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Abstract

Bacterial deterioration of sugarcane during harvesting and processing is correlated with sig-
nificant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a
homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary poly-
saccharide associated with sugarcane deterioration. A culture-based approach was used to
isolate extracellular polysaccharide (EPS) producing bacterial strains from milled sugar-
cane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This
study identified 2 bacterial genera not previously associated with EPS production or
sucrose degradation. All isolates produced polysaccharide when grown in the presence of
sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed
17 EPSs consisting solely of glucose (homoglucans), while the remainder contained traces
of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion pro-
files for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides
suggest the release of longer oligosaccharides which may interfere with sucrose crystal
formation.

Introduction

Sugarcane is the most important crop for the production of sucrose and, increasingly, bioetha-
nol [1]. The estimated gross annual production of sucrose from sugarcane is valued at $76 bil-
lion (Food and Agricultural Organization of the United Nations; http://faostat.fao.org). During

PLOS ONE | DOI:10.1371/journal.pone.0145487 December 28, 2015

1/10


http://faostat.fao.org/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0145487&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.nrf.ac.za/

@’PLOS ‘ ONE

Spoliage Bacteria Isolated from Sugarcane

production, sucrose and contaminating sugars are precipitated from juice released from
crushed sugarcane stalks [2-4]. Cut sugarcane is stored at ambient temperature for an average
of 3-5 days before processing [4, 5]. This ‘cut-to-crush delay’ allows for losses as high as 20—
30% of extractable sucrose with a concomitant accumulation of bacterial exopolysaccharides
(EPS) [4, 6-8]. Cut sugarcane deterioration is influenced by several abiotic and biotic factors
and is exacerbated by high ambient temperatures and rainfall [5, 7, 9]. Sucrose degradation is
mainly due to bacterial metabolism and chemical inversion [4]. Indeed, Eggleston [7] showed
that 95% of sucrose loss can be attributed to bacterial spoilage.

A number of microorganisms secrete enzymes which utilise sucrose as substrate for synthe-
sis of oligo- and polysaccharides, releasing monosaccharides as a carbon source. The impact of
EPS on the production of sugar is an industrial concern due to raised viscosity of the masse-
cuite during processing, which inhibits evaporation and crystal formation [2, 9-15].

Dextran is synthesized by an extracellular dextransucrase enzyme, using sucrose as the sole
substrate. Bacterial dextran consists of a-(1,6) linked glucose polymers with a-(1,3) or occa-
sionally o-(1,4) or a-(1,2) branched linkages with molecular weights up to several million Dal-
tons [2, 16]. Dextran has been shown to be the most problematic and abundant EPS produced
during sugarcane deterioration [4, 17, 18]. Accumulation of the polysaccharide in sugarcane
juice during processing can be controlled through good management practises and the use of
the enzyme dextranase [4, 12]. Complete hydrolysis of dextran by dextranase yields oligomers
of between 2-10 glucose units and reduces the viscosity of massecuite [17].

Dextran, produced by Leuconostoc mesenteroides, has been cited as the primary contaminat-
ing EPS accumulating during sugarcane deterioration [4, 7, 12, 17, 18]. Prevention of microbial
growth during sugarcane milling is necessary in order to maintain high yields. Several manage-
ment and remediation strategies have been reviewed where the importance of optimal cutting
practises and the minimization of time between cutting and processing were emphasised to
reduce bacterial spoilage [4]. Other EPS producing microorganisms such as Penicillium sp.,
Streptococcus spp., Lactobacillus spp. [19], Xanthomonas albilineans [20] and Acetobacter dia-
zotrophicus [21] were shown to be present at cut ends and damaged sites of the cane after har-
vesting. Efforts to reduce the problem of bacterial polysaccharide accumulation in harvested
sugarcane are hindered by the current lack of knowledge regarding the diversity of microorgan-
isms involved in this process. Furthermore, the presence of bacterial species producing EPS
other than dextran is not addressed in current strategies for treatment of deteriorated
sugarcane.

This study investigates the culturable EPS-producing bacterial diversity associated with sug-
arcane during processing. Monosaccharide compositions of polysaccharides, the relative con-
centration of EPS produced on different sugars, as well as sensitivity to dextranase, are
reported.

Materials and Methods
Preparation of milled sugarcane

Sugarcane stalks were cut below ground level, the tops removed, and stalks stacked outside in
bundles for 3 days at the South African Sugarcane Research Institute (SASRI) laboratory in
Durban, South Africa. Average temperature and humidity values (day/night) during storage
were 26°C/19°C and 94%/59%, respectively. The cut-ends of over 30 stalks were randomly
selected from a pool of several hundred and were blended with double the volume of water and
filtered through a mesh funnel. The milled filtrate was cooled to 20°C and passed through filter
paper containing 3 g of celite.
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Selection of EPS producing isolates and relative polysaccharide
production

The milled filtrate was diluted and plated onto De Man, Rogosa and Sharpe (MRS) (Merck,
Darmstadt, Germany) and Luria Bertani (LB) (Merck, Darmstadt, Germany), both supple-
mented with 2% sucrose, and incubated at 30°C for 48 hrs to allow for sufficient polysaccharide
production. Isolates first recovered from MRS or LB medium were designated as SM or SL
respectively. EPS production was confirmed visually or through the string test [22]. The forma-
tion of a string (>5 mm) upon lifting of the loop was considered positive.

Single colonies from each isolate were streaked onto SDM [23] supplemented with 2% (m/v)
sucrose, glucose or fructose. EPS production was assessed after incubation for 16 h at 22°C
(Table 1, S1 Fig).

Table 1. EPS producing isolates nearest type strains, GenBank accession, string test results, monosaccharide composition, dextranase suscepti-
bility and relative polysaccharide abundance are shown.

Family Nearest type GenBank Isolate Stringtest Digested by Dextranase EPS Relative EPS
strain accession positive® (Chaetomium monosaccharide abundance
erraticum)® composition from when grown
isolates grown on on different
sucrose sugars
Glc Gal Fru Man Suc Gic Fru
Leuconostocaceae Lueconostoc KU060301 SM33 - ++ v v
lactis
Lueconostoc KU060286 SL8 - + v v v
citreum
Lueconostoc KU060287 SL27 - + v v
citreum
Lueconostoc KU060303 SM19 - + v v v
citreum
Lueconostoc KU060299 SM40 - + v v v
citreum
Lueconostoc KU060293 SM20 - + v v
citreum
Lueconostoc KU060297 SL26 - ++ v v
citreum
Lueconostoc KU060307 SM5 - + v v
citreum
Leuconostoc sp. KU060295 SM36 - ++ v v
Uncultured KU060285 SL29 - + v v
Leuconostoc
Lueconostoc KU060289 SL10 - ++ v v
citreum
Lueconostoc KU060288 SM7 - + v 4 4
citreum
Lueconostoc KU060298 SL19 - + v v v
citreum
Lueconostoc KU060284 SL25 - + v v v
citreum
Lueconostoc KU060290 SM31 - ++ v v
citreum
Lueconostoc KU060302 SM16 - + v v v
citreum
(Continued)
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Table 1. (Continued)

Family

Leuconostocaceae

Lactobacillaceae

Enterobacteriaceae

Nearest type
strain

Uncultured
Weissella

Weissella
confusa

Weissella cibaria
Weissella cibaria

Weissella
confusa

Lactobacillus
satsumensis
Lactobacillus
satsumensis
Salmonella
bongori

Salmonella
bongori

GenBank Isolate Stringtest Digested by Dextranase EPS Relative EPS

accession positive? (Chaetomium monosaccharide abundance
erraticum)® composition from when grown

isolates grown on on different
sucrose sugars
Glc Gal Fru Man Suc Glc Fru

KU060304 SL3 - ++ v v

KU060296 SM32 - ++ v v

KU060292 SL2 - ++ v v

KU060305 SL13 - ++ v v

KU060300 SM10 - ++ v v

KU060306 SM34 - + v v

KU060283 SM38 - + v v v

KU060294 SL18 + + v v v v v

KU060291 SL9 + ++ v v v v

2 Isolates selected for string test (+) or EPS production (-)
® Purified EPS digested overnight to evaluate the sensitivity to dextranase (- indicates no digestion; + indicates partial digestion; ++ indicates full

digestion)

doi:10.1371/journal.pone.0145487.t1001

16S rRNA gene sequence analysis

Genomic DNA was extracted according to Babalola et al. [24] and used as a template for 16S
rRNA gene amplification. Amplicons were generated using KAPA HiFi™ (KAPA Biosystems,
Woburn, USA) and universal 16s rRNA gene primers E9F (5-GAGTTTGATCCTGGCTCA
G-3’) and 1512R (5’- ACGGCTACCTTGTTACGACTT-3’) [25, 26] with an annealing temper-
ature of 55°C for 25 cycles. Amplicons were cloned by ligation into pJET 1.2™ (Fermentas, Bur-
lington, Ontario, Canada) and sequenced using BigDye terminator V3.1. Post sequencing
clean-up was done using Centri-sep columns prior to analysis on a Life Technologies 3730xl
sequencer. Phylogenetic analysis of the 16S rDNA sequence of strains were performed by using
Mega 6.0 software package [27]. The consensus sequence and the sequences of strains belong-
ing to Leuconostoc, Lactobacillus, Weissella and Salmonella, retrieved from the NCBI GenBank
database, were aligned. The phylogeny was inferred using the Neighbor-Joining method [27].
The percentage of replicate trees in which the associated taxa clustered together in the boot-
strap test (1000 replicates) are shown [28]. The evolutionary distances were computed using
the Maximum Composite Likelihood method [29] and are in the units of the number of base
substitutions per site. All positions containing gaps and missing data were eliminated. There
were a total of 1321 positions in the final dataset.

Purification of the EPS

EPS was isolated from cultures grown in semi-defined medium (SDM) supplemented with 5%
sucrose [23] at 22°C. EPS purification was performed according to Bauer et al. [23] with slight
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modification. Isolated EPS was resuspended in 5 ml MilliQ (MQ) water (Millipore, Bilerica,
MA, USA) and dialysed overnight in SnakeSkin®) dialysis tubing (MWCO 3500 kDa) (Ther-
moScientific, Rockford, IL, USA) against 20 | of MQ water. EPS samples were freeze-dried on a
BenchtopK (VirTis, Warminster, PA, USA) for 24h and stored at -20°C.

Gas chromatography-based analysis of the EPS monosaccharide
composition

Purified polysaccharide (2 mg) was hydrolysed and derivatized according to Roessner et al.
[30]. Gas Chromatography (GC) was used to determine monosaccharides present in the EPS
hydrolysate. Glucose, galactose, mannose and fructose were used as standards. A combination
of GC-flame ionization detector (GC-FID) and GC-mass spectrometry (GC-MS) was used. A
Hewlett Packard 4550 GC-FID system fitted with an auto sampler and Rtx™-5MS (30 m by
0.25 mm by 0.25 um film thickness) column was used. The GC operating conditions were as
follows: injection port temperature, 280°C; detector temperature, 250°C; initial oven tempera-
ture, 120°C; hold for 0 min; first ramp 10°C/min to 160°C; hold for 0 min; second ramp 1.5°C/
min to 220°C; hold for 0 min; third ramp 20°C/min to 280°C; hold for 3 min; flow rate, helium
column, ca. 1 ml/min; injection mode split less.

GC-FID results were confirmed by GC-MS analysis of the EPS produced by an isolate from
each genus. Samples were analysed with an Aligent Technologies (Agilent Technologies, Santa
Clara, CA) 6890N Network GC system coupled to a 5975 inert Mass Selective Detector. Elec-
tron impact ionization was performed at 70 eV. GC-MS conditions were the same as Bauer
etal. [23].

Dextranase treatment

Purified polysaccharide (10 mg) was resuspended in 1 ml of 50 mM sodium phosphate buffer
(pH 6) containing ~5 KDU C. erraticum dextranase D0443 (Sigma-Aldrich, St. Louis, MO,
USA) and incubated at 55°C for 16 h. The dextranase-treated polysaccharide was concentrated
using a GeneVac EZ2 bench top evaporator to a final concentration of 0.1 mg/ul. The effect of
the dextranase treatment was visualised using Thin Layer Chromatography (TLC). The assay
was optimized on Dextran T500 (GE Healthcare Bio-Sciences AB, Uppsala, Sweden).

A total of 10 pg enzymatically-hydrolysed polysaccharide samples were spotted adjacent to
non-hydrolysed polysaccharide on a silica gel 60 (F,s4) TLC plate (Merck, Darmstadt, Ger-
many). Glucose, maltose, maltotriose and dextrimaltose were used as standards. The mobile
phase consisted of 2:5:1.5 (by volume) acetic acid:1-propanol:water [31]. Plates were sprayed
with sulphuric acid (5%) in ethanol and developed at 100°C for 10 min.

Nucleotide sequence accession number

All the 16S rRNA gene sequences obtained have been submitted to GenBank database under
accessions KU060283-KU060307 (See Table 1).

Results and Discussion

The presence of EPS in sugar mills has mainly been associated with bacterial degradation of
sucrose. This industrially and financially detrimental process has been attributed mainly to
Leuconostoc and Weissella spp., which have been shown to be involved in sugar degradation
and subsequent EPS formation [4, 32]. In order to probe the depth of microorganism diversity
that may impact sucrose processing, we employed a culture-based screen for bacterial colonies
which showed mucoid secretion when supplied only with sucrose. The bacterial strains were
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isolated from milled sugarcane obtained from the South African Sugarcane Research Institute
(SASRI). Based on morphological characteristics, initial selection pointed to a wide variety of
isolates, however, 16S rRNA gene sequencing and phylogenetic analysis revealed the distribu-
tion of bacteria were limited to only 4 genera (Fig 1). While the population was dominated by
Leuconostoc and Weissella spp., isolates with highest sequence homology to Lactobacillus satsu-
mensis (99%) and Salmonella bongori (99%), organisms novel to sugarcane processing envi-
rons, were present.

Strict, sucrose dependent EPS formation (i.e. polysaccharide formation not observed when
supplemented with glucose or fructose) was seen for the majority of isolates (Table 1, SI Fig).
Investigation of the composition of EPS, using GC-MS analysis of isolated and hydrolysed
polymers, revealed that all 25 isolates produced glucose-containing polysaccharides. Mannose
and fructose were also found in EPS produced by different Leuconostoc isolates, highlighting
the diversity of EPS produced by a single species of bacteria. Strict, sucrose dependent polysac-
charide formation is indicative of sucrase-type enzymes (i.e. dextran-, levan-, and inulosu-
crases) secretion (Fig 2A). These extracellular enzymes take advantage of the high energy
sucrose glycosidic bond to produce glucose or fructose polymers, which offer environmental
protection to the bacteria while releasing monomer sugars for uptake [33]. Interestingly, EPS
from SL19 is comprised of glucose and fructose, possibly indicating the presence of both glu-
cans and fructans produced by dextran- and fructansucrases, respectively. By contrast, the S.
bongori like isolates produced EPS on all carbon sources tested (Fig 2A). These EPSs are, there-
fore, not likely produced via a sucrase enzyme but may involve the import of the sugar which is
metabolised into an EPS exudate (Table 1, Fig 2). Touching a bacterial colony with a pipette tip
or tooth-pick may produce a sticky string of EPS. This is known as the string test, a simple
method of identifying EPS [33]. However, only S. bongori was string-test positive, easily capa-
ble of producing strings in excess of a meter (a string-test pass is 5mm), a property that may be
attractive for biotechnological application [34]. This study revealed a diversity of polysaccha-
rides with a range of physicochemical properties that are likely to interfere with downstream
processing of sucrose.

A common strategy of EPS mitigation in mills, is the use of commercially available dextran-
ase enzymes added to sugar “juice” after crushing. In order to test the efficacy of this approach,
EPS from the 25 bacterial isolates were subjected to in vitro digestion by Chaetomium errati-
cum dextranase, a commercially available a-(1,6) glucosidic hydrolase. Susceptibility to dex-
tranase digestion was evaluated and visualized by TLC (Fig 2B, S1 Fig). At least partial
hydrolysis was demonstrated for all EPS, while only 12 showed complete digestion profiles.
Complete digestion is scored when the TLC loading spot is nearly free from polysaccharide.
The level of susceptibility to dextranase is directly correlated to the amount of enzyme-accessi-
ble linear a-(1,6) glucose units contained within the polysaccharides [14]. Dextran, an often
poly-branched polyglucan, has been shown to have a predominance of a-(1,6) glycosidic link-
ages, in addition to having varying ratios of 0-(1,2), a-(1,3) and o-(1,4) linkages [2, 15, 16].
This variation may contribute to the partial dextranase susceptibility seen in many of these iso-
lates. Not surprisingly, heteropolysaccharides produced by SL19 were less amenable to enzy-
matic hydrolysis due to the presence of mannose or fructose. The presence of
heteropolysaccharides will limit the effectiveness of dextranase enzymes. While dextranase
treatment, a common remediating approach during milling, may reduce viscosity of the masse-
cuite to some extent, the resulting release of oligosaccharides are known to negatively influence
crystallisation of sucrose [8].

Dextransucrase is a glucosyltransferase (E. C. 2.4.1.5) that catalyses the transfer of glucosyl
residues from sucrose to the dextran polymer and liberates fructose [15]. This enzyme is usu-
ally associated with Leuconostoc, Weissella and Lactobacillus spp, and is considered the primary

PLOS ONE | DOI:10.1371/journal.pone.0145487 December 28, 2015 6/10



@’PLOS ‘ ONE

Spoliage Bacteria Isolated from Sugarcane

Leuconostoc sp SM36

Leuconostoc citreum SL26
Leuconostoc citreum SM20
Leuconostoc citreum SM40

0| Leuconostoc citreum SL27

o

Leuconostoc citreum SL8
Leuconostoc citreum SM5
Leuconostoc citreum SL10

99 | Leuconostoc citreum SM7
Leuconostoc citreum SM16
Uncultured Leuconostoc SL29
Leuconostoc citreum SL19

77 || Leuconostoc citreum SL25

N

Leuconostoc citreum SM31

o

i Leuconostoc citreum SM19
96 ||! gil6683519|dbj|AB022923.1| Leuconostoc citreum NRIC 1776

Leuconostoc lactis SM33
ﬂ 0il4514555|dbj|AB023968.1| Leuconostoc lactis
'— gi|209413803|emb|AM940225.1| Leuconostoc palmae TMW2.694
0i|6524945|gb|AF173986.1| Leuconostoc kimchii
gil6683521|dbj|AB022925.1| Leuconostoc carmosum NRIC 1722
gi[221675373|gb|AF231131.2| Leuconostoc gasicomitatum LMG 18811
0i[21325987|gb|AF439560.1| Leuconostoc inhae
67 gi|6683487|dbj|AB022921.1| Leuconostoc gelidum
gi|175133|gb|M23035.1|Leuconostoc mesenteroides
100 L gil6683524|dbj|AB023237.1| Let pseudc ides NRIC 1777
gi[19880105|gb]AF360736.1| Leuconostoc ficulneus
gi[19880106|gb|AF360737.1| Leuconostoc fructosus

40|

43

99

gi[63146736|emb|AJ780981.1| Leuconostoc durionis LMG 22556 T
100 ' gi|]21303339|gb|AY035891.1| Weissella koreensis S-5623
gi[6683526]dbj|AB023239.1| Leuconostoc fallax NRIC 0210
gi[396940716|dbj|AB690345.1| Weissella oryzae SG25

gi[13660703|gb|AY028260.1| Weissella soli

g |dbjlAB022922.1| Weissella kandleri NRIC 1628

0i[21303339|gb|AY035891.1| Weissella koreensis S-5623w
0i[383288290|gb|JQ646523.1| Weissella diestrammenae ORY33
gi|6683522|dbj|AB022926.1| Weissella halotolerans NRIC 1627
gil6683486|dbj|AB022920.1| Weissella minor NRIC 1625
il6683523|dbj|AB023236.1| Weissella viridescens NRIC 1536
gi[459398|gb|S67831.1| Weissella hellenica NCFB 2973
gi|6683525|dbj|AB023238.1| Weissella paramesenteroides NRIC 1542
or Weissella cibaria SL13

5399 | gi[10279697|emb|AJ295989.1| Weissella cibaria LMG 17699T

57

Weissella cibaria SL2
Weissella confusa SM10
Weissella confusa SM32
Uncultured Weissella SL3
4il6683528|dbjlAB023241.1| Weissella confusa JCM 1093
74 - 9i|259052530|emb|FM179678.1| Weissella fabaria 257T
98 |l gi|15710 M882997.1| i is partial LMG 24286T
100 | L 4i|350935448|emb|HE576795.1] Weissella sp. LMG 26217
gi[224923280|gb|EU439435.2| Weissella beninensis 2L24P13
0i|55418399|gb|AY773947.1| Lactobacillus acidophilus BCRC10695
gi[1536876|dbj|D87679.1| Lactobacillus dextrinicus

59
gi|47600760]emb|AJ640078.1| Lactobacillus plantarum subsp. argentoratensis

0i|148921467|dbj|AB326354. 1| Lactobacillus ruminis NBRC 102161
gi[197276870|gb|AF089108.2] Lactobacillus salivarius ATCC 11741
i[42517082|dbj|AB162131.1| Lactobacillus nagelii
0i|544574260|gb|M58824.2|LBARR16SV Lactobacillus mali DSM 20444
gi[52313415|dbj|AB154519.1| Lactobacillus satsumensis NRIC 0604

Lactobacillus satsumensis SM34

76! Lactobacillus satsumensis SM38

gi[156763568|gb|EU014687.1| Salmonella enterica subsp. enterica serovar Enteritidis ATCC 13076

0.05

gi[3335062|gb|AF029227.1| Salmonella bongori BR 1859
Salmonella bongori SL18

100
67
100 ! Salmonella bongori SL9

PLOS ONE | DOI:10.1371/journal.pone.0145487 December 28, 2015

7/10



D)
@ : PLOS | ONE Spoliage Bacteria Isolated from Sugarcane

Fig 1. Population structure of polymer producing bacterial species. Condensed neighbour-joining
phylogenetic tree of isolates identified in milled sugarcane. Homologies of 1321 bp sequences in the 16S
rDNA of Leuconostoc, Weissella, Lactobacillus and Salmonella type strains are displayed along with
sugarcane associated isolates.

doi:10.1371/journal.pone.0145487.g001

causal agents of fouling in sugar mills [4, 35]. This study confirms the widespread consensus
that dextran is the main polysaccharide derived from sugar deterioration by bacteria [4, 7, 34,
36, 37]. We, however, propose that the presence of polysaccharides, other than specifically dex-
tran, may lead to significant processing complications and should be considered for their effect
on milling, evaporation, and crystallisation of sugar.

Conclusion

Numerous EPS-producing bacteria were isolated from sugarcane bagasse. This study revealed
the presence of two genera novel to this niche with the ability to degrade sucrose. Polysaccha-
rides isolated from the various sugarcane-associated bacteria revealed a complexity that has
not been previously reported. Dextranase digestion was only partially effective against polysac-
charide accumulation. The most effective approach in reducing the negative impact of bacterial
polysaccharides remains sound management practices such as reducing the cut-to crush delay
and proper mill sanitation.

A Relative EPS production B Digestion profiles
Full Partial
Sucrose Sucrose Standards
: § I II II
(0]
[2]
o £
© g8 ¢« o a
SM32 SL18 2 @ £ E - 0 o o o
o £ L& = ® o o - < o o
= = 2 9 s = O 0o
o = =2 o nw o nw o w ] @] @)

Fig 2. Polysaccharide accumulation and susceptibility to dextranase treatment. A-Sugar dependent or independent EPS production by bacteria grown
on glucose, fructose or sucrose. B—Dextranase treatment of EPS. Full digestion is indicted by motile oligosaccharides in comparison to the undigested
control; Partial digestion is indicated by an immobile spot at the origin in addition to motile oligosaccharides; Undigested EPS is indicated by no motile

oligosaccharides.

doi:10.1371/journal.pone.0145487.9002
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Supporting Information

S1 Fig. EPS production of the various isolates when grown on glucose, fructose or sucrose
supplemented media (upper panels). The EPS was purified and subjected to digestion by dex-
tranase enzyme, the product of which was separated by Thin Layer Chromatography. These
results are summarised in Table 1.
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