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Abstract
Semantics-based model composition is an approach for generating complex biosimulation

models from existing components that relies on capturing the biological meaning of model

elements in a machine-readable fashion. This approach allows the user to work at the bio-

logical rather than computational level of abstraction and helps minimize the amount of

manual effort required for model composition. To support this compositional approach, we

have developed the SemGen software, and here report on SemGen’s semantics-based

merging capabilities using real-world modeling use cases. We successfully reproduced a

large, manually-encoded, multi-model merge: the “Pandit-Hinch-Niederer” (PHN) cardio-

myocyte excitation-contraction model, previously developed using CellML. We describe

our approach for annotating the three component models used in the PHN composition

and for merging them at the biological level of abstraction within SemGen. We demonstrate

that we were able to reproduce the original PHN model results in a semi-automated,

semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model

composed using an alternative, independently-developed tension generation component.

We discuss the time-saving features of our compositional approach in the context of these

merging exercises, the limitations we encountered, and potential solutions for enhancing

the approach.
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Introduction
While biomedical researchers now have the computational power to express complex hypothe-
ses about biological systems using quantitative biosimulation models, repurposing previously-
published models to compose larger, multiscale systems remains a largely manual, time-con-
suming and error-prone task. Few tools exist that help automate the process of merging models
into more complex, biologically consistent systems. Developing such tools is challenging
because, for example, modelers do not all encode their models in the same language and they
do not always employ the same system of physical units. Another critical challenge is that sys-
tems-level hypotheses differ between research groups; two modelers may conceptualize the
same system at different levels of granularity, with different sets of biological role players, and
with different input/output arrangements between interacting components. Harmonizing
these differences at the time of model merging is often cumbersome. Thus, there is a need for a
flexible model composition approach that accommodates the various ways researchers concep-
tualize a biological system, and one that scales across modeling languages [1]. To meet these
needs we have developed the SemSim (semantic simulation) model description format [2,3],
which describes a biosimulation model in terms of its biological meaning formally linked to the
model’s specific mathematical implementation. To accomplish this we use composite annota-
tions [2], a set of structured statements that link controlled ontology terms to form a precise,
logical definition of what is being simulated. We currently encode SemSim models in OWL [4],
but other knowledge representation formats might be used.

Extraction and merging of biosimulation models begins by annotating each model using
our Java-based application, SemGen, available at http://sbp.bhi.washington.edu/projects/
semgen. SemGen provides utilities for annotating existing models encoded in CellML [5], Sys-
tems Biology Markup Language (SBML) [6] and JSim’s Mathematical Modeling Language
(MML) [7] as well as utilities for extracting out parts of models and merging models into new
systems. Our goal with SemGen is to provide a tool that facilitates biological annotation of a
wide variety of available models and allows modelers to perform composition tasks at the bio-
logical, rather than computational, level of abstraction. That is, modelers who wish to merge
two models will not necessarily need to have code-level knowledge of the models to couple
them into a biologically-consistent system.

One of our primary objectives is to provide modelers with a suite of tools that will allow
them to more easily share, repurpose, and compose multiscale models of physiological systems.
We have previously demonstrated SemGen’s merging capabilities using example model com-
position tasks derived from our own work as multiscale physiological modelers [2,3,8]. Our
aim for the present study was to test these capabilities further using more complex merging
tasks derived from external, real-world modeling efforts in physiology. We identified the “Pan-
dit-Hinch-Niederer” (PHN) model [9,10], an integrated cardiomyocyte composition, as a can-
didate merging task, given its level of complexity and relevance to multiscale cardiac
physiology. For this study we aimed to reproduce the PHN composition using SemGen and
also further stress-test the application by creating variations of the PHNmodel using alterna-
tive source models.

The original design and creation of the PHNmodel is described in Terkildsen et al. [9]. To
summarize, Niederer and Smith [10] first reported the integration of this model, and then Ter-
kildsen et al. re-created the integration task to showcase how a composite model can be created
from independent CellML components that are imported by reference into a parent CellML 1.1
model. The Terkildsen et al. version was created by first merging the electrophysiology model of
Pandit et al. [11] (referred to here as the “Pandit”model) with the calcium dynamics model of
Hinch et al. [12] (referred to here as the “Hinch”model). Then, the active tension development
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model of Niederer et al. [13] (referred to here as the “Niederer”model) was incorporated to con-
nect intracellular calcium dynamics to tension generated by the cell. The result is a cardiomyocyte
model that integrates electrophysiological dynamics, calcium-induced calcium release, and active
tension development (Fig 1). The CellML version of the PHNmodel published by Terkildsen
et al. is available at https://models.cellml.org/exposure/e8ee336095b8955f75a3e6c09b791d42/
Pandit_Hinch_Niederer.cellml/view.

Using the Terkildsen et al. publication as a guide, we attempted to reproduce the PHN
model by first downloading the source models from the CellML repository, annotating their
biological content according to the SemSim framework, merging the Pandit and Hinch models
with SemGen’s Merger tool [2], then merging the result with the Niederer model. Ultimately,
we were able to generate a merged system that faithfully reproduces the numerical results of
the PHNmodel published by Terkildsen et al. including membrane voltage, calcium dynamics
and active tension development. Here we report the results from our PHNmerging exercise, as
well as some important limitations we identified that, if resolved, would have allowed further
automation of the modeling task and obviated some code-level management required for

Fig 1. Architecture of the integrated PHNmodel.Coloring indicates a component’s source model. Ion flows without circles represent facilitated transport;
those with circles represent active transport. Adapted from Fig 1 of Terkildsen et al. [9].

doi:10.1371/journal.pone.0145621.g001
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model-to-model coupling. Most importantly, we discuss the need for a semantic-similarity
scoring metric that will allow SemGen to recognize semantically similar, not just identical, bio-
logical content shared between models.

We also report here on a follow-up test of our semantics-based modeling approach where
we coupled the Pandit-Hinch merged system to a different model of active tension develop-
ment based on Tran et al. [14] This tension model (referred to here as the “Tran”model) is dis-
tinct from the Niederer model in that it includes the effects of ATP, ADP, phosphate and pH
on force development. This model-merging task was first performed at a conference as an
impromptu collaboration between three of the authors. We describe this initial collaboration
here as supplementary evidence, albeit anecdotal, that demonstrates the time-saving features of
our semantics-based modeling approach.

Materials and Methods
In this section we describe the methodology behind SemGen’s semantics-based merging tool as
well as the approach we used to annotate the source models used in our integrated cardiomyo-
cyte models, including several “semantic alignment” steps required for SemGen to automati-
cally recognize key points of semantic overlap between the models. We then describe the
specific steps performed to couple the models within SemGen and generate simulation output.

SemGen’s Merger Tool
We designed SemGen to support a particular style of model merging, where the interface
between the source models to be merged is formed at the time of merging and is based on the
biophysical overlap between the models. We refer to this approach as “semantics-based, adapt-
able interface modularity” (SAIM) [1]. We contend that this approach is more scalable in the
context of community-wide model sharing than pre-defining model-to-model interfaces
because such interfaces may only be useful to research groups that share a common conceptu-
alization of how a biological system should be organized for study. Because such conceptualiza-
tions differ between research groups, it is instead more practical to form the links between
shared models based on their biological content, rather than specific input/output designations
within the code.

When two models are loaded into the Merger tool, SemGen analyzes their semantic annota-
tions and lists the biophysical concepts shared by both models. Then, the user decides which
mathematical implementation of the concept should be preserved in the merged system (or to
ignore the equivalency and preserve both representations in the merged system). Once this res-
olution process is completed, SemGen makes the appropriate computational links between the
models to couple them. Thus, it is crucial that models are annotated in a consistent fashion
such that SemGen can recognize biological equivalencies between the models. To promote this
consistency, we have developed an annotation protocol described next.

Model Annotation
We annotated the source models of our integrated cardiomyocyte simulations as part of a
broader effort to create SemSim versions of a substantial set of publicly available CellML mod-
els. In order to test the ability of SemGen to combine model components annotated by different
individuals, multiple annotators were assigned non-overlapping sets of CellML models to
annotate in SemGen, including the Pandit, Hinch, and Niederer models. One author annotated
the Pandit model and another annotated the Hinch and Niederer models. Both of these authors
collaborated on annotating the Tran model. To promote inter-annotator consistency, we devel-
oped an annotation protocol before embarking on our annotation effort. Here we briefly
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describe our protocol for capturing the biological meaning of a model’s contents within Sem-
Sim models.

The existing set of biophysical concepts in the corpus of publicly available ontologies is not
detailed enough to provide single controlled terms as annotations for the physical properties
often represented in biosimulation models. For example, a concept common to all three of the
Pandit, Hinch and Niederer models is cytosolic calcium concentration in the cardiomyocyte;
however, to our knowledge no single ontology term exists that represents this concept. To cre-
ate a logical, machine-readable definition for this concept, we decompose the concept into a
sequence of multiple ontology terms, linked via standardized ontological relationships. We call
this post-coordinated construct a “composite annotation” [2]. The composite annotation for
this particular example links the physical property “concentration” to a partonomy of multiple
physical entities: calcium, cytosol, and cardiomyocyte.

In our annotation approach we distinguish among three types of physical properties repre-
sented in biosimulation models: properties of physical entities (concentrations, volumes, etc.),
properties of physical processes (chemical reaction flow rates, electrical currents, etc.), and
properties of constitutive dependencies (chemical reaction rate constants, vascular compli-
ances, etc.). We make these distinctions based on the logical, formal organization of the physi-
cal property hierarchy in the Ontology of Physics for Biology (OPB—[15,16]). Rather than
annotate every physical concept in a biosimulation model, we instead focus on the first two
types: properties of entities and processes. We have found that when performing semantics-
based merging, the coupling points between models predominantly involve these properties,
and coupling the models at these points subsequently resolves most, if not all, of the semantic
overlap between the constitutive properties shared by the models.

Annotating properties of physical entities. To annotate physical entities, we created
composite annotations as described in our cytosolic calcium concentration example above. In
each case we used terms from the OPB for the physical property component of the composite
annotation. This was done because the OPB provides adequate coverage and principled organi-
zation of physical property concepts commonly used in biosimulation models. This principled
organization is critical for reaching several of our broader research goals: performing auto-
mated reasoning over SemSim models to support advanced search and retrieval of models [17],
further automating model annotation, detecting semantic similarities between models, and
identifying biophysical inconsistencies in models. The OPB is being developed in close collabo-
ration with SemGen so that we can leverage the ontology’s content and organization to support
these broader research goals.

For the physical entity components of our composite annotations, we have relied on a lim-
ited subset of available ontologies and terminologies as resources for naming and referencing
physical entities in composite annotations. We selected this subset of ontologies, shown in
Table 1, to promote inter-annotator consistency when creating composite annotations. We
rely primarily on the Foundational Model of Anatomy (FMA—[18]) for anatomical terms
because of its deep coverage, principled organization, and mereotopological detail. Although
the FMA is comprehensive in its coverage of macroscopic human anatomy, we use the Mouse
Adult Gross Anatomy Ontology (MA—[19]) for rodent-specific anatomical structures (e.g.,
tail vein), the Cell Type Ontology (CL—[20]) for non-mammalian cell types, and the cellular
component branch of the Gene Ontology (GO:cc—[21]) for macromolecular structures not
represented in the FMA. At the molecular level, we use the Protein Ontology (PR—[22]) for
proteins and the Chemical Entities of Biological Interest (ChEBI—[23]) resource for atoms and
small molecules. For laboratory materials such as cell culture media and patch clamps, we use
the Ontology for Biomedical Investigations (OBI—[24]).
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When annotating our source models, we sometimes found that a precise reference term for
a physical entity was not available. In such cases we created custom physical entities for use in
the model. For example, the Niederer model simulates the cytosolic concentration of calcium-
bound troponin. Because calcium-bound troponin is not a concept represented in any publicly
available knowledge resource we know of, we introduced a custom term within the model.
Although such custom terms are sometimes unavoidable, they do present a challenge for recog-
nizing the semantic overlap between models. Because they are not defined against reference
terms, SemGen currently has no way to determine the biological meaning of a custom physical
entity, and therefore cannot recognize inter-model semantic equivalencies for composite anno-
tations that use custom physical entity terms. We discuss this important limitation and its
impact on our ability to automate the PHNmerging operation later in the Discussion section.

Annotating properties of physical processes. When creating composite annotations for
physical processes, we use a logical structure that is different than for physical entities. For each
process property, we select the OPB property that is represented (electrical current, for exam-
ple), and link it to a custom term in SemGen that represents the process itself. This is done
because no multiscale ontology of physical processes currently exists that formally connects
processes to the physical entities that participate in them. Such connections are critical for our
model merging purposes because merging often requires reformulating conservation equations
(e.g. mass balance laws) that define the amount of a physical entity in a system. Automating
such reformulations would require that SemGen know which processes consume and produce
which physical entities. No existing process ontology provides this information, and although
the OPB has been designed to eventually represent a set of physical process types, specifying
the entity participants in those processes is beyond its scope. Therefore, our approach is to cre-
ate a custom physical process term within SemGen for each process property, and explicitly
designate which entities are consumed, produced or otherwise influence the process. To pro-
mote consistency and reduce effort when annotating the properties of physical processes, we
annotated them only after annotating the properties of physical entities. This way we were able
to readily specify process participants by selecting them from the set of physical entities already
added to the model.

To identify semantic equivalencies between properties of processes in models, SemGen ana-
lyzes the specific physical property represented, and the entities that participate in the process.
If the property and the participating entities are all semantically equivalent by virtue of their
ontological annotations, SemGen identifies the processes as equivalent.

Annotating constitutive properties. As mentioned above, we did not attempt to annotate
all the constitutive properties in the Pandit, Hinch, Niederer and Tran models; such annota-
tions would have provided little benefit to the model merging process. However, some consti-
tutive properties are available as single reference terms in the OPB due to widespread use in

Table 1. The set of knowledge resources fromwhich we selected terms to use in our composite anno-
tations for properties of physical entities.

Knowledge resource Scope of use

Foundational Model of Anatomy (FMA) Macromolecular to organism-level anatomy

Mouse Adult Gross Anatomy (MA) Rodent-specific anatomy

Cell Ontology (CL) Non-mammalian cell types

Gene Ontology:cellular component (GO:cc) Macromolecular structures not represented in FMA

Protein Ontology (PR) Proteins

Chemical Entities of Biological Interest (ChEBI) Atoms and small molecules

Ontology for Biomedical Investigations (OBI) Laboratory materials

doi:10.1371/journal.pone.0145621.t001
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biophysical modeling. The universal gas constant and Faraday’s constant are two such concepts
present in the Pandit and Hinch models that we annotated using single reference terms (as
opposed to composites) from the OPB. At the time of model merging, SemGen compares sin-
gular as well as composite annotations; therefore, the program can identify semantic equivalen-
cies based on singular reference terms such as these and can notify the user of differences in
their computational implementation, including physical unit assignments.

Semantic Alignment of Ion Channel Activity
As reported in Terkildsen et al., there is a crucial difference between the Pandit and Hinch
models that must be addressed before they can be coupled in a biophysically consistent way:
ion channel activity rates are expressed as electrical currents (in nanoamps) in the Pandit
model, and as chemical concentration flow rates (in millimolar/sec) in the Hinch model.
Therefore, Terkildsen et al. added additional “glue code” to their merged system that converts
the chemical concentration flow rates into currents. Because current is semantically distinct
from chemical concentration flow rate, we had to perform a similar alignment between the
models for SemGen to automatically recognize the ion channel commonalities shared by the
Pandit and Hinch models. To address this issue we copied in the computational block of glue
code that Terkildsen et al. added into the Hinch source model, and used this new version of the
model in our annotation and merging processes.

Merging Models in SemGen
After annotating our source models, we performed sequential merges, two models at a time,
within SemGen’s Merger tool. After analyzing the semantic annotations, SemGen presented
the set of matching annotations present in the two models along with the model codewords
associated with them. (As mentioned above, these matching annotations indicate the biologi-
cally equivalent concepts among the two models). We then selected which mathematical for-
mulation of those biological concepts we wished to preserve in the merged model based on the
composition described by Terkildsen et al.

SemGen was able to automatically identify many, but not all, of the biological equivalencies
during the merging process. Left unresolved, these unrecognized equivalencies result in redun-
dant biological content being copied into the merged model. Therefore, for those cases where
we knew SemGen had failed to find an equivalency, we determined whether we needed to man-
ually specify the equivalency so that we could appropriately couple the models, computation-
ally. In some cases the presence of redundant content may not impact the variables that a user
cares about simulating; while the content is computed in the merged model, it may be a
computational dead end having no downstream mathematical impact on any of the variables
of interest. In other cases, copying in the redundant content results in two different mathemati-
cal formulations of the same biophysical property being used to compute a variable of interest;
a logical inconsistency in the model that must be avoided. Therefore, for each equivalency not
identified by SemGen, our challenge was to determine whether ignoring the equivalency (and
thus copying in redundant mathematical content) would create such a logical inconsistency or
would simply generate inconsequential content that could be manually pruned out later. If the
former, then we manually specified the equivalency at the time of merging and resolved it
according to the decisions made by Terkildsen et al. Creating the PHNmodel required two
instances of this kind of manual intervention. See Tables 2 and 3 for the specific instances.

After resolving all biological equivalencies, SemGen prompts the user to provide new names
to disambiguate any variables and submodels that have identical names in the two models to
be merged. SemGen also recognizes unit inconsistencies between model variables that it
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Table 2. Semantic equivalencies between the annotated Pandit and Hinchmodels grouped according
to whether SemGen identified them or not.

Shared biophysical property Resolution decision

Automatically identified by SemGen

Background calcium current Hinch

Calcium-ATPase pump current Hinch

Sodium/calcium exchanger current Hinch

Intracellular calcium ion concentration Hinch

Intracellular sodium ion concentration Pandit

Extracellular calcium concentration Pandit

Extracellular sodium concentration Pandit

Membrane voltage Pandit

Cytosolic volume Hinch

Ambient temperature Hinch

Universal gas constant Hinch

Faraday constant Hinch

Temporal solution domain Hinch

Not identified

* L-type calcium channel current Hinch

Ryanodine receptor current Unresolved

SERCA pump current Unresolved

Troponin-calcium buffering rate Unresolved

Diadic space calcium concentration Unresolved

Sarcoplasmic reticulum calcium concentration Unresolved

Concentration of bound and unbound calmodulin Unresolved

Concentration of bound and unbound troponin Unresolved

Troponin-calcium association rate constant Unresolved

Troponin-calcium dissociation rate constant Unresolved

Calmodulin-calcium rapid buffer coefficient Unresolved

*Required a manual mapping between models to produce desired PHN simulation results.

doi:10.1371/journal.pone.0145621.t002

Table 3. Semantic equivalencies between the merged Pandit-Hinchmodel and the Niederer model
grouped according to whether SemGen identified them or not.

Shared biophysical property Resolution
decision

Automatically identified by SemGen

Intracellular calcium ion concentration Pandit-Hinch

Intracellular troponin concentration (Hinch and Niederer representations) Niederer

Temporal solution domain Pandit-Hinch

Not identified

* Troponin-calcium buffering rate (shared by Pandit, Hinch and Niederer) Niederer

Concentration of bound and unbound troponin (shared by Pandit, Hinch and
Niederer)

Unresolved

Troponin-calcium association rate constant (shared by Pandit, Hinch and Niederer) Unresolved

Troponin-calcium dissociation rate constant (shared by Pandit, Hinch and Niederer) Unresolved

*Required a manual mapping between models to reproduce PHN simulation results.

doi:10.1371/journal.pone.0145621.t003
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identifies as semantically equivalent. For example, myoplasmic volume is expressed in microli-
ters in the Pandit model, but in cubic micrometers in the Hinch model. However, we were able
to ignore prompts warning of unit inconsistencies during the merging process because the two
simulation platforms we planned to use for validating our merged model—JSim [7] and Open-
COR [25]—support automatic unit conversion. Once our final merged SemSim models were
generated, we converted them into CellML using SemGen’s SemSim-to-CellML translation
function and simulated the model in JSim and OpenCOR.

To gauge SemGen’s ability to merge models in a biologically consistent fashion, we also
compared the points of semantic overlap identified by SemGen during merging against the
points identified by a human expert. Based on this comparison, we discuss potential solutions
for improving SemGen’s ability to identify biological overlap points between models. We out-
line these solutions in the Discussion section.

Substituting the Tran Force-Generation Model for the Niederer Model
The Tran model of cardiomyocyte crossbridge force development is based on the model by
Rice et al. [26] and adds the regulation of crossbridge kinetics as a function of metabolites such
as ATP and ADP. The purpose of merging the Tran model to the existing Pandit-Hinch merge
is to demonstrate that functional model components (in this case force production) can be
swapped into or out of larger composite models. For that reason, the link we made between the
two models was through the cytosolic calcium concentration only, and we did not replace the
buffering of calcium by troponin in the Pandit-Hinch model with the calcium-troponin bind-
ing in the Tran model. Three of the authors (KT, BEC and JHG) performed the initial merging
attempt with the Tran model as an impromptu exercise at a conference. They were able to gen-
erate a runnable simulation from SemGen in approximately 15 minutes. Following-up on this
initial attempt, we re-performed the PHT merge using a more thoroughly annotated version of
the Tran model, the results of which are reported here.

Validation of Merged Models
To validate our version of the PHNmodel, we compared our simulation results for intracellular
calcium, membrane voltage, and active myocyte tension to those from the model published by
Terkildsen et al. We then investigated the mathematical differences between the versions that
accounted for any deviations between the results. To validate the PHT model, we investigated
whether the model gave expected results for cardiomyocyte force generation given the intracel-
lular calcium and membrane dynamics provided by the Pandit-Hinch model.

Results

Pandit-Hinch-Niederer Merge
Table 2 shows which semantic equivalencies SemGen automatically identified when merging
the Pandit and Hinch models based on the variables’ annotations. In cases where SemGen did
not identify an existing equivalency where it should have, we determined whether we needed
to manually specify the equivalency so that we could generate a merged PHNmodel that
would correctly compute our variables of interest. These manually-specified equivalencies are
indicated by an asterisk in Tables 2, 3 and 4.

Table 3 shows which semantic equivalencies SemGen automatically identified when merg-
ing the Pandit-Hinch and Niederer models as well as the equivalencies that we had to manually
specify and those that we left unresolved.
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Fig 2 compares simulation results from our SemGen-generated PHNmodel against those of
the Terkildsen et al. PHN model. The results show that we were able to couple the models such
that the membrane stimulation current used in the Pandit model creates an intracellular cal-
cium transient. These calcium dynamics are controlled by the Hinch calcium mass balance
equations, and they in turn produce active myocyte tension development according to the Nie-
derer model formulation.

We investigated a number of significant numerical differences between the two versions of
the model and found that some of the computational aspects from the Pandit, Hinch and Nie-
derer source models were adjusted in the Terkildsen et al. PHN model:

• The membrane stimulation current equation was edited so that stimulation is phase-shifted
by 20 ms and doubles in frequency after 5 seconds

• Ryanodine receptor and L-type calcium channel currents were increased by introducing a
scaling factor of 1.5

• A Hill coefficient in the equation for the sodium-potassium pump current was increased
from 1.5 to 4

• Initial conditions were changed for several of the variables solved using ordinary differential
equations.

We manually incorporated these adjustments from the Terkildsen et al. PHN model into
the simulation code of our SemGen-generated PHNmodel. Fig 3 compares the simulation
results between this new version and the Terkildsen et al. version.

Because we did not resolve all the known biophysical overlap between the source models
used in the PHNmerge, the SemGen-generated version includes redundant representations of
several biological components. For example, both representations of the sarcoplasmic reticu-
lum (SR) and the diadic space (DS), including the calcium concentrations therein, are con-
tained in the merged model. However, only the SR and DS from the Hinch model have any
impact on tension generation dynamics. The Pandit representations of the SR and DS exist in a
terminal branch of the model’s computational network and are effectively isolated from the
model because the only fluxes that influence cytosolic calcium come from the Hinch SR and
DS dynamics. The fluxes in the Pandit representation of the SR and DS, while they are com-
puted based on cytosolic calcium concentration, do not in turn impact cytosolic calcium values.
Due to biological redundancies such as these, the SemGen-generated model contains more

Table 4. Semantic equivalencies between the merged Pandit-Hinchmodel and the Tranmodel
grouped according to whether SemGen identified them or not.

Shared biophysical property Resolution decision

Automatically identified by SemGen

Intracellular calcium ion concentration Pandit-Hinch

Ambient temperature Pandit-Hinch

Temporal solution domain Pandit-Hinch

Not identified

Concentration of bound and unbound troponin (shared by Pandit, Hinch and Tran) Unresolved

Concentration of calcium-bound troponin (shared by Pandit and Tran) Unresolved

Troponin-calcium buffering rate (shared by Pandit, Hinch and Tran) Unresolved

Troponin-calcium association rate constant (shared by Pandit, Hinch and Tran) Unresolved

Troponin-calcium dissociation rate constant (shared by Pandit, Hinch and Tran) Unresolved

doi:10.1371/journal.pone.0145621.t004
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computational code than the original PHN model: the SemGen-generated version contains 528
variables while the original contains 432.

Pandit-Hinch-Tran Merge
To create the Pandit-Hinch-Tran (PHT) model, we merged our previously generated Pandit-
Hinch model with the Tran model of myocyte tension development. Table 4 shows which
semantic equivalencies SemGen automatically identified when generating the model, which
unidentified equivalencies we had to manually specify, and which we left unresolved.

Fig 4 shows the simulation results for the SemGen-generated PHT model. All equation for-
mulations and initial conditions from the original source models are preserved in this merged
model; no manual, post-merge changes were made.

Discussion
Our merging exercises demonstrate that we can use SemGen to successfully couple the Pandit,
Hinch, Niederer and Tran models into integrated cardiomyocyte systems that appropriately
link ion channel dynamics, calcium-induced calcium release, cross-bridge dynamics and

Fig 2. Comparison between simulation results from the original PHNmodel and the SemGen-generated version.

doi:10.1371/journal.pone.0145621.g002
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tension generation. We were able to apply SemGen’s SAIM-style approach to model integra-
tion, and in the majority of cases, specify the connections between source models at the level of
their biophysics, rather than their mathematics. We were thus able to avoid much of the man-
ual encoding required for generating the original PHN model, including the burden of “map-
ping” CellML variables to each other. Our impromptu creation of the novel, integrated PHT
model further demonstrates the flexibility and compositional power of the SAIM approach.

As described above, reproducing the numerical results of the Terkildsen et al. PHNmodel
using our SemGen-generated version required the manual addition of several post-merge
adjustments originally made by Terkildsen et al. Without these adjustments, the tension gener-
ated by the PHNmodel is relatively low (compare the bottom curves of Figs 2 and 3). The
changes increase the peak of the calcium transient to elicit a higher tension response that is
more comparable to the Niederer source model. Similarly, the normalized force generated by
the PHT model (Fig 4, bottom curve) is relatively low compared to the force generated in the
Tran source model. This is also because the cytosolic calcium levels generated by the Pandit-
Hinch model are lower than those used in the Tran source model. Therefore, additional post-

Fig 3. Comparison between simulation results from the original PHNmodel and the manually-modified SemGen-generated version. This modified
SemGen-generated model includes the adjustments to equations and initial conditions that were introduced into the PHNmodel published by Terkildsen
et al.

doi:10.1371/journal.pone.0145621.g003
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merge parameter changes would be required to align the assumptions about calcium levels in
the components of the PHT model. These kinds of post-merge adjustments are an important
part of a modeler’s workflow when merging models. Often, they require a clear understanding
of the mathematical relations among variables, and a broad contextual knowledge about the
assumptions and underlying biology behind the models. For example, source models may be
parameterized under different experimental conditions and for different species. The post-
merge edits, such as those we described above, represent subtle (and sometimes subjective)
decision-making by human intelligence. It is not within the scope of SemGen to help automate
this aspect of model merging. Rather, SemGen aims to make all of the straightforward connec-
tions, and do the “heavy lifting” of semantic resolution, merging and automatic code genera-
tion. Using our tool, the modeler can more easily move to the challenging and subtler decisions
about assumptions, context, and adjustments to parameters that might be needed to produce a
biologically sensible result.

Fig 4. Simulation results for the PHTmodel demonstrating coupling of the stimulation current, membrane voltage, calcium transients, and
cardiomyocyte force generation.

doi:10.1371/journal.pone.0145621.g004
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Time-Saving Benefits
While we have not yet performed formal tests to quantify the amount of time SemGen saves
users when performing model merging tasks, the present study provides preliminary evidence,
albeit anecdotal, illustrating its time-saving features. Based on estimates from the authors, the
original Terkildsen et al. model required months to generate whereas our version required only
weeks. Furthermore, the time required for us to assemble our version included the time
required to annotate the models, and also to enhance and debug SemGen so that it correctly
performed the model-model resolution, merging, and code-generation procedures. The actual
time required to load in the annotated models, resolve their semantic overlap and output simu-
lation code requires on the order of several minutes only. Indeed, authors KT, BEC and JHG
were able to quickly generate an impromptu version of the PHT model during a 15-minute
conference break—they already had the annotated Pandit and Hinch models available, and
connecting them to the Tran model was simply a matter of annotating cytosolic calcium in the
Tran model and then merging the Pandit-Hinch and Tran models in SemGen. We acknowl-
edge that this process was likely facilitated by KT’s expert knowledge of the Pandit and Hinch
models, nonetheless, we believe this impromptu composition is an important illustration of the
time-saving benefits that are available through semantics-based model composition.

We also note that after creating our version of the PHNmodel, we were able to quickly gen-
erate a model variant that used the epicardial rather than endocardial version of the Pandit
model. The epicardial version is very similar to the endocardial version, and includes many of
the same variables and equations. We were therefore able to automatically import many of the
annotations from the endocardial version and apply them to the epicardial version, merge the
latter with the Hinch model, then merge the result with the Niederer model (using the same
resolution decisions presented in Tables 2 and 3). The total amount of time required to gener-
ate this variant of the PHNmodel was approximately five minutes.

Current Limitations and Solution Strategies
Our merging exercises illuminated several limitations in our approach that, if addressed, would
further automate model composition in SemGen. As discussed in the Methods section and
indicated in Tables 2–4, there were several points of semantic overlap between the models that
SemGen did not recognize, requiring manual intervention during the merging process. From
these examples, we have identified three primary impediments that account for the manual
interventions we performed. These are presented below along with proposed solution
strategies.

1) Models represent semantically similar, but not identical, physical properties. As dis-
cussed in the Methods section, SemGen currently only recognizes semantic equivalency, not
similarity. Therefore, to couple the Pandit and Hinch models in a biophysically consistent fash-
ion, we manually introduced glue code into the Hinch model that represented ion channel
activity in terms of electrical current rather than chemical concentration flow. This demon-
strates how recognizing semantic similarity between models could accelerate the merging pro-
cess. The activity of an ion channel expressed as electrical current is physically distinct from
activity expressed as a molar flow rate, but the two properties are ontologically related: The
terms ‘Charge flow rate’ and ‘Chemical concentration flow rate’, which represent the two prop-
erties used to express ion channel activity in this example, are both subclasses of OPB:Flow rate
property. A semantic similarity scoring system that recognizes the close relationship between
these terms could therefore be used to suggest inter-model links between ion channel activities,
despite differences in implementations. We plan to investigate previously developed semantic
similarity metrics [27,28] and eventually develop a scoring system within SemGen that will
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quantify the biological similarity of terms annotated with composite as well as singular annota-
tions. We also plan to extend SemGen so that modelers can introduce glue code as needed dur-
ing the merging process, rather than rely on the type of preemptive semantic alignment that we
performed here.

Recognizing semantic similarity is also crucial for addressing differences in representational
detail among models to be merged. In our merging exercise there were some cases where the
same biophysical phenomena were simulated at different levels of granularity. For example,
while the Hinch model represents troponin buffering using one chemical species for troponin,
the Pandit model represents high- and low-affinity versions of troponin. Also, the Hinch
model represents the SR as a single container while the Pandit model breaks up the SR into
“junctional SR” and “network SR” sub-components. Enhancing SemGen to recognize such
similarities and provide the means to resolve them would eliminate much of the redundant bio-
physical phenomena present in our merged models. One such enhancement would be to allow
users to link custom physical entity terms such as “high-affinity troponin” to related classes
from reference ontologies. This way, SemGen could recognize the close relationship between
the two representations of troponin in the Pandit and Hinch models. Another enhancement
would be to leverage the mereotopological information contained in the ontologies we use for
annotation so that SemGen can recognize critical parthood relationships between biological
structures represented in models.

Our merging exercises also showed us the importance of being able to recognize when two
models simulate the same physical process, but with opposite directionality. For example, the
Pandit model represents calcium-troponin buffering using a variable that simulates the associa-
tion rate of calcium ion and troponin. The Hinch and Niederer models, on the other hand, rep-
resent the same process using a variable that simulates the dissociation rate of the calcium-
troponin complex. SemGen currently recognizes equivalent physical processes by examining
the physical property represented (electrical current, e.g.) and the physical entities that partici-
pate in the process as thermodynamic sources, sinks and mediators. Thus, if two models repre-
sent the same physical process but directionality is different such that the source entities for
one model are the sinks for the other, SemGen does not yet recognize the equivalency. We plan
to enhance SemGen so that it recognizes the close, inverse relationship between processes that
have opposite directionality but are otherwise identical.

2) Unavailable reference terms. During model annotation there were several physical
entities for which we could not find suitable reference terms. We therefore used custom terms;
however, SemGen cannot yet determine the biological relationship between composite annota-
tions that include custom terms. There are several solutions to address this challenge. First, in
some cases it may be prudent to send a term request to the appropriate ontology developers so
that the reference term needed for annotation is added to the corpus of available reference
ontologies. For example, we used a custom term for “diadic space” in our source models, and
the developers of the FMA have said they would be willing to add this term to their ontology.
Second, SemGen could potentially recognize the relationship between custom terms if they
were linked to existing reference terms using structural and/or hierarchical relationships. For
example, calcium-bound troponin (another custom term used in annotating our source mod-
els) could be linked to CHEBI:calcium(2+) and PR:Troponin C, slow skeletal and cardiac mus-
cles using the has_part relation. Many examples of such linkages are found in SBML [6] models
available in the BioModels database [29] because, as we also report here, reference terms that
provide a precise biophysical definition for an annotated object are not always available. Previ-
ous studies within the SBML domain describe methods for quantifying the semantic similarity
of model elements that are annotated using non-identity relations such as has_part [27]. In the
future we plan to apply such methods to allow SemGen to recognize the relationship between
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custom terms. A third solution would be to establish a new knowledge resource that provides
unique identifiers for whatever custom terms are created in curated SemSim models. In addi-
tion to providing a set of terms for molecular complexes (such as calcium-bound troponin),
this knowledge resource would also provide a set of terms representing functional, as distinct
from structural, anatomy since many anatomical entities used in biosimulation models are
defined by their physiological function rather than their structural characteristics (such as the
diadic space). Such terms could then be re-used during the annotation of new models.

3) Recognizing equivalent constitutive properties. As mentioned in the Methods section,
when annotating our source models we focused on model data structures that represent the
properties of physical entities and processes. We only annotated constitutive properties, the
third type of property, if a singular reference term was available in the OPB. Therefore, we had
to manually specify the semantic equivalency between the rapid buffer coefficient used to rep-
resent calmodulin-calcium binding in the Pandit and Hinch models. To address this issue, we
plan to enhance SemGen such that it can automatically recognize and/or propose annotations
for constitutive properties as the annotation process proceeds and ontological information
accumulates in the SemSim model. This will minimize the manual annotation of constitutive
properties and still allow SemGen to recognize inter-model equivalencies among them.
Accomplishing this will require substantial development of the OPB. Specifically, we must
assert logical statements among the OPB:Physical dependency subclasses that indicate which
physical properties are involved in which dependencies. Once this knowledge is asserted in the
OPB, SemGen can use it to automatically identify appropriate annotations for constitutive
properties based on how the property is used within the model’s computational dependency
network.

Despite the challenges listed above, we were nonetheless able to semi-automatically merge
our source models into integrated cardiomyocyte models that generated desired simulation
results in terms of membrane dynamics, calcium dynamics and tension development. This
illustrates that recognizing and resolving all points of semantic connection between merged
models may not be required for creating an integrated system that meets a modeler’s needs.
Even though we left several points of semantic connection unresolved and thus allowed redun-
dant biological content in the merged system, this content did not impact the simulation results
for our variables of interest; it is computationally isolated from the rest of the model and can be
pruned without consequence. For example, although the merged PHNmodel includes all three
representations of calcium-troponin buffering present in the source models, only the Hinch
representation has any influence on the model because only it impacts calcium concentration.
This arrangement was established when we resolved the equivalency for calcium concentration
between the Pandit and Hinch models; by choosing the Hinch representation of this concentra-
tion, we effectively chose to use the Hinch representation of calcium-troponin buffering at that
point because the equation that solves for calcium concentration uses the Hinch representation
of the buffering rate. This example demonstrates the value of providing users with a clear
description of how their semantic resolution choices will impact the formulation of the merged
model. We anticipate that graph visualizations would be a useful addition for communicating
the consequences of such resolution choices within SemGen. As resolution choices are made,
visualizing the changes to the merged model’s computational dependency network and/or Phy-
sioMap [30] could help users quickly ascertain exactly which parts of the source models will be
preserved in the merged system and how they will be linked together computationally.

To summarize, we have applied semantics-based model composition to generate several
versions of integrated cardiomyocyte models. Based on real-world modeling use cases, these
exercises brought into relief the time-saving benefits of our approach and several important
limitations. Addressing these limitations in the future will improve the accuracy of
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semantics-based model-to-model comparisons and further accelerate the model composition
process. It is our intent to continue refinement of our approach and produce a robust set of
modeling tools that significantly accelerates modeling work across research areas that
employ biosimulation.
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