of embryos = 38.
*/ Expected number = Total number * 1/8 frequency

doi:10.1371/journal.pone.0145689.t004

early morphogenesis in mice. Deletion of Rapla and Rap1b separately has only a small effect
on initial development and is not required for embryonic morphogenesis (Table 3). Global
deletion of both Rapl genes leads to major malformation and death before mid-gestation
(E10.5). This phenotype is consistent with Rap1 playing a key role in adhesion and polarity in
vivo also in higher organisms. Furthermore, we demonstrate that Rap1 in endothelium is criti-
cally required for vessel formation, as endothelial-specific deletion of both Rap1 isoforms leads
to engorgement of perineural vessels, hemorrhage and embryonic lethality between E10.5 and
E13.5. Therefore Rapl is critical for both: tissue and vessel morphogenesis.

Earlier studies in lower organisms demonstrated the importance of the single Rap1 ortholog
in tissue morphogenesis through its critical role in the regulation of polarity. Epithelial polarity,
required for collective cell migration and tissue morphogenesis, is maintained by cell-cell junc-
tions: tight junctions and cadherin-based adherens junctions, and, physically connected to
them, polarized cytoskeleton networks [39]. Rap1 functional interaction with actin cytoskele-
ton linker Canoe/Afadin is essential to Drosophila morphogenesis [40]. Mechanistically, Rap1l
localizes Afadin to cadherin in adherens junctions [19, 41]. Global deletion of Afadin leads to
developmental defects during gastrulation and embryonic lethality after E9.5, with loss of
structures derived from ectoderm and mesoderm and improper adherens junctions’ organiza-
tion [42]. The severity of Afadin”~ phenotype exceeds that of Rap1 KO, suggesting the exis-
tence of other regulatory mechanisms in the absence of Rapl.

Vessel stability is critical for embryo growth and development. Stabilization of vessels to
allow circulation and withstand shear stress forces coincides with dynamic regulation of
growth and remodeling. Thus, vascular permeability is tightly regulated and changes in perme-
ability lead to pathologies, including hemorrhage and edema [43]. Our studies show that Rapl
is a critical regulator of vascular stability. Endothelial KO of both Rap1 isoforms leads to local-
ized hemorrhage and tissue degeneration in 50% of double EC-Rap1 KO at mid-gestation. Sev-
eral Rapl effectors including KRIT1, RASIP1 and Afadin have been implicated in regulation of
vascular permeability by controlling cell-cell junctions. Endothelial deletion of Afadin leads to
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EC-Rapl KO embryo 181-1 A

Fig 3. Tissue degeneration and hemorrhages in E10.5 EC-Rap1 KO embryos. Embryos were generated
by crossing Tie2-Cre*’® Rap1a "* Rap1b”*g and Rap1a” Rap1b™9. Left: whole mount images, left. Right,
(A-F): Tissue degeneration (top row) and hemorrhages on the right side of EC-Rap1 KO embryo (middle row),
with vascular rapture in or around branchial arches (D-F, arrows) are likely cause of death. Comparable
images of control (Tie2-Cre®; Rap1a®, Rap1b™) embryo (G-I, bottom row).

doi:10.1371/journal.pone.0145689.g003

a defect in postnatal angiogenesis in vivo and reduced VEGFR2 signaling [44], similarly to
what we reported in EC-Rapl KO mice [33]. Reduced viability of EC-Afadin KO mice at wean-
ing has been attributed to angiogenesis defect during development [44], however no specific
developmental vascular phenotypes have been described. RASIP1, another proposed junctional
effector of the EPAC-Rapl signaling axis, has been implicated in vascular lumen formation
[45-47] and more recently, in stabilization of cell-cell junctions required for formation of nor-
mal vasculature [48]. RASIP1-KO vessels initially form but are unable to sustain circulation
beyond E10.5 in mice, leading to focal hemorrhage and lethality [48]. Similarity of RASIP1 and
Afadin KO phenotypes to that of EC-Rapl KO mice suggests that functional interaction of
these molecules is important for murine vascular development. However, approximately half
of EC-Rapl KO embryos are able to form functional vessels and appear grossly normal at mid-
gestation (Fig 5). This, again, suggests a regulatory rather than critical role of endothelial Rapl
in early vasculogenesis.

PLOS ONE | DOI:10.1371/journal.pone.0145689 December 29, 2015 9/16



@’PLOS | ONE

Rap1 Is Essential for Development and Functional Vasculature Formation

EC-Rap1l KO embryo 268-1

r Al

Fig 4. Normal branchial arches in EC-Rap1 KO embryos. Left: whole mount images. Right: (A, B, top
row): Dilated microvessels in E10.5 EC-Rap1 KO embryo heads near neural tube (arrows). C-F: Control
(Tie2-Cre% Rap1a®, Rap1b™, E10.5) embryo sections. Blood-packed perineural vessels (C, D, arrows) are
seen in fewer sections than in EC-Rap1KO embryos (B). (E, F, arrows) normal branchial arch arteries.
Staining shown is H&E (A, C, E) and CD31 (B, D, F).

doi:10.1371/journal.pone.0145689.g004

KRIT1 has been implicated as a cell-cell junction target of Rap1 required for vascular stabil-
ity [6, 49]. Global deletion of KRIT1and CCM2 leads to early and severe vascular pathologies
that result in embryo lethality mid-gestation. Vascular defects in KRIT1-null embryos include
dilatation of brain vessels and a branchial arch formation defect [35, 50] and endothelial-spe-
cific deletion of KRIT1 leads to lethality before E12.5 due to failed vascular development [51].
Global or endothelial-specific CCM2 KO mice die of cardiovascular defects, such as: insuffi-
cient vascular lumen formation, defective arteriogenesis and heart malformation [36, 52]. All
three CCM genes are essential for embryonic angiogenesis [14, 53, 54]. Interestingly, here we
find that EC-Rap1 KO phenotype is distinct from that of KRIT1, as branchial arches form nor-
mally in these embryos (Fig 4). Therefore, Rapl and CCM proteins may not act in the same sig-
naling pathways during development. However, these interactions may still be pertinent in the
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EC-Rapl KO embryo 268-5

Fig 5. 50% of E10.5 EC-Rap1 KO embryos appear grossly normal. Left: whole mount image. Right, A-D: normal perineural vasculature; C and D:
enlargement of boxed areas in A and B; (C, arrow) blood-filled vessels; (D, arrow) ECs. E: 15! branchial arch artery, normal (arrow); F: larger 3™ branchial
arch artery (arrow); G: aortae and cardinal veins with normal pericardial space at the level of atrium; (H, arrow) sinus venosus. Staining shown is H&E (A, C,

F) and CD31 (B, D, E, G and H).

doi:10.1371/journal.pone.0145689.g005

regulation of cerebral vascular integrity; consequently, their disruption might result in postna-
tal development of brain hemorrhagic lesions [8, 55].

In addition to directly controlling the function of the above putative effectors, Rap1l may
regulate vascular stability via additional mechanisms. We have recently shown that Rapl is a
critical regulator of mechanosensing complexes and shear stress-regulated vessel homeostasis
in adult mice [34]. Interestingly, vascular defects observed in endothelial KRIT1-deficiency
have also been associated with a defect in endothelial flow response [51]. It is possible that
observed EC-Rapl KO bleeding and embryo lethality might arise from physiologic/hemody-
namic abnormality and defective mechanosensing functions, a hypothesis to address in future
studies. In addition to the mechanosensing function in endothelium, Rap1b controls vascular
tone and blood pressure by limiting smooth muscle contractility [32]. Interestingly, the pheno-
type of total RapIb”~ mice: hypertension and cardiac hypertrophy, phenocopies that of EC-Ra-
pla*Raplb” mice. This suggests that similar hemodynamic defects may contribute to the
observed perinatal lethality of pups of the two genotypes.

This study has provided an insight into discrete and redundant functions of two Rap1 iso-
forms. During initial development, the functions of Rapla and Rap1b are at least somewhat
redundant, as development of the majority of embryos is supported upon single isoform dele-
tion (Table 3) [22, 23]. However, later in development Raplb'/ ", but not Rapla'/ ", embryos
develop hemorrhages (Fig 1) and Rapla'/ “embryos develop edema [23](and data not shown).
This suggests that the Rap1b isoform may be a more critical regulator of vascular stability dur-
ing development. While this bleeding phenotype is not observed in EC-Rap1b KO, additional
deletion of one Rap]la allele results in a bleeding phenotype similar to that of global Rap1b KO
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Fig 6. Normal vasculature in control, Tie2-Cre®°; Rap1” E10.5 embryos. Left: whole mountimage. Right: A-D: Normal perineural vasculature; C and D:
enlargement of boxed areas in A and B; (C, arrow) blood-filled vessels; (D, arrow) ECs. (E, arrow) 15! branchial arch artery, normal (arrow); (F, arrow): larger
3" pranchial arch artery; (G): aortae and cardinal veins at the level of arterio-venous canal of the heart, with normal pericardial space; H: venous entrance to
the heart (arrow: sinus venosus). Staining shown is H&E (A, C, F and H) and CD31 (B, D, G and H).

doi:10.1371/journal.pone.0145689.g006

(Fig 7). This suggests that Rapl in other, non-endothelial cells is required for vessel homeosta-
sis. Such a conclusion is supported by our findings of the importance of Rap1b in smooth mus-
cle cells in maintenance of vascular tone [32]. Thus, additional studies of Rap1 in other

EC-Rapla*/*Raplb*/+ EC-Rapla’/-Raplb*/- EC-Rapla*-Raplb/-
(Tie2-Cre®;Rap1a*;Rap1b) (Tie2-Cre*®;Rap1a™::Rap1b™*) (Tie2-Cre*®;Rap1a”*;Rap1b)

Fig 7. Vascular abnormalities in partial EC-Rap1 KO embryos. Cranial hemorrhage is present in approximately 30% of EC-Rap1a*"Rap1b” embryos
(right panel) at E15.5 and contributes to increased lethality (44.7%) at weaning. No bleeding was observed in EC-Rap1a”Rap1b* embryos at E15.5
(center). Stereoscopic images are representative of n = 6 analyzed pregnancies resulting from Tie2-Cre*’®; Rap1a®*, Rap1b™ x Tie2-Cre®°; Rap1a”,
Rap1b”f crosses. Number of animals obtained (No) and expected (Ng), based on Mendelian distribution, as determined at weaning. Lethality was calculated
using the following formula: (1-No/Ng)*100%.

doi:10.1371/journal.pone.0145689.9g007
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vascular cells are required for full understanding of the role of this important molecule in vessel
homeostasis.
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