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Abstract
Grain appearance quality and milling quality are the main determinants of market value of

rice. Breeding for improved grain quality is a major objective of rice breeding worldwide.

Identification of genes/QTL controlling quality traits is the prerequisite for increasing breed-

ing efficiency through marker-assisted selection. Here, we reported a genome-wide associ-

ation study in indica rice to identify QTL associated with 10 appearance and milling quality

related traits, including grain length, grain width, grain length to width ratio, grain thickness,

thousand grain weight, degree of endosperm chalkiness, percentage of grains with chalki-

ness, brown rice rate, milled rice rate and head milled rice rate. A diversity panel consisting

of 272 indica accessions collected worldwide was evaluated in four locations including

Hangzhou, Jingzhou, Sanya and Shenzhen representing indica rice production environ-

ments in China and genotyped using genotyping-by-sequencing and Diversity Arrays Tech-

nology based on next-generation sequencing technique called DArTseq™. A wide range of

variation was observed for all traits in all environments. A total of 16 different association

analysis models were compared to determine the best model for each trait-environment

combination. Association mapping based on 18,824 high quality markers yielded 38 QTL

for the 10 traits. Five of the detected QTL corresponded to known genes or fine mapped

QTL. Among the 33 novel QTL identified, qDEC1.1 (qGLWR1.1), qBRR2.2 (qGL2.1),
qTGW2.1 (qGL2.2), qGW11.1 (qMRR11.1) and qGL7.1 affected multiple traits with relatively

large effects and/or were detected in multiple environments. The research provided an

insight of the genetic architecture of rice grain quality and important information for mining

genes/QTL with large effects within indica accessions for rice breeding.
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Introduction
Rice (Oryza sativa L.), a staple cereal crop, feeds more than half of the world’s population.
Improvement of rice yield and grain quality is the major objective of rice breeding worldwide.
Grain quality primarily includes grain appearance, milling, eating and cooking and nutrition
qualities. Grain appearance quality mainly includes grain shape and chalkiness. Grain shape,
described by grain length (GL), grain width (GW), grain thickness (GT) and grain length to
width ratio (GLWR), contributes to grain weight and yield and has a great impact on the mar-
ket values of rice grain products. A short and round rice grain is generally preferred by con-
sumers in Northern China, Korea and Japan, whereas consumers in Southern China, the USA,
and South and Southeast Asian countries prefer a long and slender rice grain [1]. Chalkiness,
according to its location within the endosperm, can be divided into white belly, white core and
white back in rice grain [2]. Chalky grains, filled with loosely packed, round and large com-
pound of starch granules, are more prone to breakage during milling and reduce head milled
rice rate (HMRR). Furthermore, when chalky grains are cooked, cracks occur easily and reduce
the palatability of the cooked rice [3]. Degree of endosperm chalkiness (DEC) and percentage
of grains with chalkiness (PGWC) are commonly used to measure grain chalkiness. Milling
quality determines the final yield and the broken kernel rate of the milled rice, which is of con-
cern for consumers and farmers. Milling quality is measured by brown rice rate (BRR), milled
rice rate (MRR) and HMRR. Brown rice is the de-hulled rice with the palea and lemma
removed that can be used for cooking and eating. Milled rice is the result of brown rice after
removing all of the bran, which consists of aleurone and pericarp, and germ or embryo. Head
milled rice is kernel longer than or equal to 3/4 full length of a kernel. Among the above-men-
tioned three milling quality parameters, HMRR is the most important and greatly affects mar-
ket value. HMRR depends on varietal characteristics, production factors, and harvesting,
drying and milling processes.

Most of the rice quality determining traits are quantitatively inherited, controlled by multi-
ple genes/QTL [2] and affected by growing environment [4]. As for other complex traits, QTL
mapping using bi-parental populations derived from parental lines of contrast performance
has been widely used to identify QTL for various rice quality traits. Many genes/QTL for rice
grain appearance quality and milling quality traits have been reported in the last decades. The
GW1-1 and GW1-2 [5], qGRL1.1 [6], GS2 [7], GW3 and GW6 [8], qGL-4b [9], qPGWC-7 [10]
qGL-7 [11], qGRL7.1 [6], gw8.1 [12], gw9.1 [13], tgw11 [14] have been fine mapped. The GW2
[15], GS3 [16], qGL-3 [17], qSW5 [18], GS5 [19], Chalk5 [20], TGW6 [21], GW6a [22], SRS1
[23], GL7/GW7 [24, 25], GW8 [26] and CycT1;3 [27] have been cloned. The usefulness of some
of the well characterized genes/QTL was proven in an indica population of diverse breeding
lines [4].

However, QTL mapping using a single bi-parental population has a few important limita-
tions including the need to create a population segregating for the target trait, the ability to
assess only two alleles per locus, and the limited number of meiosis. Only a limited number of
QTL can be identified, since only QTL for which the two parents differ can be detected. Given
the limited scope of each study, mapping the same trait in different bi-parental populations
may yield different QTL. More than two alleles are likely to segregate per locus, and the direc-
tions of QTL effects may vary depending on the genetic background because of epistasis, pleiot-
ropy and QTL- by- environment interaction (QEI) [28].

An alternative QTL mapping approach is to conduct association analysis in a large germ-
plasm collection, known as association mapping. Association mapping is based on linkage dis-
equilibrium (LD) or the non-independence of alleles in a population. Association mapping
studies using sparse SSR markers has been proven to be successful in identifying marker-trait
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associations (MTA) in rice [29–32]. With the development of high-throughput sequencing and
SNP chip techniques, genome-wide association study (GWAS) using high density markers
becomes more and more popular in rice genetics. The first GWAS in rice was conducted by
Huang et al. [33] using 517 rice landraces genotyped by sallow sequencing. Among the QTL
identified two and five were for GW and GL, respectively [33]. Applying the same method to a
large panel of 950 worldwide rice accessions, Huang et al. [34] identified two, four and two
QTL for GW, GL and thousand grain weight (TGW), respectively. Based on genotyping 44,100
SNP across 413 diverse accessions from 82 countries, Zhao et al. [35] identified eight,10 and 15
QTL for GW, GL and GLWR, respectively. Begum et al. [36] identified seven, 10 and 11 QTL
for GW, GL and GLWR, respectively, using advanced lines from IRRI’s irrigated breeding pro-
gram genotyped with 71,710 SNP generated by Genotyping-by-sequencing (GBS). Similarly,
using 533 O. sativa landrace and elite accessions genotyped with 4,358,600 SNP derived from
GBS, Yang et al. [37] identified 10, 11, 19 and 21 QTL for GLWR, TGW, GW and GL, respec-
tively. These studies clearly demonstrated that GWAS offers higher resolution for QTL map-
ping and can be used as a powerful complementary strategy to the classical linkage mapping
using bi-parental segregation populations.

Many of the reported association studies in rice included grain traits, such as GL, GW,
GLWR, GT and TGW. However, rice chalkiness and milling quality traits were less studied.
The objective of this study is to identify markers associated with 10 grain appearance quality
and milling quality traits using an indica collection of 272 accessions. The panel was pheno-
typed in four locations representing major indica rice production environments in China. GBS
and Diversity Arrays Technology (DArT) based on next-generation sequencing technique
called DArTseq™ was used to generate genome-wide markers. The association panel was char-
acterized for population structure using three different methods and for LD pattern by estimat-
ing basal LD and LD decay in the whole population and subpopulations. Sixteen association
mapping models were tested to choose the best model for each of the trait-environment combi-
nations. A number of known QTL and novel QTL were identified.

Materials and Methods

Association mapping panel
A total of 272 indica rice accessions from 31 countries or regions (S1 Table) were used in this
study. More accessions came from China (39), Philippines (36), Madagascar (29), India (28),
Senegal (24), Sri Lanka (24) and Bangladesh (15). For other countries or regions the number of
accessions was fewer than eight.

Phenotypic evaluation
Field trials were conducted using a randomized complete block design with two replicates in
four environments including Hangzhou (HZ), Jingzhou (JZ), Sanya (SY) and Shenzhen (SZ) in
China. The sowing and transplanting dates varied for the testing environments to fit into the
local planting season. In all environments, the plot size was three rows of 10 plants planted at a
spacing of 20cm x 25cm. Local farmers’management practices were followed. At maturity,
eight plants in the middle row were harvested. The institutions including Yangtze University,
Zhejiang Academy of Agricultural Sciences, Shenzhen Institute of Breeding & Innovation per-
mitted the field trials were conducted in their experimental fields.

The nature dried seeds stored in room temperature for three months were used to measure
quality traits. GL (mm), GW (mm), GLWR, GT (mm), TGW (g), BRR (%), MRR (%) and
HMRR (%) were measured according to the National Rice Grain Quality Assessment Standard
of China (GB/T17891-1999). The grain chalkiness characteristics were measured using a
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JMWT12 Rice Appearance Quality Detector (Dong Fu Jiu Heng, Beijing). PGWC (%) was the
percentage of head milled grains with chalkiness. DEC (%) was calculated as the product of
PGWC and chalkiness size (the area of chalkiness divided by the area of whole grain). All mea-
surements were conducted for two independent samples.

Phenotypic analysis
Due to various reasons not all accessions had phenotypic data in all the four testing environ-
ments. The final population size for each of the trait-environment combinations varied greatly
(Table 1). Phenotypic analysis was conducted using linear mixed models to properly handle the
unbalance data. For single-site analysis, accession (genotype) was regarded as fixed effect and
replicate as random effect. The best linear unbiased estimates (BLUE) of accessions were
obtained. For multi-site analysis, all effects including accession (genotype), environment and rep-
licate within environment were regarded as random to estimate variance components. The best
linear unbiased predictions (BLUP) for each of the genotype-environment combinations were
predicted. All analyses were conducted using the PBTools package of R [38] developed by IRRI
(bbi.irri.org). Phenotypic correlations were computed from the BLUE using the “rcorr” function
implemented in the R package Hmisc [39]. Narrow-sense heritability (h2) based on genotypic
means was computed using the estimated variance components as VG / (VG + VGEI /s +Ve /sr).
Where, VG, VGEI, Ve are the variance of genotype, genotype by environment interaction (GEI)
and residual error, respectively, s is the number of environments and r is the number of
replicates.

Genotyping
Genomic DNA was extracted for each accession from the leaf tissues of a single plant using the
MATAB method described in Risterucci et al. [40] and then diluted to 100 ng/μl. Genotyping
was conducted at Diversity Arrays Technology Pty Ltd. (DArT P/L), Australia, using a method
of DArTseq™. The method involves genome complexity reduction using PstI/TaqI restriction
enzymes followed by Illumina short-read sequencing. PstI specific adapters tagged with 96 dif-
ferent barcodes to encode a plate of DNA samples were ligated to the restriction fragments.
The resulting products were amplified and checked for quality. The 96 samples were pooled
and run in a single lane on an Illumina Hiseq2000 instrument. The PstI adapters included a
sequencing primer so that the tags generated were always read from the PstI sites. As detailed
by Courtois et al. [41], the resulting sequences were filtered and split into their respective target
datasets, and the barcode sequences were trimmed. The sequences were trimmed at 69 bp (5

Table 1. Popoation size for 10 traits in four environments.

Trait HZ JZ SY SZ

GL 220 131 216 228

GW 218 132 213 229

GLWR 218 131 215 229

GT 198 132 217 221

TGW 167 130 214 206

DEC 147 128 206 197

PGWC 147 131 213 200

BRR 136 130 201 206

MRR 136 130 213 205

HMRR 136 130 213 205

doi:10.1371/journal.pone.0145577.t001
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bp of the restriction site plus 64 bases with a minimum Q score of 10). A proprietary analytical
pipeline developed by DArT P/L was used to produce DArT score tables and SNP tables. The
remaining 69 bp sequences were aligned to the Os-Nipponbare-Reference-IRGSP-1.0 [42]
pseudomolecule assembly using Bowtie v0.12 [43] with a maximum of three mismatches to
recover the position of the restriction site for the DArT markers and the position of the poly-
morphism(s) within the 69 bp sequences for the SNPs. For the DArT markers, the position
given is that of the second base of the 6 base PstI restriction site (5'-C|TGCAG-3') because the
mutated base is unknown and can be any of the six. The same sequences were then aligned to
the pseudomolecules using BLAST (e-value<1.0 e-20) to assess whether additional sequences
could be positioned. The sequences that had only one hit on the pseudomolecules or had more
than one hit but with a difference of at least 1.0 e-5 between the first and the second hits were
retained for further analyses. When the marker position fell within a Michigan State Univer-
sity-annotated gene (http://rice.plantbiology.msu.edu/), the feature was determined (intron,
exon, 3' or 5' UTR), and the name and function of the gene were retrieved. Call rates were mea-
sured for all markers, and markers with call rates below 80% were discarded. The allele fre-
quency of the remaining markers was then calculated, and markers for which the minor allele
had a frequency below 2.5% were also discarded.

Imputation of missing genotypic data
Markers for which the minor allele frequency (MAF) is below 2.5% were discarded before
imputing missing data. Missing data were estimated using Beagle v4.0 [44]. Beagle uses a local-
ized haplotype cluster model. It is a special class of directed acyclic graph which empirically
models haplotype frequencies on a local scale and therefore adapts to local structure in the
data. The model determines a hidden Markov model that can be used to find the most likely
haplotype pair for each individual, given the genotype data for that individual and the graphical
haplotype frequency model. The method works iteratively using an expectation maximization
type approach. The imputed missing data, probabilities of missing genotypes and inferred hap-
lotypes are calculated from the model that is fitted at the final iteration.

Analysis of population structure
Different statistical methods were employed to infer the number of subgroups in the panel.
First, a model based Bayesian clustering analysis method implemented in STRUCTURE soft-
ware version 2.3.4 [45] was used. The program was run with the following parameters: k, the
number of groups in the panel varying from 1 to 9; 10 runs per k value; for each run, 10,000
burnin iterations followed by 10,000 MCMC (Markov Chain Monte Carlo) iterations. The
optimal number of groups (k) was determined by Δk following the method described in
Evanno et al. [46]. STRUCTURE analysis was conducted for different numbers of markers
evenly distributed on the whole genome. Very similar results were obtained when the number
of markers was more than 1000. Second, a multi-dimensional scaling and cluster analysis
method implemented in Awclust package [47] was used. Third, Tdiscriminant analysis of prin-
cipal components (DAPC) method implemented in adegenet package [48] was used. The
“find.cluster” function was used to identify clusters (k) and the optimal k value was determined
according to the Bayesian Information Criterion (BIC), then the “dapc” function was used to
check the classification quality.

Kinship coefficient
Three methods were used to calculate kinship coefficient matrix (K). (1) Pairwise_IBS: the dis-
tance between two accessions is computed as the proportion of SNP which are different. The
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IBS is computed by subtracting all values of the distance matrix from 2 and then scaling the
resultant matrix so that the minimum value is 0 and the maximum value is 2. It is implemented
in TASSEL 5.2.6 [49]. (2) The scaled_IBS: the IBS was scaled to have the mean diagonal ele-
ment equal to 1+F, where F is the inbreeding coefficient of the current population. It is the
default method of the TASSEL 5.2.6 [49]. (3) The VanRaden method: the realized relatedness
between individuals is computed according to ZZ'/(2∑pi(1-pi)) where Z =W-P, W is the
marker matrix, P contains the allele frequencies multiplied by 2, pi is the allele frequency of
marker i, and the sum is over all loci [50]. It is the default method of GAPIT [51].

Linkage disequilibrium
LD was measured by squared allele frequency correlations (r2) values between the pairs of
markers using TASSEL 5.2.6 [49]. Only markers with MAF greater than 10% were used.
Marker pairs were discretized into bins of 10 kb and the median r2 value was used as the esti-
mate of r2 of a bin. The estimated r2 values were formulated as a function of physical distances
between markers. A power law curve (y = axk) was fitted to determine the physical position (x)
corresponding to a given r2 value (y) [52]. The following scheme was used to estimate the back-
ground LD beyond which LD was assumed to be caused by genetic linkage: One marker per
chromosome was randomly sampled and the maximum of all the pairwise r2 values was taken.
The median of the maximum r2 values of 10,000 samples was taken as the basal r2 value. The
physical distance at which r2 reached to the basal value was determined as the LD decay dis-
tance of the population. All analysis was done for the whole population and the three subpopu-
lations inferred by STRUCTURE.

Association analysis
All association models under the unified model for association mapping [53] can be described
by considering how the two factors, the population structure (Q) and genetic relatedness
between genotypes (K), are considered. We used four options for handling Q and four options
for handling K to create 16 models. The four options for Q were: no Q, Q3 derived from
STRUCTURE, Q7 derived from STRUCTURE and C7 derived from adegenet. The four
options for K were: no K, K computed as pairwise_IBS (Kp scaled_IBS (Ks) and VanRaden
method (Kv). All analyses were conducted using TASSEL 5.2.6 [49]. For models without K,
known as general linear model (GLM) 1,000 permutations were used. For models with K,
known as mixed liner model (MLM), the compressed mixed linear model approach [53, 54]
and P3D [54] algorithms were adopted to reduce computing time. The best model for each
trait-environment combination was chosen using the mean square difference (MSD) between
observed and expected p-values of all marker loci, as suggested by Stich et al. [55]. MSD was a
measure for the deviation of the observed p-values from the uniform distribution. Model with
a smaller MSD is more appropriate. The critical p-value for declaring significant MTA was set
to 0.0001.

Results

Basic statistics of markers
A total of 22,266 polymorphic markers were detected in the panel including 9,340 SNP and
12,926 DArT markers. By removing markers with MAF less than 5%, 18,824 high quality
markers (7,885 SNP and 10,939 DArT) were used in association analysis. The number of mark-
ers per chromosome ranged from 891 on chromosome 10 to 2,361 on chromosome 1. The size
of chromosome varied from 22.8Mb for chromosome 9 to 43.2 Mb for chromosome 1. The
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whole genome size was 371.7 Mb and the average distance between neighboring markers
(marker spacing) was 20.2 kb. The average marker spacing ranged from 16.3 kb for chromo-
some 11 to 25.9 kb for chromosome 10 (S2 Table). About 70.4% of the neighboring markers
distances were below the average value and 97.4% were less than 100 Kb. There were eight gaps
devoid of markers larger than 500 kb on chromosomes 1 (D01_26116212—S01_26770440), 2
(D02_13852683—D02_15083642), 4 (D04_8765494—D04_9302397 and D04_16774867—
D04_17319136), 6 (D06_18215124—D06_18803206), 7 (D07_11700243—S07_12785983 and
S07_13836518—D07_14505070) and 11 (D11_11988263—S11_12639397). More than half of
the markers (55.7%) had MAF lower than 0.20 (Fig 1).

Fig 1. Frequency of markers in different MAF classes. SNP with MAF < 0.05 were excluded.

doi:10.1371/journal.pone.0145577.g001
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Phenotypic variation and trait correlation
In general, the panel revealed a wide range variation for all the evaluated traits (Fig 2). Most of
the traits appeared to be normally distributed, but some trait-environment combinations
showed skewed distributions. For instance, the distributions of DEC in all environments,
HMRR and PGWC in HZ and BRR in JZ were seriously skewed (Fig 2). Variance components
derived from across-site analysis were given in Table 2. For appearance quality traits, the VG

was much larger than VGEI, indicating that GEI was negligible. For BRR, MRR and HMRR, the
VGEI was much larger than VG, suggesting that GEI was very important. However, the Ve for
HMRR was very large, indicating phenotyping precision was low. The h2 for the appearance
quality traits were high ranging from 0.82 for PGWC to 0.98 for GL and GLWR, while were
low for the milling quality traits ranging from 0.19 for MRR to 0.27 for HMRR.

The phenotypic correlations between traits were similar in the four testing environments.
Low correlations were found between grain appearance quality traits and milling quality traits
in all environments. GL showed a moderate and negative correlation with GW and a low and
negative correlation with GT. Correlation between GW and GT was moderate and positive.
TGW positively correlated with GL, GW and GT. High correlation was found between PGWC
and DEC in all environments with coefficient ranging from 0.90 in SZ to 0.94 in HZ. The corre-
lation between TGW and GT was moderate in all environments ranging from 0.46 in SY to
0.57 in HZ. Negative and moderate correlation was found between PGWC and HMRR. The
correlation between PGWC and DED was strong and positive. The correlations between the
three milling quality traits were positive ranging from low to moderate (Fig 3).

Population structure
According to the value of Δk, there were three groups in the current panel (S1 Fig). Group-I
consisted of 88 accessions from 21 countries with 36 from China (36). Group-II had 96 acces-
sions from 19 countries with 30 and 23 from Philippines and Senegal. Group-III had 88 acces-
sions from 13 countries with more accessions from Madagascar (28), India (20) and Sri Lanka
(19) (S2 Fig).

Hierarchical cluster analysis using Awclust suggested that the best number of clusters was
also three based on Gap stastics (S1 Fig). The classification of accessions into groups was simi-
lar to that derived from STRUCTURE. Fifteen accessions of the group Q3-2 of STRUCTURE
were assigned to the C3-3 of Awclust (S3 Fig).

The “find.clusters” function of adegenet showed a clear decrease of BIC until k = 7 clusters,
after which BIC increased (S1 Fig). In this case, the elbow in the curve also matched the small-
est BIC, and clearly indicated that seven clusters should be retained. Roughly speaking, the
three groups detected by STRUCTURE were divided into two, two and three clusters by ade-
genet (S3 Fig). If we also chose seven groups for STRUCTURE analysis the Q3-1, Q3-2 and
Q3-3 were further divided into two, two and four groups (S3 Fig). There were some differences
in the assignments of accessions between k = 7 in STRUCTURE and adegent. The biggest dif-
ference was that the C7-4 of adegenet was distributed over five of the seven groups of STRUC-
TURE (S3 Fig).

Whole genome patterns of LD decay
The decay of LD along physical distances was computed for both the whole population (272
accessions) and three subpopulations inferred by STRUCTURE k = 3. The determination
coefficients (R2) of regression models were 0.87, 0.93, 0.88 and 0.95 for the whole population,
Q3-1, Q3-2 and Q3-3, respectively (S3 Table). The maximum r2 was observed in the 0–10 kb
marker interval for the whole population and subpopulations. The maximum r2 was lower in
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the whole population (0.65) than in the subpopulations. Q3-2 had the largest maximum r2

than Q3-1 (0.76) and Q3-3 (0.71). The basal r2 was 0.11, 0.16, 0.16 and 0.19 for the whole pop-
ulation, Q3-1, Q3-2 and Q3-3, respectively (S3 Table). The LD decay distance was 150 kb for
the whole population, which was longer (slower) than those for Q3-1 (110 kb) and Q3-3
(80 kb) but shorter (faster) than that for Q3-2 (240 kb) (Fig 4 and S3 Table).

Association analysis
Comparison of models. A total of 16 models for detecting associations were compared to

choose the best model for each of the trait-environment combinations using MSD. The com-
plete MSD results were given in S4 Table. Fig 5 gave the quantile-quantile plots for the 16 mod-
els for GL measured in HZ to illustrate the relative differences between models. The best model
varied with traits and environments (S4 Table). For all the trait-environment combinations
except BRR in SY, the naïve model was always inferior to other models (S4 Table), indicating
complex population structure and genetic relatedness between accessions present in our panel
affected the detection of MTA. According to the average MSD value across all trait-environ-
ment combinations, the Q models (Q3, Q7 and C7)that corrected for population structure
only, were inferior to the K models (Kp, Ks and Kv) that corrected for the genetic relationships
between accessions and the QK models (Q3Kp, Q3Ks, Q3Kv, Q7Kp, Q7Ks, Q7Kv, C7Kp,
C7Ks and C7Kv) that corrected for both of population structure and genetic relationship (S4
Table). The QK model was the best model for most of the trait-environment combinations.
The Q7 model was slightly better than the other two Q models. The Kp model was better than
the Ks model and Kv model. The C7Kp model was better than the other QK models. For the
models with the same Q but different K, the Q-Kp and Q-Ks models were similar and were
slightly better than the Q-Kv model. The models with the same K but different Q had very sim-
ilar MSD values. In the following sections only the MTA identified using the best model for
each of the trait-environment combinations were presented and discussed.

Fig 2. Box plot of 10 rice grain appearance andmilling quality traits in four environments. HZ: Hangzhou. JZ: Jingzhou. SY: Sanya. SZ: Shenzhen.
GL: Grain Length. GW: Grain Width. GLWR: Grain Length andWidth Ratio. GT: Grain Thickness. TGW: Thousand Grain Weight. BRR: Brown Rice Rate.
MRR: Milled Rice Rate. HMRR: Head Milled Rice Rate. PGWC: Percentage of GrainsWith Chalkiness. DEC: Degree of Endosperm chalkiness.

doi:10.1371/journal.pone.0145577.g002

Table 2. Variance components and heritabilty estimated for 10 quality traits by across-site analysis.

Trait VE VG VGEI Ve Rep(Env) h2

GL 0.00 0.62 0.00 0.08 0.01 0.98

GW 0.00 0.07 0.00 0.02 0.01 0.97

GLWR 0.00 0.32 0.00 0.05 0.01 0.98

GT 0.00 0.02 0.00 0.01 0.01 0.94

TGW 0.97 8.72 1.92 0.29 0.01 0.94

PGWC 0.62 86.04 59.81 27.7 1.72 0.82

DEC 0.00 465.84 277.44 138.17 6.72 0.84

BRR 0.08 0.57 5.57 0.97 0.31 0.27

MRR 3.01 2.75 44.98 4.71 0.48 0.19

HMRR 108.45 13.64 67.41 230.5 37.29 0.23

VE: environment variance; VG: genotype variance; VGEI: genotype- by- environment interaction variance; Ve: residual variance; Rep(Env): replication

variance within environment; h2: narrow-sense heritability.

doi:10.1371/journal.pone.0145577.t002
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Marker-trait associations. A total of 74 markers on all 12 chromosomes were found to be
significantly associated with the 10 measured traits. By delineating significant markers with LD
higher than 0.2 into a single QTL, the 74 markers were grouped into 38 QTL (Table 3).

For GL, eight QTL were identified on chromosomes 2, 3, 5, 7, 9 and 11. qGL2.1
(D02_25608957) was detected in SY and explained 7.5% of the phenotypic variation
(R2 = 7.5%). qGL2.2 (S02_305731433, S02_30664746 and S02_30664811) was detected
in HZ, SY and SZ with R2 being 8.1%, 7.4% and 7.0%, respectively. qGL3.1 (S03_16663793,
S03_16731182, S03_16748937, S03_16762099, S03_16858510, S03_16996600 and
S03_17000111) was identified in HZ, SY and SZ with R2 being 8.0%, 10.2% and 10.5%,
respectively. qGL5.1 (S05_5368086, S05_5368151 and S05_5369527) was detected in SY with a
R2 of 7.5%. The qGL7.1 (S07_22019132, S07_22087092 and S07_22099651) was detected in
HZ, SY and SZ and explained 7.8%, 7.7% and 6.4% of the phenotypic variance. qGL7.2
(S07_22844850) was detected in SY with a R2 of 7.5%. qGL9.1 (S09_10774239) was detected in
JZ and explained 11.7% of the phenotypic variance. qGL11.1 (S011_2576141) was detected in
JZ and SY with R2 being 12.0% and 9.6%, respectively (Table 3).

Fig 3. Correlations between 10 gain quality traits measured in HZ, JZ, SY and SZ. The values given were correlation coefficients multiplied by 100. The
values without glyphs indicated insignificant at the level of 0.05.

doi:10.1371/journal.pone.0145577.g003
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For GW, five QTL on chromosomes 4, 5, 7, 10 and 11 were identified. qGW4.1
(S04_7167748) was detected in SZ with a R2 of 6.8%. qGW5.1 (S05_5368086, S05_5368151 and
S05_5369527) was detected in JZ, SY and SZ with R2 being 16.2%, 10.0% and 12.8%, respec-
tively. qGW7.1 (S07_19590107 and S07_19592078) was detected in JZ with a R2 of 13.6%.
qGW10.1 (S010_14195109 and S010_14262980) was detected in SZ with a R2 of 6.6%.
qGW11.1 (D011_7124485) was detected in SZ with a R2 of 7.0% (Table 3).

For GLWR, six QTL were identified on chromosomes 1, 3, 5, 7 and 11. qGLWR1.1
(S01_5811755) was detected in HZ and SZ with R2 being 7.4% and 5.8%, respectively.
qGLWR3.1 (D03_14077712) was detected in SZ with a R2 of 5.8%. qGLWR3.2 (S03_16858510)
was detected in SY and SZ with R2 being 6.3% and 6.4%, respectively. qGLWR5.1

Fig 4. LD decay plot in the whole population and three subpopulations inferred by STRUCTURE. Y axis is the average r2 value of each 10 kb region
and X axis is physical distance between markers in unit of Mb. A power law curve (y = axk) was fitted to determine the physical position (x) corresponding to a
given r2 value (y)

doi:10.1371/journal.pone.0145577.g004
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(S05_5368086, S05_5368151 and S05_5369527) was detected in HZ, JZ, SY and SZ with R2

being 7.4%, 14.1%, 11.4% and 7.6%, respectively. qGLWR7.1 (S07_25383179) was detected in
SY with a R2 of 6.6%. qGLWR11.1 (S011_2576141) was detected in JZ and explained 6.6% of
the phenotypic variance (Table 3).

For GT, four QTL were found on chromosome 1, 4 and 5. qGT1.1 (D01_2405901) was
detected in HZ with a R2 of 9.4%. qGT4.1 (S04_29442031 and S04_29495556) was detected in
SZ with a R2 of 7.0%. qGT5.1 (S05_5368086, S05_5368151 and S05_5369527) was detected in
HZ, JZ, SY and SZ with R2 being 13.1%, 8.6%, 8.5% and 15.8%, respectively. qGT5.2
(S05_18307877, S05_18314309 and S05_18321742) was detected in SZ with a R2 of 6.7%
(Table 3).

Fig 5. Quantile-quantile plots of 16 models for GLmeasured in HZ. The horizontal and vertical axes are -log10 transformed expected p-values and
observed p-values, respectively. Model with more uniformly distributed p-values is better.

doi:10.1371/journal.pone.0145577.g005
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Table 3. QTL identified for 10 traits in four environments.

QTL Env Marker Allelesa MAF p Effectb R2 (%)c Known gene/QTL

qGL2.1 SY D02_25608957 T/A 0.16 5.93E-05 0.43 7.5

qGL2.2 SY S02_30573143 T/A 0.36 7.03E-05 0.5 7.4

SZ S02_30573143 T/A 0.35 5.04E-05 0.43 7.0

HZ S02_30664746 G/T 0.30 2.63E-05 0.51 8.1

SZ S02_30664746 G/T 0.29 7.44E-05 0.44 6.7

HZ S02_30664811 C/T 0.30 2.63E-05 0.51 8.1

SZ S02_30664811 C/T 0.29 7.44E-05 0.44 6.7

qGL3.1 HZ S03_16663793 T/C 0.30 2.97E-05 0.79 8.0 GS3

SY S03_16663793 T/C 0.28 3.26E-06 0.98 10.2

SZ S03_16663793 T/C 0.29 2.19E-05 0.69 7.7

SZ S03_16731182 C/T 0.41 2.42E-05 -0.46 7.6

SZ S03_16748937 C/T 0.47 3.92E-06 0.57 9.2

SZ S03_16762099 A/G 0.47 1.13E-05 0.53 8.3

HZ S03_16858510 C/G 0.45 7.31E-05 0.61 7.2

SY S03_16858510 C/G 0.42 2.00E-05 0.69 8.5

SZ S03_16858510 C/G 0.43 8.03E-07 0.65 10.5

SZ S03_16996600 C/A 0.38 4.74E-05 0.48 7.0

SZ S03_17000111 C/T 0.39 1.80E-05 0.5 7.9

qGL5.1 SY S05_5368086 C/T 0.38 8.44E-05 -0.48 7.2 qSW5

SY S05_5368151 A/G 0.38 8.10E-05 -0.48 7.2

SY S05_5369527 A/T 0.37 5.71E-05 -0.49 7.5

qGL7.1 HZ S07_22019132 G/A 0.05 3.51E-05 -1.04 7.8

SY S07_22019132 G/A 0.05 4.85E-05 -1.11 7.7

SZ S07_22019132 G/A 0.05 9.95E-05 -0.81 6.4

SY S07_22087092 T/A 0.13 6.54E-05 -0.66 7.4

HZ S07_22099651 A/G 0.05 3.51E-05 -1.04 7.8

SY S07_22099651 A/G 0.05 4.85E-05 -1.11 7.7

SZ S07_22099651 A/G 0.05 9.95E-05 -0.81 6.4

qGL7.2 SY S07_22844850 C/T 0.18 6.30E-05 -0.63 7.5 qGRL7.1

qGL9.1 JZ S09_10774239 A/T 0.50 7.39E-05 0.53 11.7

qGL11.1 JZ S11_2576141 T/G 0.35 5.76E-05 -0.57 12.0 CycT1;3

SY S11_2576141 T/G 0.35 6.41E-06 -0.63 9.6

qGW4.1 SZ S04_7167748 C/T 0.42 5.91E-05 0.16 6.8

qGW5.1 SY S05_5368086 C/T 0.38 1.94E-05 0.19 8.7 qSW5

SZ S05_5368086 C/T 0.35 3.26E-07 0.21 11.2

JZ S05_5368151 A/G 0.39 1.06E-05 0.23 16.0

SY S05_5368151 A/G 0.37 8.43E-06 0.19 9.5

SZ S05_5368151 A/G 0.35 1.57E-07 0.22 11.9

JZ S05_5369527 A/T 0.38 9.45E-06 0.24 16.2

SY S05_5369527 A/T 0.37 5.09E-06 0.2 10.0

SZ S05_5369527 A/T 0.34 5.54E-08 0.22 12.8

qGW7.1 JZ S07_19590107 G/C 0.08 4.41E-05 0.29 13.6

JZ S07_19592078 T/A 0.08 4.41E-05 0.29 13.6

qGW10.1 SZ S10_14195109 A/T 0.05 7.54E-05 0.36 6.6

SZ S10_14262980 A/G 0.05 7.54E-05 0.36 6.6

qGW11.1 HZ D11_7124485 T/A 0.17 8.76E-05 0.12 7.0

qGLWR1.1 HZ S01_5811755 A/T 0.08 4.83E-05 0.52 7.4

(Continued)

GWAS of Rice Grain Quality

PLOS ONE | DOI:10.1371/journal.pone.0145577 December 29, 2015 14 / 25



Table 3. (Continued)

QTL Env Marker Allelesa MAF p Effectb R2 (%)c Known gene/QTL

SZ S01_5811755 A/T 0.08 9.32E-05 0.48 5.8

qGLWR3.1 SZ D03_14077712 T/A 0.15 9.18E-05 -0.4 5.8

qGLWR3.2 SY S03_16858510 C/G 0.42 9.44E-05 0.38 6.3 GS3

SZ S03_16858510 C/G 0.43 4.06E-05 0.36 6.4

qGLWR5.1 JZ S05_5368086 C/T 0.40 4.03E-05 -0.46 12.9 qSW5

SY S05_5368086 C/T 0.39 1.47E-06 -0.35 9.7

SZ S05_5368086 C/T 0.35 3.09E-05 -0.31 6.6

JZ S05_5368151 A/G 0.39 2.30E-05 -0.48 13.8

SY S05_5368151 A/G 0.38 4.80E-07 -0.37 10.7

SZ S05_5368151 A/G 0.35 1.42E-05 -0.33 7.2

HZ S05_5369527 A/T 0.36 4.95E-05 -0.32 7.4

JZ S05_5369527 A/T 0.38 1.96E-05 -0.48 14.1

SY S05_5369527 A/T 0.38 1.97E-07 -0.38 11.4

SZ S05_5369527 A/T 0.34 9.05E-06 -0.34 7.6

qGLWR7.1 SY S07_25383179 T/C 0.07 5.93E-05 0.5 6.6 Srs1

qGLWR11.1 JZ S11_2576141 T/G 0.35 1.03E-05 -0.42 15.1 CycT1;3

qGT1.1 HZ D01_2405901 A/T 0.10 2.77E-05 0.14 9.4

qGT4.1 SZ S04_29442031 T/C 0.16 6.57E-05 -0.13 7.0

SZ S04_29495556 T/C 0.16 6.57E-05 -0.13 7.0

qGT5.1 HZ S05_5368086 C/T 0.33 2.37E-06 0.13 12.0 qSW5

SZ S05_5368086 C/T 0.35 1.13E-08 0.13 14.9

HZ S05_5368151 A/G 0.33 9.02E-07 0.14 13.1

JZ S05_5368151 A/G 0.39 8.98E-05 0.09 8.6

SZ S05_5368151 A/G 0.35 4.47E-09 0.14 15.8

HZ S05_5369527 A/T 0.32 8.77E-07 0.13 13.1

SY S05_5369527 A/T 0.37 1.70E-05 0.09 8.5

SZ S05_5369527 A/T 0.34 4.91E-09 0.14 15.7

qGT5.2 SZ S05_18307877 G/C 0.21 8.96E-05 -0.11 6.7

SZ S05_18314309 C/T 0.21 8.96E-05 -0.11 6.7

SZ S05_18321742 A/G 0.21 8.96E-05 -0.11 6.7

qTGW2.1 SZ S02_30688426 C/A 0.30 8.86E-05 1.78 7.7

qTGW5.1 HZ S05_4808850 T/A 0.48 6.59E-05 -2.06 10.1

HZ S05_4856967 A/T 0.47 6.88E-05 -2.07 10.0

HZ S05_4880400 A/G 0.47 6.88E-05 -2.07 10.0

HZ S05_4889259 C/T 0.47 6.88E-05 -2.07 10.0

qTGW5.2 SZ S05_5368086 C/T 0.33 5.38E-05 2.07 8.2 qSW5

SZ S05_5369527 A/T 0.32 2.66E-05 2.14 8.9

qTGW7.1 HZ S07_21628162 C/T 0.08 5.77E-05 -3.72 10.3

qTGW7.2 SZ S07_22684516 C/A 0.05 9.17E-05 -4.26 7.7 qGRL7.1

qPGWC5.1 SZ S05_5368086 C/T 0.32 5.16E-08 28.21 15.9 qSW5

SZ S05_5368151 A/G 0.32 2.97E-07 26.78 14.0

JZ S05_5369527 A/T 0.38 6.52E-05 24.33 10.9

SZ S05_5369527 A/T 0.31 1.72E-08 29.41 17.1

qPGWC6.1 SZ S06_6372444 A/C 0.09 5.76E-06 35.63 10.8

qDEC1.1 SZ S01_5811836 A/C 0.17 8.66E-05 11.18 7.3

SZ S01_5972775 T/G 0.23 7.96E-05 10.37 7.4

qDEC5.1 HZ S05_4180511 T/C 0.10 7.25E-05 11.03 10.3

(Continued)
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For TGW, five QTL were found on chromosome 2, 5 and 7. qTGW2.1 (S02_30688426) was
detected in SZ with a R2 of 7.7%. qTGW5.1 (S05_4808850, S05_4856967, S05_4880400 and
S05_4889259) was detected in HZ with a R2 of 10.1%. qTGW5.2 (S05_5368086 and
S05_5369527) was detected in SZ with a R2 of 8.9%. qTGW7.1 (S07_21628162) was detected in
HZ with a R2 of 10.3%. qTGW7.2 (S07_22684516) was detected in SZ with a R2 of 7.7%
(Table 3).

For PGWC, two QTL on chromosomes 5 and 6 were identified. qPGWC5.1 (S05_5368086,
S05_5368151 and S05_5369527) was detected in JZ and SZ with R2 being 10.9% and 17.1%,
respectively. qPGWC6.1 (S06_6372444) was detected in SZ with a R2 of 10.8% (Table 3).

Table 3. (Continued)

QTL Env Marker Allelesa MAF p Effectb R2 (%)c Known gene/QTL

qDEC5.2 SY S05_5368086 C/T 0.37 7.27E-05 7.89 7.5 qSW5

SY S05_5368151 A/G 0.36 4.18E-05 8.2 8.0

SY S05_5369527 A/T 0.36 2.05E-05 8.59 8.7

SZ S05_5369527 A/T 0.29 3.23E-05 9.75 8.3

qDEC5.3 SZ S05_23647280 A/G 0.35 4.93E-05 -8.5 7.9

qDEC9.1 HZ S09_16262697 T/C 0.07 4.02E-05 -16.93 11.1

qBRR2.1 SZ D02_8060607 A/T 0.26 2.96E-05 -1.02 8.2

SZ D02_8075892 T/A 0.27 2.24E-05 -1.03 8.5

qBRR2.2 JZ D02_25652984 A/T 0.06 1.96E-05 -4.75 15.6

qBRR3.1 HZ S03_22356459 T/C 0.07 8.52E-05 3.84 10.6

qBRR4.1 HZ S04_32002470 C/T 0.09 3.59E-06 3.65 14.5

qBRR7.1 HZ S07_29497149 T/A 0.21 8.03E-05 2.31 10.7

qMRR1.1 HZ S01_41957924 G/A 0.07 4.44E-05 10.06 6.6

HZ S01_41957989 G/T 0.07 4.44E-05 10.06 6.6

HZ S01_41970208 T/A 0.07 4.44E-05 10.06 6.6

qMRR2.1 JZ D02_26022390 A/T 0.07 1.61E-06 -8.71 19.9

JZ D02_26022455 A/T 0.07 1.61E-06 -8.71 19.9

JZ D02_26163208 T/A 0.05 3.29E-07 -7.59 22.8

JZ D02_26265084 A/T 0.05 5.22E-06 -7.04 17.8

JZ D02_26312559 A/T 0.06 4.14E-05 -7.86 14.1

qMRR3.1 SZ S03_4636350 A/G 0.21 9.69E-05 -1.91 7.3

qMRR7.1 JZ S07_5075055 A/G 0.06 9.29E-05 -5.45 12.8

JZ S07_5081323 T/A 0.06 9.29E-05 -5.45 12.8

qMRR11.1 SY D11_6895700 T/A 0.06 4.05E-05 -12.33 7.8

qHMRR3.1 SZ D03_31372694 T/A 0.40 2.85E-05 12.34 9.0

SZ D03_31380514 A/T 0.48 1.67E-05 12.53 9.5

qHMRR4.1 HZ S04_28018950 T/C 0.05 3.92E-06 -26.22 14.9

qHMRR5.1 SZ S05_12426396 T/C 0.18 8.01E-05 15.42 7.9

qHMRR6.1 HZ D06_2712642 A/T 0.12 9.37E-05 -14.26 11.0

qHMRR8.1 SZ S08_2638229 G/A 0.12 3.16E-05 17.8 8.9

qHMRR12.1 SZ S12_26692818 C/T 0.36 1.79E-05 12.81 9.5

SZ S12_26695253 G/A 0.32 3.18E-05 12.65 8.9

aMajor/Minor allele.
bEffect: Allelic effect with respect to the minor allele.
cR2: Phenotypic variation explained.

doi:10.1371/journal.pone.0145577.t003
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For DEC, five QTL were identified on chromosomes 1, 5 and 9. qDEC1.1 (S01_5811836 and
S01_5972775) was detected in SZ with a R2 of 7.4%. qDEC5.1 (S05_4180511) was detected in
HZ with a R2 of 10.3%. qDEC5.2 (S05_5368086, S05_5368151 and S05_5369527) was detected
in SY and SZ with R2 being 8.7% and 8.3%, respectively. qDEC5.3 (S05_23647280) was detected
in SZ with a R2 of 7.9%. qDEC9.1 (S09_16262697) was detected in HZ with a R2 of 11.1%
(Table 3).

For BRR, five QTL located on chromosomes 2, 3, 4 and 7 were detected. qBRR2.1
(D02_8060607 and D02_8075892) was identified in SZ with a R2 of 8.5%. qBRR2.2
(D02_25652984) was identified in SZ with a R2 of 15.6%. qBRR3.1 (S03_22356459) was identi-
fied in HZ with a R2 of 10.6%. qBRR4.1 (S04_32002470) was identified in HZ with a R2 of
14.5% (Table 3).

For MRR, five QTL located on chromosomes 1, 2, 3, 7 and 11 were detected. qMRR1.1
(S01_41957924, S01_41957989 and S01_41970208) was identified in HZ with a R2 of 6.6%.
qMRR2.1 (D02_26022390, D02_26022455, D02_26163208, D02_26265084 and
D02_26312559) was identified in JZ with a R2 of 22.8%. qMRR3.1 (S03_4636350) was identi-
fied in SZ with a R2 of 7.3%. qMRR7.1 (S07_5075055 and S07_5081323) was identified in JZ
with a R2 of12.8%. qMRR11.1 (D11_6895700) was identified in SY with a R2 of 7.8% (Table 3).

Six QTL were detected for HMRR. They were on chromosomes 3, 4, 5, 6, 8 and 12.
qHMRR3.1 (D03_31372694 and D03_31380514) was identified in SZ with a R2 of 9.5%.
qHMRR4.1 (S04_28018950) was identified in HZ with a R2 of 14.9%. qHMRR5.1
(S05_12426396) was identified in SZ with a R2 of 7.9%. qHMRR6.1 (D06_2712642) was identi-
fied in HZ with a R2 of 11.0%. qHMRR8.1 (S08_2638229) was identified in SZ with a R2 of
8.9%. qHMRR12.1 (S012_26692818 and S012_26695253) was identified in SZ with a R2 of
9.5% (Table 3).

Some of the QTL for different traits were in the same chromosomal regions and were
regarded as the same QTL when the number of QTL was counted across traits. They were
qDEC1.1 and qGLWR1.1 on chromosome 1; qBRR2.2 and qGL2.1 on chromosome 2; qGL2.2
and qTGW2.1 on chromosome 2; qGLWR3.2 and qGL3.1 on chromosome 3; qGL5.1, qGW5.1,
qGLWR5.1, qGT5.1, qTGW5.2, qPGWC5.1 and qDEC5.2 on chromosome 5; qGL7.2 and
qTGW7.2 on chromosome 7; qGW11.1 and qMRR11.1 on chromosome 11; and qGLWR11.1
and qGL11.1 on chromosome 11.

Discussion

Phenotypic variation and trait correlation
Great variation was observed for all traits in all testing environments in the present study, sug-
gesting that the association panel can be effectively used for GWAS of various quality traits.
Grain appearance quality traits, particularly grain size and weight traits had high heritability
and showed only small GEI (Table 2), suggesting that breeding for a wide range of growing
environments could be feasible and effective. Grain chalkiness and milling quality traits had
low heritability and large contribution of GEI and as a result will be more difficult to improve
through conventional selection breeding.

The relationship between grain quality traits in rice is complex. In the present study, positive
correlations were observed between TGW and GL, GW and GT, which was consistent with
previous studies [2, 26, 56]. The coefficients were moderate, which might be the result of nega-
tive correlations between GL and GW and GT. The correlation between GL and GW were
-0.54, -0.64, -0.50 and -0.55 in HZ, JZ, SY and SZ, respectively. However, a weak and positive
(0.11 in SY) or negative (-0.11, -0.07 and -0.09 in JZ, HZ and SZ, respectively) correlation was
observed between TGW and GLWR, which was different with the result of Xu et al. [57]. They
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found TGW and GLWR had a moderate and positive correlation (0.44). Consistent with previ-
ous reports, BRR was negatively correlated with GL but positively correlated with GW, even
though the correlation coefficients were small. In the process of milling, the long and slender
rice grain is easier to break than short and round one. Chalkiness is also an important factor
influencing rice milling traits especially HMRR. Chalky grains are also more prone to breakage
at chalky area. We found HMRR was negatively correlated with PGWC and DEC, which was
consistent with the study of Zheng et al. [58].

LD pattern
The basal r2 was 0.11 and estimated LD decay distance was 150 kb for the whole population
(S3 Table). The LD decay distance ranged from 80 kb to 240 kb in three subpopulations. This
was in agreement with previous finding that cultivated rice has a long range LD from close to
100 kb to over 200 kb [59, 60]. Compared with the whole population, LD dropped much faster
in Q3-1 and Q3-3 but more slowly in Q3-2. The effect of population structure on LD pattern
has been widely reported [52, 60–62]. Varying patterns of LD decay in different subpopulations
were likely reflecting their breeding histories and the origins of accessions in subpopulations
[63] and may influence the QTL mapping resolution of the panel. Given that our average
marker density (one marker per 20.2 kb) was higher than the r2 decay, we expected to have rea-
sonable resolution and power to identify common variants of large effect associated with traits
of interest.

Model comparison
It is well-known that the results of association analysis using different models would be very
different. However, there is no generally acceptable best model. It is likely that the best model
differs among populations, traits and growing environments. The most appropriate model
should be chosen by comparing different models. In the present study, MSD proposed by Stich
et al. [55] was used to determine the best model for each of the 40 trait-environment combina-
tions. The results showed that the naïve model and the Q models were almost always inferior
to the K and QK models (S4 Table). The average MSD value across all trait-environment com-
binations of the naïve model was much higher compared to those of the Q models, indicating
introduction of population structure could tremendously reduce false positives. Q derived
from different numbers of subpopulations (k) also leaded to different results. According to
MSD, increasing k from three to seven resulted in better control of false positives (S4 Table).
When population structure was detected by different methods, the resultant Q and as a result
the association results were different. For instance, the Q7 model, which used the Bayesian
clustering analysis method implemented in STRUCTURE, was better than the C7 model,
which used the Q from the DAPC method (S4 Table). It was clear from our results that the
three Q models were rarely the best model and the K and QK models were better (S4 Table).
This was consistent with most of the previous studies that showed that GLMmethod (Q
model) was inferior to MLMmethod (K and QK models). A recent example in rice was the
study ofCourtois et al. [41]. They performed association study for 16 root depth and associated
traits in a panel of japonica accessions and chose the best model by comparing the likelihoods
of each model using the BIC [64]. Their results showed that the QK model was the best model
for 13 measured traits, the K model was the best for the other 3 traits, and the Q model was
always inferior to the other two models.

For the models with the same Q but different K, the Q-Kp and Q-Ks models were similar
and were slightly better than the Q-Kv model (S4 Table). The models with the same K but dif-
ferent Q had very similar MSD values, indicating that once the genetic relatedness between
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genotypes was well accounted, the differences between methods for inferring Q became less
important. Therefore, when both Q and K were considered simultaneously, K played a more
important role than Q and different K should be tried to determine the best model.

The best model differed for the same trait measured in different environments and different
traits measured in the same environment (S4 Table). For traits with low heritability, the best
model changed greatly across environments. For instance, BRR (h2 = 0.27), MRR (h2 = 0.19)
and HMRR (h2 = 0.23), there was no common best model in the four environments. However,
for traits with high heritability the same best model tended to be found across environments.
For instance, Q7Kv was the best model for GL (h2 = 0.98) in HZ, JZ and SY and C7Kv was the
best model for GW (h2 = 0.97) in HZ and SZ and Kv was the best model for GW in JZ and SY.

In the present study, we selected the model with the smallest MSD value as the best model.
It was observed that models with very similar MSD values had very similar association results,
indicating that MSD is a simple but effective method for choosing the appropriate model(s) in
GWAS.

The effects of environment and QEI
In the present study, the total number of identified QTL varied greatly across environments,
indicating that testing environment had important influence on GWAS. Out of the 38 identi-
fied QTL only one (qGLWR5.1 (qGT5.1)), four (qGL2.2, qGL3.1, qGL7.1 and qGW5.1) and
four QTL (qGLWR1.1, qGL11.1, qPGWC5.1 (qDEC5.2) and qGLWR3.2) were detected in four,
three and two environments, respectively (Table 3). Furthermore, even for qGLWR5.1, which
was detected in all the four environments, the R2 varied from 7.4% to 14.1% across environ-
ments. These results may be partially attributed to QEI. For BRR, MRR and HMRR that
showed significant GEI, all QTL were detected in only one of the four environments (Table 3).
However, the big differences in population size across environments may also be partially
responsible for the observed differences between environments. For most of the traits the pop-
ulation size was much larger in SY and SZ than in HZ and JZ (Table 1).

GWAS is effective
In the present study, five out of the 38 identified QTL were adjacent to previously known genes
or fine mapped QTL, suggesting that association mapping was an effective way to map QTL
for rice grain quality traits. On chromosome 5, qGL5.1, qGW5.1, qGLWR5.1, qGT5.1,
qTGW5.2, qPGWC5.1 and qDEC5.2 were located in genomic region (S05_5368086,
S05_5368151 and S05_5369527) close to the cloned gene qSW5 affecting GW and TGW [18].
qSW5 was in 5362625bp - 5370506bp in the Os-Nipponbare-Reference- IRGSP-1.0 according
to the complete cds sequence of qSW5 in indica. The qSW5 functioned as negative regulator of
grain width and weight and a deletion in qSW5 resulted in a significant increase in sink size
owing to an increase in cell number in the outer glume of the rice flower and finally increased
the grain width and weight [18]. The qSW5 was also reported to regulate GL, GLWR and GT
[65]. However, the effects of qSW5 on PGWC and DEC have not been reported before. Our
results suggested that qSW5 could be used to increase GL and reduce DEC and PGWC simulta-
neously. The qGL3.1 (S03_16663793, S03_16731182, S03_16748937, S03_16762099,
S03_16858510, S03_16996600 and S03_17000111) and qGLWR3.2 (S03_16858510) associated
with GL and GLWR, were close to GS3 (16729228–16735641) affecting grain shape. GS3 func-
tions as a negative regulator for grain size which is a major QTL for GL and TGW and a minor
QTL for GW and GT [16]. The qGL7.2 (S07_22844850) and qTGW7.2 (S07_22684516) were
located in the region harboring the previously fine mapped QTL affecting GL, GW and GLWR,
qGRL7.1 (22127.4Kb—24526.7Kb) [6]. The qGLWR7.1 (S07_25383179) was located in the
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region of Srs1 (25381698–25389547) affecting grain size [23]. The srs1 results in small and
round seed due to the reduction in both cell length and cell number in the longitudinal direc-
tion, and the elongation of the cells in the lateral direction of the lemma. The qGL11.1
(S11_2576141) and qGLWR11.1 (S11_2576141) were close to CycT1;3 (2730143–2736649)
whose down regulation results in a shorter grain.

Thirty-three of the identified QTL were located on chromosomal regions where no QTL for
the measured traits have been reported and can be regarded as novel QTL. Five of the QTL
including qDEC1.1 (qGLWR1.1), qBRR2.2 (qGL2.1), qTGW2.1 (qGL2.2), qGW11.1
(qMRR11.1) and qGL7.1 affected multiple traits with relatively large effects and/or were
detected in multiple environments.

The number of QTL identified is small
Compared to the previous GWAS studies in rice the number of QTLs detected was small in the
present study. Many of the known genes affecting traits measured were not detected in the
present study. The most likely reason is the small population size. Most of the association pan-
els had more than 400 accessions while the present panel only had 230 or fewer accessions. The
effect of population size on GWAS is well known. It is particularly important for detecting loci
with low MAF to use a large panel. Because the panel size was small markers with MAF<0.05
were filleted out before association analysis. The trait-affecting genes were missed out if mark-
ers in strong LD with them had low MAF in our panel. For example, the gene PGL2
(LOC_Os02g51320) was involved in controlling grain length and weight of rice through inter-
action with a typical bHLH protein APG. Marker S02_31422564 very close to this gene (1.4 kb)
was removed before association analysis since its MAF was only 0.02. The big differences
between environments in population size could also explain why most of the QTL (53%) were
detected in SZ. Nevertheless, loci with large effects were also detected for some of the traits
with small population size. For instance, the population size of GW in JZ is only 132, but
qGW5.1 was identified with a high R2 of 16.2%. Therefore, provided that the MAF is high
enough, major loci would still be detected even if the population size was small. Another possi-
ble reason is that the present panel consists of only indica accessions while most of the previous
studies used panels with a few subspecicies/ecotypes. It is expected that genes that determine
the major trait differences between subspecies/ecotypes could not be detected in our study but
might be detectable in other studies. We also expected that more false positives were present
when a panel with very diverse accessions was used. The use of a single subspecies allows con-
trolling population structure at finer scale and as results reduces false positives. The critical sig-
nificant threshold value used to declare significant association also influenced the analysis
results. For instance, the qGW5.1 was found to be significant in JZ, SY and SZ but not in HZ.
By inspecting the p values in HZ, it could be seen that the p values of S05_5368086,
S05_5368151 and S05_5369527, were 0.00065, 0.00035 and 0.00014, respectively, which were
only slightly higher than the applied critical significant threshold 10−4. It might be worth point-
ing out that the number of markers used in the present study was smaller than or similar to the
reported GWAS in rice. However, the marker density was sufficient for most of the genomic
regions based on LD decay pattern. Furthermore, the eight gaps devoid of markers below criti-
cal LD did not harbor any known genes affecting the studied traits. Therefore, the relatively
low marker density was unlikely a major contributor to the small number of detected QTL.
Nevertheless, the marker density might be too low in some chromosomal regions where LD
decays more rapidly or breaks down due to recombination events [41]. For instance, the GW2
(LOC_Os02g14720) controlling grain width and weight, was in the marker interval of
S02_8069581—S01_8181973. However, we could not identify any markers associated with GW
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or TGW in this region, since LD was very low (about 0.02). Additional markers in such regions
are clearly needed.

Conclusions
Wide ranges of genetic variations were present in the indica association panel for all 10 mea-
sured grain quality traits. The accessions could serve as sources of novel genes and alleles for
improving rice appearance quality and milling quality traits. GWAS conducted using proper
statistical models is a powerful method for elucidating the genetic basis of rice quality traits.
Although it is generally true that MLM is better than the naïve model and GLM (Q) model for
GWAS, the most appropriate model varies across traits and environments and must be chosen
by comparing different models. MSD was found to be a simple but effective method for choos-
ing the appropriate model in GWAS. Based on the selected best model for each of the trait-
environment combinations, 38 QTL were identified for 10 rice grain appearance quality and
milling quality traits including GL, GW, GLWR, GT, TGW, PGWC, DEC, BRR, MRR and
HMRR. Eight genomic regions harbored QTL for more than one trait. Five QTL were found to
concur with previously cloned genes or fine mapped QTL. Thirty-three were novel. Five of the
novel QTL including qDEC1.1 (qGLWR1.1), qBRR2.2 (qGL2.1), qTGW2.1 (qGL2.2), qGW11.1
(qMRR11.1) and qGL7.1 affected multiple traits with relatively large effects and/or were
detected in multiple environments. Our results provided an insight into the genetic architec-
ture of rice grain appearance quality and milling quality traits. The novel QTL are important
candidates for future functional characterization studies.
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