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Abstract
The movement of fluid and solutes across biological membranes facilitates the transport of

nutrients for living organisms and maintains the fluid and osmotic pressures in biological

systems. Understanding the pressure balances across membranes is crucial for studying

fluid and electrolyte homeostasis in living systems, and is an area of active research. In this

study, a set of enhanced Kedem-Katchalsky (KK) equations is proposed to describe fluxes

of water and solutes across biological membranes, and is applied to analyze the relation-

ship between fluid and osmotic pressures, accounting for active transport mechanisms that

propel substances against their concentration gradients and for fixed charges that alter

ionic distributions in separated environments. The equilibrium analysis demonstrates that

the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid

pressure difference across membranes, a result which cannot be achieved by existing KK

theories due to the neglect of fixed charges. The steady-state analysis on active mem-

branes suggests a new pressure mechanism which balances the fluid pressure together

with the osmotic pressure. The source of this pressure arises from active ionic fluxes and

from interactions between solvent and solutes in membrane transport. We apply the pro-

posed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a cru-

cial factor maintaining the hydration and transparency of the tissue. The results show the

importance of the proposed pressure mechanism in mediating stromal fluid pressure and

provide a new interpretation of the pressure modulation mechanism in the in vivo cornea.

Introduction
The exchange of fluid and solutes across biological membranes facilitates the transport of sub-
stances needed for living organisms to maintain their metabolic activities, and regulates pres-
sure balances across bounding membranes to maintain the structural integrity of biological
systems. The movement of these substances is controlled by both passive and active transport
processes. Passive transport mechanisms drive water or solutes to move down their concentra-
tion gradients without need of energy input, whereas active transport mechanisms propels
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solutes to move against their concentration gradients at the cost of energy input frommetabolic
reactions. The interplay between the two mechanisms determines the fluid hydrostatic pressure
and osmotic pressure differences across biological membranes, which are important character-
istics for biological systems. For example, at the organ level, fluid pressure mediates fluid trans-
port between capillaries and tissues, and facilitates the diffusion of nutrients between the two
compartments [1]. At the cellular level, fluid pressure interacts with osmotic pressure to regu-
late cell volumes at normal state [2, 3] and to drive its shape changes during processes such as
protrusion and blebbing [4, 5]. A disturbance of the pressure regulation mechanisms can lead
to swelling or shrinking of cells and tissues. A quantitative understanding of fluid and osmotic
pressures in living organisms is crucial for studying biological mechanisms such as cell volume
regulation and interstitial fluid homeostasis, and is under investigation for various biological
systems, e.g. [2, 3, 6, 7]. The goal of the present work is to develop a mathematical description
of water and solute transport across membranes and apply it to study the pressure balance con-
ditions in biological systems, characterizing passive and active transport mechanisms and
other biological features.

Cells and connective tissues contain a significant concentration of negatively charged mole-
cules (proteins, organic phosphates or sulphated proteoglycans) to which the bounding mem-
brane is impermeable [3, 8]. The presence of fixed charges attracts counterions and produces
an osmolarity that is higher in the internal compartment than in the external compartment,
which is separated from the internal compartment by the membrane. As a result, an osmotic
pressure gradient is developed which drives water to flow into the interior compartment and
thereby cause swelling. In many physiological systems, the above noted swelling tendency is
counterbalanced by active ionic transport processes that are located in bounding membranes
and which produce outward fluxes of ions that can modulate the osmotic pressure induced by
fixed charges [3]. In animal cells, the maintenance of cell volumes relies heavily on the pressure
balance mediated by active ionic transport processes and intracellular fixed charges [2, 3].

In order to describe transport phenomena in such biological systems, nonequilibrium ther-
modynamics has been employed to characterize the relationship between fluid and ionic fluxes
and their generalized driving forces [9–11], with the latter originating in the gradient of the
electrochemical potential and affinity of metabolic reactions. The theory is predicated on the
existence of a dissipation function which describes the total change of system entropy. For
near-equilibrium systems, in which the rate of free energy dissipation is small (i.e. the system is
“is not too far” from equilibrium), linear relationships between fluxes and the driving forces
can be assumed [9, 11]. The classical Kedem-Katchalsky (KK) theory [12] was developed along
these lines. KK theory takes account of interactions between solvent and non-ionic solutes, and
results in a set of phenomenological membrane coefficients that are readily evaluated experi-
mentally. This theory provides the theoretical foundations for analyzing fluid flow and solute
fluxes of various membrane systems.

Because the original KK theory was limited to passive transport in nonelectrolytes, numer-
ous extensions and modifications have been proposed to include additional biophysical effects.
Kedem and Katchalsky [13] extended the original KK equations to study the transport of a
binary electrolyte through charged membranes. In addition to consideration of water flow and
ionic fluxes, the effect of electric currents has been incorporated into KK theory to describe
electroosmosis phenomena. Hoshiko and Lindley [14] integrated active ionic transport mecha-
nisms into the KK equations for single salt and bi-ionic systems. This work developed a conve-
nient approach to describe active movement of ions in a membrane system without the need to
know the underlying detailed molecular mechanisms. Kargol [15] proposed a set of modified
KK equations that takes into account the effect of boundary layers on the passive transport
across a membrane. The modified theory is shown to give better prediction for glucose flux
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across a nephrophane membrane. More recently, Li [16] derived a new set of KK equations for
the transport of multiple ionic species across membranes. This work derived a new volume flux
formulation which includes an additional driving force that originates from the transmem-
brane electrostatic potential difference.

While these developments of the KK theory have covered a wide range of biophysical condi-
tions, the effect of fixed charges has been neglected; KK theories to date have only considered
mobile ions and employed the electroneutrality assumption (i.e. Si zi Ci = 0). In the current
study, we evaluate the influence of fixed charges on fluid and solutes transport across biological
membranes. First we show that due to neglect of fixed charges, existing KK theories, including
[12, 16], predict zero fluid pressure difference across membranes at thermodynamic equilib-
rium. We then employ linear nonequilibrium thermodynamics and propose a set of enhanced
KK equations considering: 1) the presence of fixed charges on one side of a membrane, 2)
transport of both ionic and non-ionic species and 3) active ionic transport mechanisms which
move solutes from a lower to a higher concentration region. The proposed theory is capable of
recovering the Donnan equilibrium and predicting the correct fluid pressure that is required to
balance the Donnan osmotic pressure at equilibrium state. The analysis explains the swelling
tendency of a charged electrolyte gel regardless of the presence of bounding layers.

In addition to illustrating the fixed charge effect, we apply the proposed KK equations to
study the water transport across active biological membranes, which was believed to be gov-
erned by the balance of osmotic pressure and fluid pressure [3]. Our analysis identifies an addi-
tional pressure mechanism that originates from active fluxes and from interactions between
water and solutes in membrane transport processes. This pressure force competes with the
osmotic pressure on balancing the fluid pressure, and the new pressure balance condition
implies that the values of the water potential on the two sides of separating membranes will not
be equal in order to maintain the steady state of biological systems. To illustrate the importance
of this new pressure mechanism, we apply the enhanced KK equations to quantify the transen-
dothelial fluid pressure in the in vivo cornea, in which active transport mechanisms play crucial
roles in regulating the fluid transport across the corneal endothelial layer. The results show that
the additional pressure mechanism has a significant impact on influencing the fluid pressure.

Limitations of existing Kedem-Katchalsky theories
In this section we describe a limitation of existing KK theories [12, 16] which are unable to
recover the Donnan equilibrium when fixed charges exist on one side of the membrane. Con-
sider a biological membrane that separates two polyelectrolyte solutions with fluid pressure P
and P0, solute concentrations Ci and C0

i ði ¼ 1; :::;NÞ, where N denotes the number of species,
and electrostatic potential φ and φ0. We denote one side of the membrane as “inside” and the
other as “outside” (see Fig 1) and assume the inside electrolyte solution contains large molecules
that carry fixed charges with concentration Cf and valence value zf. The fixed charges are
assumed to be “trapped” in the inside solution and the biological membrane is assumed to be
impermeable to large molecules [3]. Both solvent and solutes are considered to have finite per-
meabilities through the membrane (i.e. the membrane is leaky). The classical KK equations [12]
describe the volume flux JV and solute flux Ji(i = 1, . . ., N) between the two solutions as follows:

JV ¼ Lp DP �
X
k

skRTDCk

 !
ð1Þ

Ji ¼ ð1� siÞJVCi þ oiRTDCi ð2Þ

The Balance of Fluid and Osmotic Pressures across Biological Membranes

PLOS ONE | DOI:10.1371/journal.pone.0145422 December 31, 2015 3 / 18



where Lp is the hydraulic conductivity, σi and ωi are the reflection coefficient and permeability
for species i, respectively, and ΔP and ΔCi are the fluid pressure difference and ionic concentra-

tion difference across the membrane, respectively. Ci denotes the mean ionic concentration, and

can be simplified as the arithmetic mean between Ci and C0
i (i.e. Ci ¼ ðCi þ C0

i Þ=2). Consider
the equilibrium condition in which no fluid flow and no ionic fluxes exist across the membrane,
i.e. JV = Ji = 0, Eqs (1, 2) immediately give

DCi ¼ 0 ð3Þ

DP ¼ 0 ð4Þ

which suggests that at equilibrium, ionic concentrations will be balanced and there will be no
fluid pressure difference across the membrane. This conclusion is apparently contradicted by
the well-known Donnan equilibrium where fixed charges induce imbalance of ionic concentra-
tions and develop an osmotic pressure gradient between the inside and outside environments
[17]. This limitation of Eqs (1, 2) is attributed to the fact that they were developed for transport
of non-ionic species [12]. Li [16] derived an extended set of KK equations which incorporate

Fig 1. Illustration of a biological membrane that separates two electrolyte solutions, with the one designated as “inside” containing fixed charges
that are associated with largemolecules.

doi:10.1371/journal.pone.0145422.g001
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the electrostatic potential difference between separated electrolyte solutions,

JV ¼ Lp DP �
X
k

sk RTDCk þ zkFCkDφ
� � !

ð5Þ

Ji ¼ ð1� siÞJVCi þ oi RTDCi þ ziCiFDφ
� � ð6Þ

The above equations are still unable to recover the fluid pressure difference corresponding to
Donnan equilibrium. At the equilibrium state (with JV = Ji = 0), Eqs (5, 6) imply zero pressure
difference and nonzero ionic concentrations difference, which suggests a nonphysical situation.
Regardless of the ionic concentrations difference across the membrane due to the fixed charges,
no fluid pressure difference is needed to balance the resulting osmotic pressure difference.

The inconsistency between Eqs (5, 6) and the Donnan theory is associated with the neglect
of the fixed charges. Presently, the only KK theory that incorporates the fixed charge effect is
the one proposed by Hodson and Earlam [18] considering binary solutions:

JV ¼ Lp ðDP � sDPÞ � ð1� sÞDgð Þ ð7Þ

Ji ¼ ð1� sÞJVC0 þ
o
s
ðDP � DgÞ ð8Þ

where σ and ω are the membrane transport coefficients, C0 is the binary electrolyte concentra-
tion of the outside solution, ΔP = RT(C++C−−2C0) is the osmotic pressure, and Dg ¼
RTC2

f =4C0 is called the gel pressure and is a function of fixed charge concentration. Interest-
ingly, applying the zero flux conditions to Eqs (7, 8) gives ΔP = Δγ = ΔP, although the theory is
only feasible for binary solutions and no active transport is considered. In this study, we
employ linear non-equilibrium thermodynamics and derive a modified form of the KK equa-
tions for a polyelectrolyte solution with fixed charges. We then further extend the theory to
include active ion transport mechanisms.

Modified KK equations for passive transport
Consider a leaky membrane that separates two electrolyte solutions as described above. The
movement of solvent and solutes across the membrane can be characterized by a set of fluxes and
conjugate forces according to nonequilibrium thermodynamics [11]. The identifications of these
quantities are based on the statement of dissipation functionF, which describes the rate that the
free energy is dissipated during transport. Its mathematical formulation is given as [9, 10]

F ¼ JwXw þ
XN
i¼1

JiXi ð9Þ

where Jw and Ji (i = 1, . . .,N) denote fluid flow and solute fluxes, respectively, and Xw and Xi

denote the corresponding conjugate forces for fluid and solutes. In their simplest form, Xw and Xi

can be written as the electrochemical potential difference across the membrane [10, 12], i.e.

Xw ¼ Dmw ð10Þ

Xi ¼ Dmi ð11Þ
where μw and μi are the electrochemical potential for fluid and solute species i, respectively. In
order to derive the mathematical forms for Δμw and Δμi, we first recall the electrochemical
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potential for water and ions as:

mw ¼ nw P � RT
X
k

Ck

 !
ð12Þ

mi ¼ niP þ RT lnCi þ ziFφ ð13Þ

where νw and νi in m
3/mol are the partial volume of solvent and solutes, respectively, zi is the

valence number for species i, R, T and F are gas constant, temperature and Faraday constant,
respectively. The linearized forms for Δμw and Δμi are then given as

Dmw ¼ nw DP � RT
X
k

DCk

 !
ð14Þ

Dmi ¼ niDP þ RT
DCi

Ci

þ ziFDφ ð15Þ

where Ci ¼ ðCi þ C0
i Þ=2 is the average ionic concentration through the membrane.

Following a common convention [12, 16], we rewrite the dissipation function in terms of a
new set of forces and fluxes that are easier to assess experimentally

F ¼ JwDmw þ
X

i

JiDmi

¼ nwJw þ
X

k

nkJk

 !
D~P þ

X
i

Ji
Ci

� Jw
Cw

� �
D ~P i

¼ JVD~P þ
X

i

JDiD ~P i

ð16Þ

where Cw is the solvent (water) concentration, JV = νw Jw + ∑k νk Jk is the volume flux across the

membrane, and JDi ¼ Ji=Ci � Jw=Cw is the exchange flux for species i and can be interpretated

as the relative velocity of the solute versus the solvent. The corresponding conjugate forces D~P

and D ~P i are given as

D~P ¼ Cwnw þ
X
k

Cknk

 !
DP þ RTð1� CwnwÞ

X
k

DCk þ RT
X
k

zkFCkDφ ð17Þ

D ~P i ¼ RTDCi þ ziFCiDφ� Cini
X
k

zkFCkDφ ð18Þ

Note that the sum of all volume fractions is unity, i.e.

Cwnw þ
X
k

Cknk ¼ 1 ð19Þ

for dilute solutions, the solvent (water) volume fraction is dominant over that of solutes, and
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therefore is close to one, i.e. Cw νw � 1. Eqs (17) and (18) can then be simplified as

D~P ¼ DP þ RT
X
k

zkFCkDφ ð20Þ

D ~P i ¼ RTDCi þ ziFCiDφ ð21Þ

where Eq (20) describes the effects of fluid pressure and electrostatic potential on the volume
flux, and is a more general expression compared to that given in [16], which eliminates the sec-
ond term using an electroneutrality condition of the form ∑k zk Ck = 0 (i.e. neglecting the fixed
charges). The new formulation (20) will lead to a set of modified KK equations which predict
the correct fluid pressure in Donnan equilibrium.

Employing linear nonequilibrium thermodynamics [9, 10], the volume flux JV and the

exchange flux JDi are assumed to be linear functions of the conjugate forces D~P and D ~P i,

JV ¼ LVVD~P þ
X
k

LVkD ~Pk ð22Þ

JDi ¼ LiVD~P þ
X
k

LDikD ~Pk ð23Þ

where LVk = LkV, k = 1, . . ., N and LDij = LDji, i, j = 1, . . ., N, satisfying the Onsager reciprocal
relation Schultz1980. Rewriting the above equations as

JV ¼ LpD~P � Lp

X
k

skD ~Pk ð24Þ

JDi ¼ �LpsiD~P þ
X
k

LDikD ~Pk ð25Þ

where Lp and σk are the hydraulic conductivity coefficients and reflection coefficient that have
the following formal definition:

Lp � JV
D~P

� �
D ~Pk¼0

¼ LVV ð26Þ

si � � LVi

LVV

ð27Þ

Assuming a dilute solution, the solute flux Ji can be expressed as [10]:

Ji ¼ ðJV þ JDiÞCi

¼ ð1� siÞJVCi þ
X

k

oikD ~Pk

ð28Þ

where oik ¼ CiðLDik � LpsiskÞ denotes the permeability coefficients. Ignoring the interactions

between ionic fluxes (i.e. ωik = 0 for i 6¼ k) and denote ωi = ωii,

Ji ¼ ð1� siÞJVCi þ oiD ~P i ð29Þ
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where ωi has the following formal definition

oi �
Ji

D ~P i

 !
JV¼0

ð30Þ

In summary, the volume flux JV and solute flux Ji can be written as a linear combination of
ΔP, ΔCi and Δφ by substituting Eqs (20, 21) into Eqs (24, 29):

JV ¼ Lp DP �
X
k

skRTDCk � ð1� skÞzkFCkDφ
� � !

ð31Þ

Ji ¼ ð1� siÞJVCi þ oi RTDCi þ ziCiFDφ
� � ð32Þ

It should be noted that the volume flux expression Eq (31) differs from Eq (5) by the addi-

tion of the term�PkzkFCkD�, which is essentially zero in Li [16] due to neglect of the fixed
charge concentration. The effect of this correction term will be discussed in the following
section.

Application to equilibrium conditions: recovery of Donnan
equilibrium
In this section the modified KK Eqs (31) and (32) are used to study the Donnan equilibrium in
which unequal distributions of ionic concentration and fluid pressure are developed between
two ionic solutions separated by a membrane [17]. At thermodynamic equilibrium, no macro-
scopic flow of fluid or solutes occurs between the two solutions, i.e. JV = Ji = 0, and the dissipa-
tion function is zero (see Eq (9)). Applying the KK theory to study this classical condition
provides the baseline for the study of the effects of active fluxes. We show that the new theory
recovers the Donnan osmotic pressure, and predicts the correct fluid pressure that is required
to balance the osmotic pressure. The predicted pressure quantities do not depend on mem-
brane transport properties, indicating that the Donnan equilibrium will be satisfied regardless
of the presence of a biological membrane [18].

At equilibrium, the zero flux conditions JV = 0 and Ji = 0 requires

oi RTDCi þ ziCiFDφ
� � ¼ 0

which implies

�ð1� siÞziCiFDφ ¼ ð1� siÞRTDCi ð33Þ

The equilibrium fluid pressure difference ΔP, derived from JV = 0, is then

DP ¼
X

k

ðskRTDCk � ð1� skÞzkFCkDφÞ

¼
X

k

skRTDCk þ ð1� skÞRTDCk

¼ RT
X

k

DCk

ð34Þ

From Eq (34) it can be seen that ΔP = RT∑k ΔCk = ΔP is satisfied independently of the
membrane properties (σi, ωi), indicating that regardless of whether the membrane is nearly
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semipermeable (σk! 1) or completely freely permeable (σk ! 0), the equilibrium fluid pres-
sure difference always equals the osmotic pressure difference across the membrane.

Next we derive the mathematical formulation for ΔCk and show that ΔP equals the Donnan
osmotic pressure. Consider the separated solutions shown in Fig 1 as binary solutions, and
assume the valence value of the fixed charges as zf = −1. The sign convention is given as follows:
net fluxes of fluid and solutes from the inside to the outside solution are taken as positive, and
Δ(�) is calculated by the quantity in the inside minus that in the outside. The equilibrium condi-
tions J+ = J− = 0 then give:

RTðCþ � C0Þ þ
C0 þ Cþ

2
FDφ ¼ 0 ð35Þ

RTðC� � C0Þ �
C0 þ C�

2
FDφ ¼ 0 ð36Þ

where C0 ¼ C0
þ ¼ C0

� is the bath concentration. The above equations result in

CþC� ¼ C2
0 ð37Þ

which is the Donnan equilibrium condition [17]. Using the electroneutrality condition for the
electrolyte, including the fixed charge,

Cþ ¼ C� þ Cf ð38Þ

the cation and anion concentrations can be solved from Eqs (37, 38), and ΔP is given as:

DP ¼ RTðCþ þ C� � 2C0Þ

¼ 2RTC0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

f

4C2
0

þ 1

s
� 1

 ! ð39Þ

which recovers the Donnan osmotic pressure [19]. The estimation of ΔP has important implica-
tions for membrane systems, since the fluid pressure difference corresponds to a mechanical force
difference applied at the membrane. Positive ΔP indicates an expansion (swelling) tendency for
inside of the membrane, and vice versa. It governs the volume of the interior compartment from
bounding membranes, for example in cells [2], in vesicles [20] and in the human cornea [21].

Extension to include the effect of active ionic transport
Active transport across cell membranes enables solute movement against their concentration
gradient and is one of the major factors for keeping homeostasis within the body. It is divided
into two types, according to the source of energy used, called primary active transport and sec-
ondary active transport. In the former category, energy is directly provided by the breakdown
of adenosine triphosphate (ATP). In the latter category, energy is derived indirectly from
energy stored in the form of ionic concentration differences between the two sides of a mem-
brane. Directly modeling active mechanisms requires identifications of the reaction kinetics,
which is only known for a few processes [22, 23]. Alternatively, active mechanisms can be
incorporated into the nonequilibrium thermodynamic description of fluid and ionic transport
by introducing the affinity of the driving metabolic reaction and its conjugate flux, the rate of
reaction per unit membrane area [10, 14] (see details in S1 Appendix A). In the simplest form,
the active ionic flux is treated as an independent term that is additive to the passive solute flux
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equation Eq (32). The net solute flux equation can then be written as

Ji ¼ ð1� siÞJVCi þ oi RTDCi þ ziCiFDφ
� �þ Jai ð40Þ

It is noted that Eq (40) recovers the solute flux equation as used in [21, 24, 25] to describe
the effect of active ionic flux without considering the underlying molecular mechanisms.

Similar to the case of thermodynamic equilibrium, we apply the extended KK Eqs (31, 40)
to study the zero flux conditions for JV and Ji. As active transport mechanisms are presented
and consume energy, the zero flux conditions correspond to a non-equilibrium steady state
[26]. In this case, the fluid pressure difference ΔP across the membrane is derived by first
observing from Eq (31) with JV = 0 and Eq (32) with Ji = 0, that

oi RTDCi þ ziCiFDφ
� �þ Jai ¼ 0

which implies

�ð1� siÞziCiFDφ ¼ ð1� siÞRTDCi þ
1� si

oi

Jai ð41Þ

Now JV = 0 implies

DP ¼
X

i

RTDCi þ
1� si

oi

Jai

� �
¼ DPþ Ps ð42Þ

where ΔP = RT∑i ΔCi denotes the osmotic pressure and Pσ = ∑i(1−σi)Jai/ωi denotes an addi-
tional pressure force originating from the active ionic transport when the membrane is leaky
(σi < 1).

The effect of Pσ on the fluid pressure difference ΔPmay be studied by considering two
binary electrolyte solutions, as described above, with an active anion flux Ja−. For convenience,
we denote Ja = Ja−, ω = ωCl− and σ = σ−. Eqs (35, 36) then become

RTðCþ � C0Þ þ
C0 þ Cþ

2
FDφ ¼ 0 ð43Þ

RTðC� � C0Þ �
C0 þ C�

2
FDφþ Ja

o
¼ 0 ð44Þ

Solving Eqs (43), (44) and (38), the cation and anion concentrations are given as

Cþ ¼ Cf

2
� Ja
4oRT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cf

2
� Ja
4oRT

� �2

� Ja
2oRT

C0 þ C2
0

s
ð45Þ

C� ¼ �Cf

2
� Ja
4oRT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cf

2
� Ja
4oRT

� �2

� Ja
2oRT

C0 þ C2
0

s
ð46Þ

and the steady-state ΔP is then obtained from Eq (42) as:

DP ¼ 2RTC0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cf

2C0

� Ja
4oRTC0

� �2

� Ja
2oRTC0

þ 1

s
� s

2
� 1

4

� �
Ja

oRTC0

� 1

 !
ð47Þ

It can be seen that there are three free parameters controlling ΔP: the fixed charge concen-
tration Cf, the active ionic flux divided by the membrane permeability Ja/ω and the reflection
coefficient σ. The effects of these quantities on ΔP are discussed as follows.
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The pressure, fixed charge density and ionic fluxes are expressed in dimensionless forms as
ΔP/RTC0, Cf/C0 and Ja/ωRTC0, respectively. The effect of active ionic flux on Pσ, ΔP and ΔP
are summarized in Fig 2 over the range of Ja/ωRTC0 2 [−0.1, 0.1] at a fixed charge density Cf/
C0 = 0.3. Two values of σ, one representing a leaky membrane (σ = 0.5) and the other represent-
ing a freely permeable membrane (σ = 0.0), have been selected to illustrate the effect of Pσ on
ΔP. An essentially linear relationship is observed between the active ionic flux and the three
pressure estimations. The osmotic pressure ΔP is reduced when the active ionic flux is directed
from inside to outside as described by positive Ja. On the contrary, predicted Pσ increases with
Ja. The fluid pressure ΔP, which results from the two competing terms, decreases with Ja, indi-
cating that the active ionic transport has a stronger effect on ΔP than on Pσ. Notably, the influ-
ence of Pσ on the fluid pressure difference is significant, especially when the membrane is more
permeable (as described by small σ) to the active species. For σ = 0.5, the ratio between Pσ and
ΔP is about 0.6 at Ja/ωRTC0 = 0.1 (see Fig 2a). For a membrane that is freely permeable (σ =
0.0), the corresponding ratio increases to 1.2, resulting in a fluid pressure curve that is nearly
unaffected by Ja (see Fig 2b). If the membrane is nearly semipermeable (σ! 1.0), Pσ is zero
and has no effect on ΔP. The results in Fig 2 show that the pressure force Pσ plays a significant
role in countering the active ionic transport effect on the fluid pressure.

Application to endothelial transport in the in vivo cornea
In this section an example application of Eqs (31, 40) is presented to study the endothelial
transport process of the in vivo human cornea (see Fig 3). The exchange of fluid and ions across
the endothelium controls the level of corneal hydration, which is a crucial factor for maintain-
ing the transparency of the tissue [21, 24]. Fixed charges are associated with sulphated proteo-
glycans in the stroma (the bulk layer of the tissue), and generate osmotic pressure by Donnan
effect [8, 27]. The active ionic transport processes located in the endothelium reduce the
osmotic pressure by pumping ions out from the tissue. Furthermore, metabolic reactions take
place in the in vivo cornea, rendering nonzero transendothelial fluxes for metabolic species
(glucose, bicarbonate and lactate ions) [25, 28, 29].

Fig 2. The predicted uid pressure differenceΔP, osmotic pressure differenceΔΠ and the additional pressure force Pσ against active ionic flux Ja
for a) a leaky membrane with σ = 0.5 and b) a freely permeable membrane (σ = 0.0).

doi:10.1371/journal.pone.0145422.g002
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At steady state, only the volume flux is zero, with the steady solute fluxes being nonzero in
general. This is a more general situation than that discussed in the preceding section. We con-
sider four ionic species, namely sodium (Na+), chloride (Cl−), bicarbonate (HCO�

3 ) and lactate
ions (C3H5O

�
3 , denoted as L

−), and one non-ionic species (glucose, denoted as G) distributed
on both sides of the endothelium. The concentrations of these species in the outside solution
(aqueous humor) are listed in table 1. The reported reflection coefficients and solute permeabil-
ities of corneal endothelium are given in table 2. Additional model input includes the net solute
fluxes for metabolic species and the active bicarbonate flux [30], which were estimated by
Leung et al. [25] and are summarized in table 3. The proposed KK theory now presents a set of
nonlinear equations with seven unknowns (five solute concentration + fluid pressure

Table 1. Fields values in the aqueous humor [25].

Parameters Value

C0
Naþ (mM) 146.55

C0
Cl� (mM) 102.85

C0
HCO�

3
(mM) 36.00

C0
L� (mM) 7.7

C0
G (mM) 6.9

P0 (mmHg) 20.0

φ0 (mV) 0.0

doi:10.1371/journal.pone.0145422.t001

Fig 3. a) The cornea has three principal layers, namely the epithelium, stroma and endothelium. b) The corneal stroma is composed by collagen fibers
(lamellae) packed through thickness, with keratocyte cells interspersed between adjacent lamellae. Fixed charges are associated with sulphated
proteoglycans that are attached to the collagen fibrils, which form a lamella by assembling as parallel arrays following the direction of the lamella. The fixed
charges give rise to a swelling tendency of the cornea [8] by the Donnan effect [17]. c) The in vivo cornea modulates the osmotic pressure by actively
pumping ionic solutes (primarily bicarbonate) from stroma to aqueous humor [31]. In addition, glucose transports from aqueous humor to stroma for the
metabolic activities needed by corneal cells, and lactate ion transports in the opposite direction [25]. The underlying molecular mechanisms of corneal
endothelial pumping are still under investigation [31].

doi:10.1371/journal.pone.0145422.g003
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+ electrostatic potential), which are summarized as follows:

DP �
X
k

skRTDCk � ð1� skÞzkFCkDφ
� � ¼ 0 ð48Þ

oiðRTDCi þ ziCiFDφÞ þ Jai ¼ Ji ; i ¼ Naþ;Cl�;HCO�
3 ; L

�;G; ð49Þ
X
k

zkCk þ zfCf ¼ 0 ð50Þ

The fluid pressure difference ΔP is solved as

DP ¼
X

i

RTDCi þ
1� si

oi

ðJai � JiÞ
� �

¼ DPþ Ps ð51Þ

where Ji denotes the net flow for species i and Pσ = ∑i(1−σi)(Jai−Ji)/ωi. The solute concentration
difference ΔCi across the endothelium can be derived as (see details in S1 Appendix B):

DCi ¼ �
ziFDφC

0
i þ Jai�Ji

oi

RT þ 1
2
ziFDφ

ð52Þ

where the electrostatic potential difference Δφ is solved as (see in S1 Appendix B):

Dφ ¼ �Bþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A
ð53Þ

Table 2. Endothelial membrane properties [25].

Parameters Value

σNa+ 0.45

σCl− 0.45

sHCO�
3

0.38

σL− 0.45

σG 0.45

ωNa+ RT(10−5 cm/s) 8.0

ωCl− RT(10
−5 cm/s) 8.0

oHCO�
3
RTð10�5 cm/s) 8.0

ωL− RT(10−5 cm/s) 3.0

ωG RT(10−5 cm/s) 8.0

doi:10.1371/journal.pone.0145422.t002

Table 3. Reported solute fluxes across corneal endothelium [25].

Parameters Value

JNa+ 0

JCl− 0

JHCO�
3
ð10�10mol=cm2 � sÞ -2.12

Ja
HCO�

3
ð10�10mol=cm2 � sÞ 9.4

JL−(10−10mol/cm2�s) 2.12

JG(10
−10mol/cm2�s) -1.71

doi:10.1371/journal.pone.0145422.t003
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where parameters A, B and C are

A ¼ 1

4
zfCf

F2

RT
ð54Þ

B ¼ F
RT

RT
X
k

C0
k �

X
k

Jak � Jk
2ok

 !
ð55Þ

C ¼ �RTzfCf þ
X
k

zkJak � zkJk
ok

ð56Þ

The effects of fixed charges on fluid pressure and solute concentrations, given by Eqs (51, 52),
are illustrated in Fig 4a and 4b in the range of Cf 2 ½0;C0

f �, where C0
f ¼ 48mM is the measured

fixed charge concentration in corneal stroma [8]. The stromal fluid pressure P is predicted to be
highly sensitive to Cf, increasing from −39.5 to 19.6 mmHg (nearly 150% variation) as the fixed
charge concentration varies from zero to C0

f (see Fig 4a). In the special case of Cf = 0 (no fixed
charge), P is calculated to be −40 mmHg, which is comparable to the value reported by Leung
et al. [25] based on the KK Eqs (5 and 6) (see table 4). The predicted sodium concentration dif-
ference ΔCNa+, given by Eq (52), shows the highest sensitivity to Cf among all the solutes (see

Fig 4. The effect of fixed charge concentration on a) the stromal uid pressure and b) the solute concentration differences across the corneal
endothelium.

doi:10.1371/journal.pone.0145422.g004

Table 4. Comparisons of the solute concentrations and stationary fluid pressure at stromal-endothelial interface of the cornea by the newKK equa-
tions and that by [25].

CNa+ (mM) CCl− CHCO�
3

CL− P (mmHg)

Leung et al. [25] 143.1 105.0 22.58 15.00 −40.5

New KK, Cf = 0 143.6 105.3 22.28 15.03 −39.5

New KK, Cf = 48.0 mM 168.5 89.67 17.91 13.33 19.6

doi:10.1371/journal.pone.0145422.t004
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Fig 4b), varying from −2.2 to +22.0 mM as Cf increases from zero to C0
f (see also table 4). On the

other hand, the predicted anion concentrations (chloride, bicarbonate and lactate ions) show an
opposite trend by decreasing with Cf. The contrast between the curves of cation and anions is
attributed to the Donnan effect, which requires accumulation of cations to compensate the con-
centration of negative fixed charges. As expected, the calculated glucose concentration is invari-
ant with Cf since it is a neutral species. The calculated ionic concentrations at Cf = 0 are in close
agreement with those obtained in Leung et al. [25] (see table 4).

The effect of active bicarbonate flux JaHCO�
3
on solute concentrations is presented in Fig 5a in

the range of JaHCO�
3
2 ½0; Ja0HCO�

3
�, where Ja0HCO�

3
denotes the reported value of bicarbonate pumping

flux (see table 3). Predicted bicarbonate concentration shows the most sensitivity to JaHCO�
3
where

DCHCO�
3
varies from −10 to −20 mM as the active bicarbonate flux increases from zero to Ja0HCO�

3
.

Interestingly, the sodium concentration difference ΔCNa+ is also highly dependent on the bicar-
bonate pumping flux, reducing from 30 to about 22 mM. The chloride and lactate ion concentra-
tions, on the other hand, increase mildly with JaHCO�

3
. The osmotic pressure, which is a measure of

the total osmolarity including all the solutes, decreases as bicarbonate ions are pumped out from
stroma to aqueous humor (see Fig 5b). The influence of JaHCO�

3
on ΔP and Pσ is shown in Fig 5b.

At the condition of no active transport (JaHCO�
3
¼ 0), fluid pressure difference ΔP is predicted to be

approximately 100 mmHg, a nonphysiological value that will cause the tissue to swell severely
and damage the endothelial membrane [21, 30]. This result confirms the necessity of the active
transport mechanism to maintain the hydration of the tissue. When JaHCO�

3
¼ Ja0HCO�

3
, ΔP is pre-

dicted to be zero which is a result of equal osmotic pressure ΔP and Pσ on the magnitude of 120
mmHg. The two curves of ΔP and Pσ have opposite signs of slope, indicating again that the two
pressure mechanisms compete with each other in generating fluid pressure in the stroma: while
ΔP is reduced due to the active transport of bicarbonate, Pσ provides a countering effect by
increasing with JaHCO�

3
. The net effect of the two mechanisms, illustrated by the curve of ΔP, shows

a decreasing trend with JaHCO�
3
but with a smaller slope due to Pσ.

Fig 5. a) The predicted solute concentration differences across corneal endothelium against active bicarbonate flux. b) The predicted uid pressure
difference ΔP, osmotic pressure differenceΔΠ and the additional pressure force Pσ against active bicarbonate flux for the corneal endothelium.

doi:10.1371/journal.pone.0145422.g005
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Discussion
The proposed KK Eqs (31, 40) present a general framework to describe coupled transport
through biological membranes. This work may be viewed as an extension from Li [16], Hodson
and Earlam [18] and Hoshiko and Lindley [14] by including the effect of fixed charges, multi-
component solutes (both ionic and non-ionic species) and active transport mechanisms. While
the derivations follow the standard practice of the KK theory [10], the key step is to take
account of the fixed charge concentration. The theory resolves the difficulties of existing KK
equations in predicting transmembrane fluid pressure for charged electrolyte solution. The
recovery of the fluid pressure and osmotic pressure in Donnan equilibrium provides verifica-
tion of the proposed theory, and explains the swelling tendency of tissues like cornea (with
fixed charge inside) with or without the presence of a bounding membrane, a phenomena that
has been observed experimentally and explained qualitatively [18].

As water transport is primarily passive in biological systems [32], conventional analysis
treats water as being effectively in thermodynamic equilibrium [3], with the water potential dif-
ference across membrane assumed to be zero. In this case, the osmotic pressure difference ΔP
is balanced by the fluid pressure difference ΔP[21]. The analyses presented in the preceding
two sections have shown that this may not be the case when active ionic transport processes
are present. The generation of Pσ alters the pressure balance condition across membranes such
that

DP ¼ DPþ Ps ) mw 6¼ m0
w ð57Þ

This implies that the values of the water potential across the separating membrane will not
be equal. According to Eq (57), the fluid pressure difference is balanced by the combined effect
from ΔP and Pσ. Numerically, ΔP and Pσ have opposite signs, indicating their competing
effect in contributing to ΔP; if ions are pumped out to reduce the fluid pressure inside, the pres-
sure Pσ will be positive and provide a countering effect, and vice versa. The quantitative analy-
ses given in the preceding two sections show that Pσ has a significant impact on P when the
membrane is leaky, indicated by a reflection coefficient less than unity. The significance of Pσ
in biological system is also interesting to discuss. As active transport mechanisms take place
across biological membranes to maintain the internal fluid pressure by removing ions from
inside to the outside environment, the pressure force Pσ makes such processes less efficient—
the membrane system is required to generate a stronger active flux to overcome Pσ, which costs
more energy from the active transport mechanism.

Specifically for the cornea, the pressure Eq (57) suggests a new interpretation of the stromal
fluid pressure, which is an important quantity in corneal biomechanics because it interacts
with the stromal collagen and modulates the fluid content of the tissue [21]. Historical views
on the transendothelial fluid balance have been predicated on the “pump-leak” hypothesis
[30]. It assumes negative stromal fluid pressure, which contributes a fluid leak from the aque-
ous humor to the stroma, and negative osmotic pressure, which results in a fluid leak in the
other direction. This balancing concept can be abstracted by ΔP = ΔP, where the left hand side
represents the source for the “leak” and the right hand side for the “pump.” According to Eq
(57), the balancing condition can be relaxed; due to the generation of Pσ, the stromal fluid pres-
sure could be positive (see table 4) while the osmotic pressure is negative. This view of a posi-
tive stromal fluid pressure is corroborated by a recent structural analysis of the cornea [21],
which needs further experimental verification.

It is clear from Eq (51) that Pσ is highly sensitive to reflection coefficient σi, which is a cross
coefficient that provides a measure of the interaction between the flows of solute and solvent.
Although the KK theory is strictly phenomenological [9], the physical interpretation of σi is
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worth discussing. An alternative way of interpretating the membrane transport is to view the
conjugate forces as a result of mechanical friction among solute (water) and solutes [33].
Accordingly, σi has been found to be governed by the solute permeability through the mem-
brane and the friction between solvent and solute. It will be unity only if the membrane is
strictly impermeable to solute species i. On the contrary, the more leaky the membrane is to
solutes and the stronger the interactions between the solute and solvent phases, the smaller σi
will be, which results in a larger Pσ as shown in the current analysis.

Extensions on the current work include two aspects. First, the new KK theory can be incor-
porated into continuum models for cells or tissues to describe the interactions between mem-
brane transport and the bulk electrolyte inside. A multiphasic model for the living cornea that
accounts for hydration, fixed charges and endothelial transport is under development. Second,
it should be noted that the assumption of an independently specified active ionic flux in the
above theory, for example JaHCO�

3
in the preceding section, is employed for simplicity [24]. The

consideration of active ionic flux, and its coupling with the solvent and solutes can be elabo-
rated by taking into account the underlying metabolic reactions [9]. This development would
require identification of the molecular mechanisms, but could potentially enhance the under-
standing of active mechanism involvement in membrane transport.

Supporting Information
S1 Appendix. Derivations of the KK equations considering active transport and determina-
tions of fluid pressure and solute concentrations at steady state.
(PDF)

Author Contributions
Conceived and designed the experiments: XC PMP. Performed the experiments: XC. Analyzed
the data: XC PMP. Contributed reagents/materials/analysis tools: XC. Wrote the paper: XC
PMP.

References
1. Titze J (2013) Interstitial fluid homeostasis and pressure: news from the black box. Kidney Int 84: 869–

871. doi: 10.1038/ki.2013.287 PMID: 24172732

2. Jiang H, Sun SX (2013) Cellular pressure and volume regulation and implications for cell mechanics.
Biophys J 105(3): 609–619. doi: 10.1016/j.bpj.2013.06.021 PMID: 23931309

3. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates.
Physio Rev 89(1): 193–277. doi: 10.1152/physrev.00037.2007

4. Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA (2011) Hydrostatic pres-
sure and the actomyosin cortex drive mitotic cell rounding. Nature 469: 226–230. doi: 10.1038/
nature09642 PMID: 21196934

5. Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic
pressure in blebbing cells. Nature 435: 365–369. doi: 10.1038/nature03550 PMID: 15902261

6. Fraser JA, Huang CLH (2004) A quantitative analysis of cell volume and resting potential determination
and regulation in excitable cells. J Physiol 559: 459–478. doi: 10.1113/jphysiol.2004.065706 PMID:
15243134

7. Jakobsson E (1980) Interactions of cell volume, membrane potential, and membrane transport parame-
ters. Am J Physiol 238(5): 196–206.

8. Hodson SA (1971) Why the cornea swells. J Theor Biol 33(3): 419–427. doi: 10.1016/0022-5193(71)
90090-7 PMID: 4262718

9. Schultz SG (1980) IUPAB Biophysics series. Basic principles of membrane transport. Cambridge Uni-
versity Press, Cambridge.

The Balance of Fluid and Osmotic Pressures across Biological Membranes

PLOS ONE | DOI:10.1371/journal.pone.0145422 December 31, 2015 17 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0145422.s001
http://dx.doi.org/10.1038/ki.2013.287
http://www.ncbi.nlm.nih.gov/pubmed/24172732
http://dx.doi.org/10.1016/j.bpj.2013.06.021
http://www.ncbi.nlm.nih.gov/pubmed/23931309
http://dx.doi.org/10.1152/physrev.00037.2007
http://dx.doi.org/10.1038/nature09642
http://dx.doi.org/10.1038/nature09642
http://www.ncbi.nlm.nih.gov/pubmed/21196934
http://dx.doi.org/10.1038/nature03550
http://www.ncbi.nlm.nih.gov/pubmed/15902261
http://dx.doi.org/10.1113/jphysiol.2004.065706
http://www.ncbi.nlm.nih.gov/pubmed/15243134
http://dx.doi.org/10.1016/0022-5193(71)90090-7
http://dx.doi.org/10.1016/0022-5193(71)90090-7
http://www.ncbi.nlm.nih.gov/pubmed/4262718


10. Friedman MH (2008) Principles and models of biological transport, second edition. Springer, New
York.

11. Demirel Y, Sandler SI (2002) Thermodynamics and bioenergetics. Biophys Chem 97(2): 87–111. doi:
10.1016/S0301-4622(02)00069-8 PMID: 12050002

12. KedemO, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes
to non-electrolytes. Biochim Biophys Acta 27(2): 229–246. doi: 10.1016/0006-3002(58)90330-5 PMID:
13522722

13. KedemO, Katchalsky A (1963) Permeability of composite membranes Part 1. electric current, volume
flow and flow of solute through membranes. Trans Faraday Soc 59: 1918–1930. doi: 10.1039/
tf9635901918

14. Hoshiko T, Lindley BD (1967) Phenomenological description of active transport of salt and water. J
Gen Physiol 50(3): 729–758. doi: 10.1085/jgp.50.3.729 PMID: 11526855

15. Kargol A (2000) Modified Kedem-Katchalsky equations and their applications. J Membr Biol 174(1):
43–53. doi: 10.1016/S0376-7388(00)00367-7

16. Li LY (2004) Transport of multicomponent ionic solutions in membrane systems. Philos Mag Lett 84(9):
593–599. doi: 10.1080/09500830512331325767

17. Overbeek JT (1956) The Donnan equilibrium. Prog Biophys Biophys Chem 6: 57–84. PMID: 13420188

18. Hodson S, Earlam R (1993) The incorporation of gel pressure into the irreversible thermodynamic
euqation of fluid flow in order to explain biological tissue swelling. J Theor Biol 163(2): 173–180. doi:
10.1006/jtbi.1993.1115 PMID: 8246502

19. Urban JPG, Maroudas A, Bayliss MT, Dillon J (1979) Swelling pressures of proteoglycans at the con-
centrations found in cartilaginous tissues. Biorheology 16(6): 447–464. PMID: 534768

20. Niles WD, Cohen FS, Finkelstein A (1989) Hydrostatic pressures developed by osmotically swelling
vesicles bound to planar membranes. J Gen Physiol 93(2): 211–244. doi: 10.1085/jgp.93.2.211 PMID:
2467961

21. Cheng X, Petsche SJ, Pinsky PM (2015) A structural model for the in vivo human cornea including col-
lagen-swelling interaction. J R Soc Interface 12: 20150241. doi: 10.1098/rsif.2015.0241 PMID:
26156299

22. Wieth JO, Andersen OS, Brahm J, Bjerrum PJ, Borders CL Jr (1982) Chloride-bicarbonate exchange in
red blood cells: physiology of transport and chemical modification of binding sites. Philos Trans R Soc
Lond B Biol Sci 299(1097): 383–399. doi: 10.1098/rstb.1982.0139 PMID: 6130537

23. Blumenthal R, Caplan SR, KedemO (1967) The coupling of an enzymatic reaction to transmembrane
flow of electric current in a synthetic “active transport” system. Biophys J 7(6): 735–757. doi: 10.1016/
S0006-3495(67)86620-7 PMID: 19210996

24. Klyce SD Russell SR (1979) Numerical solution of coupled transport equations applied to corneal
hydration dynamics. J Physiol 292: 107–34. doi: 10.1113/jphysiol.1979.sp012841

25. Leung BK, Bonanno JA, Radke CJ (2011) Oxygen-deficient metabolism and corneal edema following
epithelial hypoxia in the rabbit. Prog Retin Eye Res 30(6): 471–492. doi: 10.1016/j.preteyeres.2011.07.
001 PMID: 21820076

26. Prigogine I (1967) Introduction to thermodynamics of irreversible process, third edition. Interscience
publisher, New York.

27. Cheng X, Pinsky PM (2013) Mechanisms of self-organization for the collagen fibril lattice in the human
cornea. J R Soc Interface 10: 20130512. doi: 10.1098/rsif.2013.0512 PMID: 23904589

28. Chhabra M, Prausniz JM, Radke CJ (2009) Modeling Corneal Metabolism and Oxygen Transport Dur-
ing Contact LensWear. Optom Vis Sci 86(5): 454–466. PMID: 19357551

29. Pinsky PM (2014) Three-dimensional modeling of metabolic species transport in the cornea with a
hydrogel intrastromal inlay. Invest Ophthalmol Vis Sci 55(5): 3093–3106. doi: 10.1167/iovs.13-13844
PMID: 24833750

30. Elliott GF, Hodson SA (1998) Cornea, and the swelling of polyelectrolyte gels of biological interest. Rep
Prog Phys 61: 1325–1365. doi: 10.1088/0034-4885/61/10/001

31. Bonanno JA (2012) Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 95
(1): 2–7. PMID: 21693119

32. Zeuthen T (1995) Molecular mechanisms for passive and active transport of water. Int Rev Cytol 160:
99–161. doi: 10.1016/S0074-7696(08)61554-5 PMID: 7558688

33. KedemO, Katchalsky A (1961) A physical interpretation of the phenomenological coefficientsf of mem-
brane permeability. J Gen Physiol 45(1): 143–179. doi: 10.1085/jgp.45.1.143 PMID: 13752127

The Balance of Fluid and Osmotic Pressures across Biological Membranes

PLOS ONE | DOI:10.1371/journal.pone.0145422 December 31, 2015 18 / 18

http://dx.doi.org/10.1016/S0301-4622(02)00069-8
http://www.ncbi.nlm.nih.gov/pubmed/12050002
http://dx.doi.org/10.1016/0006-3002(58)90330-5
http://www.ncbi.nlm.nih.gov/pubmed/13522722
http://dx.doi.org/10.1039/tf9635901918
http://dx.doi.org/10.1039/tf9635901918
http://dx.doi.org/10.1085/jgp.50.3.729
http://www.ncbi.nlm.nih.gov/pubmed/11526855
http://dx.doi.org/10.1016/S0376-7388(00)00367-7
http://dx.doi.org/10.1080/09500830512331325767
http://www.ncbi.nlm.nih.gov/pubmed/13420188
http://dx.doi.org/10.1006/jtbi.1993.1115
http://www.ncbi.nlm.nih.gov/pubmed/8246502
http://www.ncbi.nlm.nih.gov/pubmed/534768
http://dx.doi.org/10.1085/jgp.93.2.211
http://www.ncbi.nlm.nih.gov/pubmed/2467961
http://dx.doi.org/10.1098/rsif.2015.0241
http://www.ncbi.nlm.nih.gov/pubmed/26156299
http://dx.doi.org/10.1098/rstb.1982.0139
http://www.ncbi.nlm.nih.gov/pubmed/6130537
http://dx.doi.org/10.1016/S0006-3495(67)86620-7
http://dx.doi.org/10.1016/S0006-3495(67)86620-7
http://www.ncbi.nlm.nih.gov/pubmed/19210996
http://dx.doi.org/10.1113/jphysiol.1979.sp012841
http://dx.doi.org/10.1016/j.preteyeres.2011.07.001
http://dx.doi.org/10.1016/j.preteyeres.2011.07.001
http://www.ncbi.nlm.nih.gov/pubmed/21820076
http://dx.doi.org/10.1098/rsif.2013.0512
http://www.ncbi.nlm.nih.gov/pubmed/23904589
http://www.ncbi.nlm.nih.gov/pubmed/19357551
http://dx.doi.org/10.1167/iovs.13-13844
http://www.ncbi.nlm.nih.gov/pubmed/24833750
http://dx.doi.org/10.1088/0034-4885/61/10/001
http://www.ncbi.nlm.nih.gov/pubmed/21693119
http://dx.doi.org/10.1016/S0074-7696(08)61554-5
http://www.ncbi.nlm.nih.gov/pubmed/7558688
http://dx.doi.org/10.1085/jgp.45.1.143
http://www.ncbi.nlm.nih.gov/pubmed/13752127

