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Abstract
Genomic technologies including microarrays and next-generation sequencing have

enabled the generation of molecular signatures of prostate cancer. Lists of differentially

expressed genes between malignant and non-malignant states are thought to be fertile

sources of putative prostate cancer biomarkers. However such lists of differentially ex-

pressed genes can be highly variable for multiple reasons. As such, looking at differential

expression in the context of gene sets and pathways has been more robust. Using next-

generation genome sequencing data from The Cancer Genome Atlas, differential gene

expression between age- and stage- matched human prostate tumors and non-malignant

samples was assessed and used to craft a pathway signature of prostate cancer. Up- and

down-regulated genes were assigned to pathways composed of curated groups of related

genes from multiple databases. The significance of these pathways was then evaluated

according to the number of differentially expressed genes found in the pathway and their

position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway

Impact Analysis. The “transforming growth factor-beta signaling” and “Ran regulation of

mitotic spindle formation” pathways were strongly associated with prostate cancer. Several

other significant pathways confirm reported findings from microarray data that suggest actin

cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium

signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of path-

way analysis and identified an underexplored area (Ran) for investigation in prostate cancer

pathogenesis.

Introduction
Prostate cancer is the second most diagnosed cancer among American men, with over 220,000
new cases predicted in 2015 [1]. Prostate-specific antigen (PSA) has been the cornerstone of
prostate cancer screening for decades. However PSA is not an ideal biomarker and widespread
use of PSA-screening is falling out of favor [2–4]. Reliance on PSA screening is problematic
because false positives result from benign prostatic hyperplasia or prostatitis and because PSA
fails to discriminate indolent disease, leading to overdiagnosis. The expansion of genomic and
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proteomic technology and methodology has improved the characterization of tumor biology,
driving the search for more accurate cancer biomarkers. Gene and protein expression differences
between normal and malignant prostate tissues have been well documented and serve as a pool
for putative diagnostic, prognostic, and risk stratification biomarkers [5–24]. Gene mutations,
epigenetic changes, and microRNA expression changes that occur in cancer initiation and pro-
gression have also been studied with the goal of biomarker discovery [25–29]. Yet there remain
several substantial obstacles in biomarker implementation. Low reproducibility across laborato-
ries, differences in experimental platforms and techniques, the inherent heterogeneity of prostate
cancer, and insignificant clinical utility or small gains in sensitivity and specificity beyond PSA
hampers the identification, validation, and implementation of biomarkers [30–35].

Previous work has focused on the selection and validation of individual genes as biomarkers.
Yet the heterogeneity of prostate cancer makes it extremely unlikely to find a single gene that is
a representative marker [36]. Screening panels formed by the combination of multiple genes
have been used to increase predictive power for cancer detection, recurrence, relapse, and sur-
vival beyond the use of PSA or Gleason score alone [37–40]. The success of the biomarker
panel approach is evidenced by the commercial launch of several screening tests which have
found clinical usefulness: ProMark [41], Oncotype DX [42], Prolaris [43], and Decipher [44].
These panels may be pulled from molecular classifications studies that use differential expres-
sion to craft a signature for cancer.

However molecular classifications and gene signatures are not always stable in the sense
that multiple signatures can be found for cancers. Large discrepancies between lists of differen-
tially expressed genes (DEGs) from microarray data have been highlighted [45]. In some cases
the overlap between microarray datasets was as low as 5% [46]. So for each set of DEGs, a dif-
ferent signature could be found. Thus biomarkers selected from these lists would perform with
varying degrees of success. Taking the list of DEGs and correlating them to a prognostic
marker may generate a more useful putative biomarker pool because then only genes correlated
with prognosis would comprise the molecular signature. However, Ein-Dor et al. showed that
in breast cancer, there was no single, unique set of genes that predicted survival because alter-
ing the patient population could produce multiple sets of genes of equal prognostic ability in
predicting survival [33]. Furthermore, correlation with survival was not required for prognostic
ability [33]. So it is likely that many panels exclude a number of other genes that could be
potential biomarkers because the panel was derived from one body of samples (although it may
be large) and considered only strongest correlations.

An alternative approach is pathway-based analysis. In pathway analysis, a collection of
related genes from the same pathway or network of interaction is assessed instead of examining
a group of potentially unrelated genes that optimize sensitivity and selectivity of diagnosis or
prognosis. There is increased overlap between data at the pathway level compared to overlap
between lists of DEGs [46, 47]. Pathway analysis does not neglect the cooperative nature of
genes and considers that oftentimes genes involved in the same process are often deregulated
together. By looking at the pathway, minor variations in instrumentation or method are less
likely to impact results, leading to more consistent results across different sets of data [48].
Thus the pathway approach yields more robust results, improves disease classification, and
may reveal novel insights about a disease [49–51]. One type of pathway analysis starts with a
differentially expressed gene and correlates the expression of genes involved in the same path-
way or similar process with a particular diagnostic or prognostic outcome [52–54]. A similar
iteration starts with a pathway of known importance in cancer initiation or progression and
evaluates the prognostic power of its individual components. This has been done for the mito-
gen-activated protein kinase (MAPK) pathway [55], Akt [56], mTOR pathway [57, 58], Toll-
like receptor signaling pathway [59], and other oncogene signatures [60].
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In this paper, comprehensive gene expression in human prostate cancer was characterized
using an unbiased pathway approach. Next generation sequencing was used to obtain a profile
of the differences in RNA expression between human tumors and non-malignant tissue from
patients. Pathway analysis included Gene Set Enrichment Analysis and Signaling Pathway Impact
Analysis. Two pathways were significantly associated with human prostate tumors—“Ran regula-
tion of mitotic spindle formation” pathway and “transforming growth factor-beta (TGF-β) signal-
ing” pathway.

Materials and Methods

RNA sequencing data
Level 3 de-identified data for prostate cancer samples and all available non-malignant samples
from these prostate cancer patients was downloaded from The Cancer Genome Atlas (TCGA)
data portal (https://tcga-data.nci.nih.gov). Level 3 describes data that has been processed and
aggregated to give gene expression signals for a sample. For each sample, the data contains
expression counts for up to 20,531 coding and non-coding RNA transcripts plus clinical infor-
mation such as age, stage, Gleason score, PSA level, and race/ethnicity. Before analysis, tumor
and non-malignant samples were randomly pulled to achieve an age- and stage-matched pool
of 225 samples (S1 Table). A total of 173 prostate cancer samples and 52 non-malignant sam-
ples from 204 unique patients were analyzed. The patient clinical information is presented in
Table 1.

Differential Gene Expression
The R programming environment (version 3.1.2) [61] was used to process raw data, perform
statistical calculations, and perform differential expression analysis. After age- and stage-

Table 1. Prostate cancer patient clinical information from TCGA.

Characteristics Samples (n = 225) Tumor (n = 173) Non-Malignant (n = 52) Fisher’s Exact Test P-value

Age

< 65 155 121 34 0.609

� 65 70 52 18

Pathological T stage

T1 0 0 0 0.649

T2 113 84 29

T3 103 82 21

T4 8 6 2

Unspecified 1 1 0

Race

White 92 50 42 0.701

Black 7 3 4

Unspecified 126 120 6

Ethnicity

Not Hispanic 96 51 45

Unspecified 129 122 7

Gleason Score

� 6 24 19 5 0.00168

7 129 89 40

8–10 72 65 7

doi:10.1371/journal.pone.0145322.t001
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matching, 393 transcripts were removed because they lacked expression in the 225 samples
comprising the dataset. The RNA counts for the remaining 20,138 transcripts were rounded to
the nearest whole number and compiled into a matrix to build the dataset. The magnitude of
expression changes relative to non-malignant samples was also calculated by taking the base 2
logarithm of the tumor/non-malignant mean expression ratio. For genes with no expression in
either the tumor or non-malignant samples, the log2 fold changes were adjusted by adding one
to each mean and then calculating the ratio. All log2 values quoted are values after any such
adjustments. Negative fold changes indicated down-regulation in tumor samples whereas posi-
tive values indicated up-regulation. The R package DESeq2 (version 1.6.3) [62] was used to
identify DEGs in the TCGA patient RNA data. The computing was done on the Florida State
University High Performance Computing Cluster. DESeq2 returned a P-value determined by
Wald statistics and an adjusted P-value (Q-value) to correct for multiple comparisons testing
using the Benjamini-Hochberg method to determine the false discovery rate (FDR). DEGs
were defined as genes different with a FDR less than 1% (Q< 0.01).

To evaluate the significance of the identified DEGs, analyses were conducted to search for
overrepresented pathways, gene set enrichment, and signaling pathway impact. First, overrep-
resented elements were identified among the DEGs. The Protein ANalysis THrough Evolution-
ary Relationships (PANTHER) Classification System and analysis tools were used to categorize
DEGs by PANTHER protein class, Gene Ontology (GO) Molecular Function, and GO Biologi-
cal Process to then determine if any of these classes or GO terms were overrepresented [63].
The PANTHER Overrepresentation Test (release 20150430) was used to search the data
against the PANTHER database (PANTHER version 10.0 Released 2015-05-15) and the
GO database (Released 2015-05-09) to identify either protein classes or GO annotations over-
represented in our data when compared to a reference human genome. P-values were adjusted
using a Bonferroni correction.

Pathway Analysis
Gene Set Enrichment Analysis (GSEA) [64] was used to identify groups of genes enriched in
either the tumor or non-malignant condition. The GSEA analysis tool (version 2.2.0) was
downloaded from the Broad Institute website (http://www.broadinstitute.org/gsea/index.jsp).
Curated gene sets of BioCarta and Reactome pathways were downloaded from the Broad Insti-
tute’s Molecular Signatures Database. An additional gene set was constructed from Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways [65]. Pathways with the least relevance
to prostate cancer were excluded. The KEGG pathways included in the analysis are listed in the
Supporting Information (S2 Table). The entire RNA expression count matrix was loaded into
the GSEA application without limiting the input to only DEGs. Both small (< 5 genes) and
large (> 500 genes) gene sets were excluded from the analysis.

Signaling Pathway Impact Analysis (SPIA) was used to assess the importance of enriched
pathways in terms of their impact and ability to activate or inhibit a pathway [66]. SPIA analy-
sis was accomplished using the R package “SPIA” (version 2.18.0) [67]. Entrez IDs, log2 fold
changes, and Q-values for all genes were compiled. The differential expression cut-off used in
the SPIA algorithm was based on the FDR-adjusted Q-value. The analysis was run using the
same tailored list of pathways as used in GSEA (S2 Table) and updated versions of these path-
ways were download prior to running the analysis (accessed 7/29/2015).

Results
Using a 1% FDR (Q<0.01), DESeq2 analysis marked 11,115 genes and transcripts as statisti-
cally different between tumor samples and non-malignant samples in our TCGA dataset (S3
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and S4 Tables). This covers 55% of the genes and transcripts sequenced. The number of down-
regulated genes and transcripts totaled 5,379 and the number of up-regulated genes and tran-
scripts totaled 5,736. Overall the largest changes observed were in the down-regulation of
genes and transcripts (Fig 1). The magnitude of the up-regulation of genes and transcripts was
smaller than the magnitude of down-regulated genes and the range of expression was also
smaller. The twenty most down-regulated and the twenty most up-regulated genes are pre-
sented in Table 2 and Table 3.

Fig 1. Magnitude of gene expression differences between tumor and non-malignant human prostate cancer samples. In this one-dimensional scatter
plot the magnitude of gene expression changes represented by log2 fold ratios are shown. Each point represents a gene or transcript. Significantly
differentially expressed genes and transcripts are shown as solid red diamonds.

doi:10.1371/journal.pone.0145322.g001

Table 2. Twenty largest decreases in RNA expression between prostate tumor and non-malignant TCGA samples.

Gene Symbol Name Log2 Fold Change P-value Q-value

WFDC9 Protein WFDC9 -11.89 1.98E-04 4.30E-04

DEFB125 Beta-defensin 125 -10.91 4.30E-04 8.89E-04

EDDM3B Epididymal secretory protein E3-beta -10.85 4.64E-09 1.96E-08

PAEP Glycodelin -10.82 3.47E-16 3.78E-15

SEMG2 Semenogelin-2 -10.64 1.98E-63 2.36E-60

PATE4 Prostate and testis expressed protein 4 -10.48 2.26E-55 1.54E-52

EDDM3A Epididymal secretory protein E3-alpha -10.45 5.77E-13 4.05E-12

CRISP1 Cysteine-rich secretory protein 1 -9.58 1.17E-25 5.02E-24

PATE1 Prostate and testis expressed protein 1 -9.53 3.27E-27 1.76E-25

DEFB127 Beta-defensin 127 -9.52 1.06E-04 2.41E-04

AQP2 Aquaporin-2 -9.50 1.94E-57 1.69E-54

TMEM114 Transmembrane protein 114 -9.35 1.19E-15 1.21E-14

GRXCR1 Glutaredoxin domain-containing cysteine-rich protein 1 -8.75 5.95E-19 9.64E-18

SPINT3 Kunitz-type protease inhibitor 3 -8.23 2.11E-24 7.48E-23

CLDN2 Claudin-2 -8.02 2.11E-75 6.72E-72

SULT2A1 Bile salt sulfotransferase -7.98 9.41E-20 1.70E-18

SPINK2 Serine protease inhibitor Kazal-type 2 -7.71 5.75E-71 8.46E-68

POU3F3 POU domain, class 3, transcription factor 3 -7.70 4.68E-17 5.77E-16

LCN1 Lipocalin-1 -7.66 4.18E-08 1.56E-07

PATE3 Prostate and testis expressed protein 3 -7.63 3.33E-25 1.32E-23

Log2 fold change describes malignant expression relative to non-malignant expression. P-value is determined by DESeq2 using Wald Statistics and Q-

value is the false discovery rate-adjusted P-value.

doi:10.1371/journal.pone.0145322.t002
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Classification and Overrepresentation Analysis
The 11,115 DEGs were grouped according to PANTHER protein class, GOMolecular Function
and GO Biological Process annotations. A total of 6,254 DEGs had either PANTHER protein
class, GO Biological Process, or GOMolecular Function annotations and were further classi-
fied. Grouping by protein class and GO Biological Process categories proved to be the most
informative (Fig 2). The complete classifications can be found in the Supporting Information
(S5 Table). The DEGs represent a wide spectrum of protein classes involved in a broad array of
processes. The “Nucleic Acid Binding” PANTHER protein class includes both RNA and DNA
binding proteins, nucleases, and helicases. The “Transcription Factor” protein class is sub-cate-
gorized by structural motif and also contains cofactors and nuclear hormone receptors. Prote-
ases and phosphatases are found within the “Hydrolase” protein class. The types of “Receptor”
included are protein kinase receptors, nuclear hormone receptors, cytokine receptors, ligand-
gated ion channels, and G-protein coupled receptors. The “Enzyme Modulator” category fea-
tures G protein, kinase, phosphatase, and protease modulators. Interestingly, the categories
were generally not predominantly populated by down-regulated or up-regulated genes or tran-
scripts. For all protein classes except the “Nucleic Acid Binding” class, DEGs were evenly dis-
tributed across tumor and non-malignant samples. In the “Nucleic Acid Binding” protein
class, there were nearly one and half times as many up-regulated genes as down-regulated. The
abundance of nucleic acid binding genes suggests altered transcriptional activity in tumor
samples.

The two most abundant GO Biological Process groups—“Metabolic Process” and “Cellular
Process”—are not surprising because these contains genes are involved in the most basic of life
processes. In fact, metabolic changes have been widely documented in tumors [68–70]. The

Table 3. Twenty largest increases in RNA expression between prostate tumor and non-malignant TCGA samples.

Gene Symbol Name Log2 Fold Change P-value Q-value

ANKRD30A Ankyrin repeat domain-containing protein 30A 7.08 5.95E-10 2.82E-09

FEZF2 Fez family zinc finger protein 2 6.71 1.89E-06 5.59E-06

C6orf10 Uncharacterized protein C6orf10 5.96 2.59E-06 7.52E-06

FOXG1 Forkhead box protein G1 5.54 2.53E-04 5.41E-04

GC Vitamin D-binding protein 5.47 4.70E-04 9.67E-04

VAX1 Ventral anterior homeobox 1 5.19 3.83E-12 2.41E-11

SSX2 Protein SSX2 5.16 4.52E-03 7.92E-03

FGB Fibrinogen beta chain 5.14 1.52E-03 2.88E-03

SLC45A2 Membrane-associated transporter protein 5.09 1.10E-51 5.99E-49

SPINK1 Pancreatic secretory trypsin inhibitor 5.07 3.29E-12 2.08E-11

HOXC12 Homeobox protein Hox-C12 5.03 1.44E-07 4.96E-07

SCN1A Sodium channel protein type 1 subunit alpha 4.96 5.38E-03 9.31E-03

LOC284661 Uncharacterized non-coding RNA 4.84 4.89E-06 1.36E-05

TFDP3 Transcription factor Dp family member 3 4.76 2.00E-03 3.72E-03

B3GNT6 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 6 4.64 5.49E-22 1.40E-20

FOXB2 Forkhead box protein B2 4.52 2.14E-18 3.19E-17

NR2E1 Nuclear receptor subfamily 2 group E member 1 4.51 1.21E-15 1.23E-14

XAGE1E X antigen family, member 1E 4.51 4.00E-03 7.07E-03

TBX10 T-box transcription factor TBX10 4.43 6.47E-17 7.81E-16

Log2 fold change describes malignant expression relative to non-malignant expression. P-value is determined by DESeq2 using Wald Statistics and Q-

value is the false discovery rate-adjusted P-value.

doi:10.1371/journal.pone.0145322.t003
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increased energetic and biosynthetic needs of proliferating cancer cells are often met through
metabolic dysregulation [71–73]. The heading “Metabolic Process” includes carbohydrate
metabolism, cellular amino acid metabolism, lipid metabolism, nucleobase-containing com-
pound metabolism, protein metabolism, and the tricarboxylic acid cycle. “Cellular Process”
includes cell-cell signaling, cell cycle, growth and proliferation, cell component movement, and
cytokinesis. “Biological Regulation” includes the regulation of apoptosis, metabolism, cell cycle,
translation, catalytic activity, and homeostasis. The category “Developmental Process” incor-
porates system, ectoderm, mesoderm, and endoderm development, as well as cell differentia-
tion, death, anatomical structure morphogenesis, embryo development, sex determination, and
pattern specification processes. “Localization” refers to general transport proteins and specific
protein and RNA localization processes.

PANTHER’s overrepresentation statistic was used to calculate the probability that the
highly populated protein classes and GO groupings among the DEGs would occur by random
chance. Indeed, many of the most abundant categories are overrepresented in the data when
compared to a reference genome (Table 4). The three most abundant protein classes—“Nucleic
Acid Binding”, “Transcription Factor”, and “Hydrolase”—were enriched along with the classes
“Transferase” and “Transporter”. The five most populated GO Biological Processes were also
enriched: “Metabolic Process”, “Cellular Process”, “Biological Regulation”, “Localization”,
and “Developmental Process”. The “Multicellular Organism Process”, “Biological Adhesion”,
“Cellular Component Organization or Biogenesis”, and “Immune System Process” GO Biologi-
cal Processes were also enriched. Finally, five of the top six GOMolecular Functions were
enriched: “Binding”, “Catalytic Activity”, “Nucleic Acid Binding Transcription Factor Activ-
ity”, “Transporter Activity”, and “Structural Molecule Activity”.

Fig 2. Functional Classification of Differentially Expressed Genes in Human Prostate Cancer According to PANTHER Protein Class (A) and
Biological Process Gene Ontology Terms (B). (A) “Nucleic Acid Binding” includes RNA and DNA binding, nucleases, and helicases. “Transcription Factor”
includes zinc finger, helix-turn-helix, high mobility group box, basic helix-loop-helix, and basic leucine zipper transcription factors; cofactors; and nuclear
hormone receptors. “Hydrolase” refers to proteases, phosphatases, esterases, lipases, deaminases, phosphodiesterases, glycosidases, deacetylases,
pyrophosphatases, glucosidases, galactosidases, and amylases. “Receptor” includes protein kinase receptors, nuclear hormone receptors, cytokine
receptors, ligand-gated ion channels, and G-protein coupled receptors. “EnzymeModulator” includes G protein, kinase, phosphatase, and protease
modulators. (B) “Metabolic Process” features carbohydrate, cellular amino acid, lipid, protein, and nucleobase-containing compound metabolism; and the
tricarboxylic acid cycle. “Cellular Process” categories are cell-cell signaling, cell cycle, growth and proliferation, cell component movement, and cytokinesis.
“Biological Regulation” includes the regulation of apoptosis, metabolism, cell cycle, translation, catalytic activity, and homeostasis. “Developmental Process”
categories are system, ectoderm, mesoderm, and endoderm development; cell differentiation; death; anatomical structure morphogenesis; embryo
development; sex determination; and pattern specification processes. “Localization” includes transport proteins, protein and RNA localization processes.

doi:10.1371/journal.pone.0145322.g002
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Gene Set Enrichment Analysis
One limitation of a class or pathway overrepresentation analysis is that it does not indicate
which condition is associated with the overrepresentation; GSEA does. Expressed genes were
ranked by their correlation with the malignant phenotype and then this list was compared to
sets of genes in a pathway, linking pathway enrichment to a phenotype. The more highly-corre-
lated genes in a gene set, the higher the significance of that gene set. The gene sets with the
highest normalized enrichment scores are presented in Table 5 and other results are listed in
the Supporting Information (S7 Table). The FDR cutoff was set at 25% to maximize hypothesis
generation. Only one pathway was enriched in the tumor samples, the “RanMS pathway”

Table 4. Overrepresented PANTHER protein class and GO ontology categories in TCGA data frommalignant and non-malignant prostate.

P-value

PANTHER Protein Class

RNA binding protein (Nucleic Acid Binding) 9.08E-05

Ribosomal protein (Nucleic Acid Binding) 4.67E-04

Transcription factor 2.04E-02

Transferase 3.41E-04

Hydrolase 5.75E-04

Transporter 3.65E-03

GO-Biological Process

Sensory perception of chemical stimulus (Multicellular Organism Process) 2.96E-10

Protein metabolic process (Metabolic Process) 6.82E-09

Nucleobase-containing compound metabolic process (Metabolic Process) 1.64E-08

RNA metabolic process (Metabolic Process) 6.87E-06

Nervous system development (Developmental Process) 1.48E-03

Cellular protein modification process (Metabolic Process) 1.90E-03

Translation (Metabolic Process) 2.81E-03

Natural killer cell activation (Immune System Process) 4.06E-03

DNA-dependent transcription (Metabolic Process) 7.61E-03

Ion transport (Localization) 1.81E-02

Protein phosphorylation (Metabolic Process) 3.31E-02

Cellular component morphogenesis (Cellular Component Organization or Biogenesis) 3.85E-02

Cellular component organization (Cellular Component Organization or Biogenesis) 7.58E-04

Cell communication (Cellular Process) 2.57E-02

Biological regulation 3.03E-05

Biological adhesion 4.67E-02

GO-Molecular Function

Transferase activity (Catalytic Activity) 1.67E-06

Hydrolase activity (Catalytic Activity) 2.87E-04

Kinase activity (Catalytic Activity) 7.73E-03

Protein binding (Binding) 2.99E-03

DNA binding (Binding) 4.19E-03

Transmembrane transporter activity (Transporter Activity) 3.37E-03

Sequence-specific DNA binding transcription factor activity (Nucleic Acid Binding Transcription Factor Activity) 1.52E-02

Structural constituent of ribosome (Structural Molecule Activity) 3.59E-02

Overrepresentation was determined by calculating the probability that the number of differentially expressed genes belonging to a particular category is

larger or smaller than what would be expected based on a reference human genome. P-values are adjusted using a Bonferroni correction.

doi:10.1371/journal.pone.0145322.t004
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which includes the genes that regulate the formation of the mitotic spindle during cell division.
Ten genes in our list of DEGs belonged to this pathway, each contributing to its enrichment in
the malignant phenotype (Table 6). All ten were differentially expressed and up-regulated in

Table 5. Significant gene sets enriched in malignant and non-malignant prostate with the largest normalized enrichment scores.

Gene Set ES NES P-value Q-value

BioCarta: RanMS pathway 0.827 1.652 4.02E-03 2.05E-01

KEGG: Calcium signaling pathway -0.456 -1.714 4.89E-03 5.75E-02

KEGG: Basal cell carcinoma -0.482 -1.647 6.59E-03 6.10E-02

KEGG: Oxytocin signaling pathway -0.443 -1.603 1.66E-02 6.26E-02

KEGG: Thyroid hormone synthesis -0.466 -1.652 1.19E-02 6.34E-02

KEGG: Signaling pathways regulating pluripotency of stem cells -0.432 -1.596 4.56E-03 6.35E-02

KEGG: Prolactin signaling pathway -0.461 -1.605 4.52E-03 6.44E-02

KEGG: Pathways in cancer -0.433 -1.624 8.77E-03 6.49E-02

KEGG: ECM-receptor interaction -0.517 -1.633 3.76E-02 6.52E-02

KEGG: cAMP signaling pathway -0.434 -1.719 0.00E+00 6.63E-02

KEGG: MAPK signaling pathway -0.417 -1.614 2.28E-03 6.78E-02

KEGG: Regulation of actin cytoskeleton -0.449 -1.606 8.99E-03 6.84E-02

KEGG: Phosphatidylinositol signaling pathway -0.517 -1.653 4.38E-03 6.93E-02

KEGG: cGMP-PKG signaling pathway -0.469 -1.677 1.43E-02 7.12E-02

KEGG: TGF-beta signaling pathway -0.513 -1.654 1.11E-02 7.73E-02

KEGG: Focal adhesion -0.517 -1.725 1.61E-02 7.87E-02

KEGG: Hippo signaling pathway -0.482 -1.733 0.00E+00 9.65E-02

KEGG: Proteoglycans in cancer -0.492 -1.740 0.00E+00 1.38E-01

KEGG: Ras signaling pathway -0.460 -1.760 2.23E-03 2.13E-01

BioCarta: p38 MAPK pathway -0.527 -1.584 8.15E-03 2.48E-01

ES = enrichment score, NES = normalized enrichment score, Q-value = false discovery rate-adjusted P-value. Positive enrichment scores correspond to

enrichment in the malignant samples. Negative enrichment scores correspond to enrichment in the non-malignant samples.

doi:10.1371/journal.pone.0145322.t005

Table 6. Differentially Expressed Ran-Mitotic Spindle Pathway Components in Human Prostate Cancer.

Ran regulation of mitotic spindle formation pathway

Gene Name Symbol Expression Role

GTP-binding nuclear protein Ran RAN " GTPase; nuclear transport; formation of mitotic spindle [74]

Regulator of chromosome
condensation

RCC1 " Guanine nucleotide exchange factor of Ran, produces a RanGTP gradient around
chromosomes. [75]

Ran GTPase-activating protein 1 RANGAP1 " Accelerates RanGTP hydrolysis, helps maintain RanGTP gradient around
chromosomes. [75]

Ran binding protein 1 RANBP1 " Regulates activity of RCC1 and RANGAP [76, 77]

Importin subunit alpha-1 KPNA2 " Nuclear import; KPNB1 adapter protein [78]

Importin subunit beta-1 KPNB1 " Nuclear import; docking platform [79, 80]

Targeting protein for Xklp2 TPX2 " Spindle assembly factor; microtubule nucleation, separation of bipolar mitotic spindle
[81, 82]

Nuclear mitotic apparatus protein 1 NUMA1 " Spindle assembly factor; Establishes, maintains mitotic spindle poles. [83]

Kinesin-like protein KIF15 KIF15 " Spindle assembly factor; Bipolar spindle maintenance, elongation [82]

Aurora kinase A AURKA " Centrosome maturation, separation, and centrosomal microtubule stabilization and
nucleation. [84]

" = up-regulated expression, # = down-regulated expression

doi:10.1371/journal.pone.0145322.t006
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the malignant samples. The remaining pathways were enriched in the non-malignant pheno-
type. The most significant pathway enriched in the non-malignant phenotype was the “calcium
signaling” pathway. Enrichment of the calcium signaling pathway was due to 81 DEGs and 19
other genes or transcripts (S8 Table). Also enriched in the non-malignant phenotype were sev-
eral other signaling pathways (oxytocin, prolactin, cAMP, MAPK, cGMP-PKG, TGF-β, Hippo,
and Ras) and pathways related to cell-cell and cell-matrix adhesion (extracellular matrix-recep-
tor interaction, actin cytoskeleton regulation, proteoglycans, and focal adhesion).

Signaling Pathway Impact Analysis
SPIA considers whether or not the DEGs found in a pathway have a meaningful impact within
that pathway and thus addresses the topology of DEGs in pathways [66]. In other words, path-
way significance is partly dependent on if the number of DEGs observed in a pathway is larger
than that observed by random chance. This is captured in the probability of overrepresenta-
tion. Pathway significance is also partly based on whether DEGs in a particular pathway are at
crucial junctions and can thus perturb the pathway. This is the probability of perturbation.
These two probabilities are combined into a global probability which is adjusted by the false
discovery rate. This adjusted metric was used to rank the impact of the pathways. Many of the
same pathways were identified as significant in both GSEA and SPIA analysis (Table 7). In fact,
the 8 most significant pathway results from SPIA were all significantly enriched in GSEA.
However, only the “calcium signaling” pathway was highly ranked in both analyses. The only
pathway activated in the malignant condition was the “TGF-β signaling” pathway (Table 8).
The other pathways were all inhibited in the malignant condition. Similar to GSEA results,

Table 7. Significantly impacted pathways in human prostate cancer as determined by SPIA.

Name NDE/pSize pNDE pPERT pG pGFdr

Proteoglycans in cancer 140/201 1.75E-05 5.00E-06 2.11E-09 1.86E-07

Hippo signaling pathway 112/153 3.12E-06 1.60E-02 8.90E-07 3.91E-05

Pathways in cancer 257/398 7.77E-05 2.00E-03 2.59E-06 7.60E-05

Focal adhesion 144/207 1.48E-05 2.10E-02 4.97E-06 1.09E-04

cGMP-PKG signaling pathway 118/167 2.80E-05 3.07E-01 1.09E-04 1.92E-03

Calcium signaling pathway 115/180 1.08E-02 4.00E-03 4.78E-04 7.01E-03

Ras signaling pathway 144/225 4.36E-03 2.90E-02 1.26E-03 1.59E-02

TGF-β signaling pathway 60/80 1.95E-04 8.54E-01 1.62E-03 1.78E-02

Chronic myeloid leukemia 55/73 2.93E-04 8.74E-01 2.37E-03 2.32E-02

Basal cell carcinoma 36/55 8.03E-02 6.00E-03 4.16E-03 3.59E-02

Regulation of actin cytoskeleton 135/213 9.11E-03 6.80E-02 5.20E-03 3.59E-02

ErbB signaling pathway 60/87 5.98E-03 1.07E-01 5.34E-03 3.59E-02

Glioma 48/65 1.50E-03 4.51E-01 5.60E-03 3.59E-02

Small cell lung cancer 58/86 1.38E-02 5.00E-02 5.71E-03 3.59E-02

Oxytocin signaling pathway 105/157 1.82E-03 4.53E-01 6.69E-03 3.87E-02

MAPK signaling pathway 152/254 7.51E-02 1.30E-02 7.75E-03 3.87E-02

Cell cycle 85/124 1.60E-03 6.41E-01 8.07E-03 3.87E-02

MicroRNAs in cancer 97/149 8.72E-03 NA 8.72E-03 3.87E-02

cAMP signaling pathway 132/200 1.15E-03 9.75E-01 8.76E-03 3.87E-02

Rap1 signaling pathway 130/211 3.42E-02 3.30E-02 8.80E-03 3.87E-02

NDE = number of differentially expressed elements, pSize = pathway size, pNDE = overrepresentation probability, pPERT = perturbation probability,

pG = global probability, pGFdr = false discovery rate-adjusted global probability. Bold pathways were also significant by Gene Set Enrichment Analysis.

doi:10.1371/journal.pone.0145322.t007
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several signaling pathways (oxytocin, cAMP, MAPK, cGMP-PKG, TGF-β, Hippo, Rap1, ErbB,
and Ras) and pathways related to cell-cell and cell-matrix adhesion (proteoglycans, focal adhe-
sion, and actin cytoskeleton regulation) were impacted. Images of the pathways with DEGs
highlighted can be accessed in the Supporting Information (S9 Table).

Discussion
Global expression studies have documented many differentially expressed genes in human
prostate cancer [7, 9, 13–15, 96–102]. Lucas and Heath compiled a list of differentially
expressed genes with reported prognostic significance in prostate cancer [30]. Of the 22 genes
listed, 19 were differentially expressed in our TCGA dataset and there was agreement in expres-
sion pattern between 12 genes. PTEN, TMPRSS2,MYC, SMAD4, EZH2, p53, BCL2, NPY,
PLA2G7, Ki-67, p16, and BAX expression in our findings matched what was presented in the
literature. PTEN, a tumor suppressor, was down-regulated in malignant samples. The deletion
of PTEN correlates with higher Gleason grade, risk of progression, and recurrence after ther-
apy, and advanced localized or metastatic disease and death [103, 104]. SMAD4 was down-reg-
ulated in our TCGA prostate cancer data and has also been found to be down-regulated in
prostate cancers, including advanced tumors [105, 106]. The deletion of this gene has led to
invasive, metastatic, and lethal prostate cancers in a mouse model [39]. TMPRSS2 was up-

Table 8. Components of the TGF-β Signaling Pathway Differentially Expressed in Human Prostate Cancer.

TGF-β Signaling Pathway

Gene Name Symbol Expression Role

Transforming growth factor β-2 TGF-β2 # Cytokine growth factor [85]

Transforming growth factor β-3 TGF-β3 # Cytokine growth factor [85]

TGF-β receptor type I TGFBR1 # transmembrane serine/threonine kinase [86]

TGF-β receptor type II TGFBR2 # transmembrane serine/threonine kinase [86]

TGF-β receptor type III TGFBR3 # non-signaling receptor, presents TGF-β ligands to TGFBR2 [86]

Latent-transforming growth factor β-
binding protein 1

LTBP1 # maintains latency of TGF-β [87]

Mothers against decapentaplegic
homolog 2

SMAD2 # receptor SMAD for TGFBR1 [88]

Mothers against decapentaplegic
homolog 3

SMAD3 # receptor SMAD for TGFBR1 [88]

Mothers against decapentaplegic
homolog 4

SMAD4 # complexes with receptor SMADs before nuclear translocation [88]

Mothers against decapentaplegic
homolog 7

SMAD7 # blocks phosphorylation of SMAD 2/3 [89]

E3 ubiquitin-protein ligase RBX1 RBX1 " In complex with CUL1 degrades SMAD2/3 [90]

Cullin-1 CUL1 # In complex with RBX1 degrades SMAD2/3 [90]

Retinoblastoma-like protein 1 RBL1 # E2F4/5 corepressor of myc [91]

Transcription factor E2F4 E2F4 # myc transcription factor [91]

Transcription factor E2F5 E2F5 " myc transcription factor [91]

Myc proto-oncogene protein MYC " Influences cell growth, cell cycle, apoptosis, metabolism, energy production, DNA
replication and RNA stability and splicing [92]

Sp1 Transcription factor SP1 # Transcription factor regulating growth factors, DNA synthesis regulators, and cell
cycle genes including CDKN2B [93, 94]

Cyclin-dependent kinase 4 inhibitor B CDKN2B # Mediates cell cycle arrest at G1 [95]

" = up-regulated, # = down-regulated

doi:10.1371/journal.pone.0145322.t008
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regulated and this is in agreement with reports of it being more highly expressed in prostate
carcinoma compared to normal prostate epithelium [107, 108]. TMPRSS2 contributes to the
invasion and metastasis of prostate cancer [109]. Further, TMPRSS2-ERG gene fusion holds
promise as a potential prostate cancer biomarker [110].MYC was also up-regulated in this
dataset and the overexpression (gene amplification, mRNA, and protein increase) ofMYC in
prostate cancer is well-documented [111–115].MYC gene amplification was found more often
in metastases [116, 117] and also correlated with poor prognostic factors like higher Gleason
and histopathological scores [118], or greater chance of PSA recurrence [114]. EZH2 up-regu-
lation is reported here and in the literature where such overexpression led to increased prolifer-
ation in prostate cells and is associated with aggressive disease and increased risk of recurrence
[119]. The expression of p53mRNA was increased in malignant samples in our TCGA data. In
a study of prostate cancer patients, p53 positive expression was seen in the majority (69.1%) of
patients with the number of positive patients increasing as stage and Gleason score increased.
P53 was also an independent predictor of recurrence [120]. BCL2mRNA expression was
decreased in TCGA tumor samples. The absence of BCL-2 protein expression is reported in
prostate cancer [120, 121]. Furthermore, BCL-2 expression is negative in androgen-dependent,
but increased in hormone insensitive prostate cancers [122–124] and correlated with poor
prognosis [125]. Pro-neuropeptide Y was up-regulated in this study and in the literature [126,
127]. Pro-neuropeptide Y up-regulation is associated with non-aggressive tumors [128] and
regulates proliferation in prostate cancer cell lines [129]. PLA2G7 was up-regulated in our data.
It is reported to be more highly expressed in prostate cancer compared to benign samples [130,
131] and the TCGA samples studied here. Levels of Ki-67mRNA were increased in tumor ver-
sus non-malignant samples from our TCGA data and in the literature compared to normal tis-
sue [132]. Furthermore Ki-67 protein is increased in prostate cancer [133–136], prostate
cancer metastases [137, 138] and is a useful prognostic marker [139]. In our list of DEGs, p16
was up-regulated. Recently, p16 expression was found in a large majority of prostate tissues
[140]. BAXmRNA expression was increased in this TCGA dataset and BAX protein had
increased expression in prostate cancer [141].

The remaining 7 DEGs in common with Lucas and Heath’s list displayed a discrepancy in
expression pattern between our results and the literature. TGF-β1 was not differentially
expressed but TGF-β2 was down-regulated. Expression of TGF-β1 and TGF-β2 was increased
in prostate cancer compared to normal or non-malignant tissues [142–147]. However, TGF-β3
was down-regulated in agreement with other reports of TGF-β3 expression in prostate cancer
[97, 148]. Both α and β isoforms of IL-1 and IL-6 were down-regulated in this TCGA dataset.
IL-1α and IL-6 were up-regulated in prostate cancer samples [149–153]. IL-6 stimulated
growth of LNCaP cells [154] and elevated IL-6 was also associated with poor prognosis in pros-
tate cancer [149, 155–162]. IL-1β has been reported both up- and down-regulated in the litera-
ture. Protein expression in patient samples was down-regulated [163] but elevated gene and
protein expression in human cancer cells and tumors has also been reported [164]. In our list
of DEGs, p21 was down-regulated. Aaltomaa et al. reported p21 protein expression in the
majority of prostate tumors but not in normal prostate epithelial cells [165] but other studies
reported p21 immunostaining in only 20%-35% of cancer samples [166, 167]. Both p21 and
p16 inhibited growth in prostate cancer cell lines [168]. Vascular endothelial growth factor A
(VEGF-A) was down-regulated in our data. High expression of VEGF correlated with poor
prognosis [169], but some studies reported that the higher expression of VEGF-A correlated
with better clinical outcome [170]. TRAIL/TNFSF10 was up-regulated in our TCGA data.
While epithelial expression of TRAIL protein was stronger in tumors, stromal expression of
TRAIL was decreased or absent in tumors [171, 172]. Only stromal TRAIL expression corre-
lated with recurrence-free survival [171]. NFKB1 was down-regulated in our data. However,
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NFKB1 protein expression progressively increased in normal, benign prostatic hyperplasia and
prostate cancer tissues [173]. The other DEGs with prognostic significance in prostate cancer
that were not differentially expressed in our list of DEGs include IL-7, CCL-2, and CDH1.

Comparisons between the DEGs presented herein and DEGs listed in other studies highlight
variance from experiment to experiment. Despite such variance a strong underlying correlation
between datasets may still sometimes be seen [174]. These correlations would most likely be
captured in a pathway approach. Thus our TCGA data was subject to pathway analysis. We
found the “Ran regulation of mitotic spindle formation” pathway to be most significant in
prostate cancer and the “TGF-β signaling” pathway to be activated in prostate cancer. Addi-
tionally, the following pathways were significant across both GSEA and SPIA methods and
were associated with the non-malignant samples and were inhibited in the tumor samples:
“proteoglycans in cancer”, “Hippo signaling pathway”, “cGMP-PKG signaling pathway”, “Ras
signaling pathway”, “MAPK signaling pathway”, “Focal adhesion”, “Regulation of actin cyto-
skeleton”, “Oxytocin signaling pathway”, and “Pathways in cancer”.

Ran regulation of mitotic spindle formation pathway
Ran is a small GTPase of the Ras family known to function in directing nucleocytoplasmic
transport, in cell cycle control through regulation of transition to S-phase and mitosis, and in
regulating the mitotic spindle during mitosis and the reassembly of the nuclear envelope after
mitosis [175]. Ran’s control over the mitotic spindle is the pathway that was shown to be signif-
icant in prostate cancer in our data. Proper functioning of this pathway assembles spindle
microtubules for chromosome alignment and segregation in a way that ensures a single copy of
each chromosome is distributed to the daughter cells, thus avoiding aneuploidy [74, 75, 176].
Each of the genes in this pathway, which include Ran, its regulators, accessory proteins, spindle
assembly factors, and import/export factors, was up-regulated (Table 6). Ran’s function in
mitotic spindle assembly is reviewed by Clarke and Zhang [176]. Ran-GDP is converted to
Ran-GTP by the guanine nucleotide-exchange factor RCC1 and is hydrolyzed back to Ran-
GDP with the aid of the GTPase activating protein RanGAP1 and RanBP1/2. The specific
localization of RCC1 and RanGAP1/RanBP2 results in the formation of Ran-GTP at precise
points along spindle assembly. Importin-α/importin-β complexes carry spindle assembly fac-
tors such as TPX2 and NuMA into the nucleus where they are released at chromosomes after
interaction with Ran-GTP. Spindle assembly factors then interact with other molecules such as
Aurora kinase A to form the spindle.

Ran-GTP overexpression was reported in various human cancers [177–181] and multiple
cancer cell lines [181, 182]. Ran proved critical for epithelial ovarian cancer cell survival [183]
and its overexpression caused malignant transformation in rat mammary cells [184]. Silencing
of Ran in tumor cell lines, but not normal cells, led to cell death after aberrations in mitotic
spindle assembly and mitochondrial function [181]. In agreement with our data, other pathway
components and Ran-associated genes are also overexpressed in cancer: Aurora kinase A
[185], TPX2 [186–188], and HSET [189]. Ran has not been extensively studied in prostate can-
cer. There are reports of increased Ran expression in prostate tumor tissues [190] and Ran
functions as an androgen receptor coactivator [191, 192].

TGF-β Signaling
The TGF-β signaling pathway was activated in the malignant condition in this TCGA prostate
cancer dataset. In general, TGF-β signaling regulates cell proliferation, migration, differentia-
tion, epithelial-mesenchymal transition, immune-suppression, and apoptosis [85, 193]. Several
components of the TGF-β signaling pathway were differentially expressed (Table 8). The
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binding of active TGF-β to its receptors begins a phosphorylation cascade that activates Smad
transcription factors which translocate to the nucleus. In the nucleus, the Smad complex binds
various transcription factors, coactivators, co-repressors, and chromatin remodeling factors to
regulate gene expression [194, 195]. Ultimately, TGF-β signaling promotes expression of inhib-
itors of cell cycle progression and suppresses proliferative genes [195, 196]. Tumor cells can
subvert the suppressive effect of TGF-β signaling seen in normal cells to promote tumorigene-
sis [194, 195].

Several studies have reported the increase of TGF-β isoforms in prostate cancer [142, 145–
147, 197, 198], however our study shows a significant decrease in TGF-β2 and TGF-β3 gene
expression and no differential expression of TGF-β1. Our results are, however, corroborated by
the work of Dallas et al. which showed both latent and active forms of TGF-β2 were decreased
in malignant prostate cells compared to normal prostate epithelial cells cultured from the same
patient [199]. Our results are also corroborated by studies showing lost or decreased expression
of TGF-β3 [143, 148]. In our TCGA dataset, all three TGF-β receptors were down-regulated.
Loss of TGF-β receptors is consistent with literature [146, 200–204] and represents a mecha-
nism through which tumors avoid growth suppression by TGF-β, thus facilitating the develop-
ment of cancer after oncogenic triggers [195]. Additionally, down-regulation of TGF-β1, β2,
and β3 is associated with androgen-stimulated growth of prostate cancer cells [205].

Although TGF-β signaling typically operates through Smad proteins, the pathway signal
may also be diverted through other Smad-independent pathways like PI3K/AKT, ERK/MAPK,
JNK/p38 MAPK and Rho-like GTPase signaling pathways [151, 206]. Since Smad genes were
down-regulated, we looked at other effectors and found serine/threonine-protein phosphatase
2A 65 kDa regulatory subunit A alpha and beta isoforms (PPP2R1A, PPP2R1B) to be up-regu-
lated along with the targets ribosomal protein S6 kinase β-1 and β-2 (RPS6KB1, RPS6KB2), the
serine/threonine-protein phosphatase 2A catalytic subunit β isoform (PPP2CB) was down-reg-
ulated, both RhoA and ROCK1 were down-regulated andMAPK1 andMAPK3 were also
down-regulated. In our TCGA data, MAPK signaling pathway was significantly different
between tumor and non-malignant samples, however it was more associated with non-malig-
nant samples whereas TGF-β was more associated with tumor samples. Erk signaling alters the
expression of genes controlling cell motility, and cell-matrix adhesion and interactions [207].
Cell motility and cell-matrix adhesion-related gene sets were also significantly enriched in the
non-malignant samples of our TCGA prostate cancer data (Table 5).

Pathway Comparison
There were a few surprising results from GSEA analysis—namely, the significance of prolactin
and oxytocin signaling pathways and thyroid hormone synthesis pathway. The genes contrib-
uting to the enrichment of these pathways in non-malignant samples were not the namesake
hormones themselves, but the multiple kinases, phosphatases, and calcium or potassium chan-
nel proteins that participate in hormone signaling (S10–S12 Tables). In the case of oxytocin sig-
naling, the pathway operates through both calcium signaling and MAPK signaling (S1 Fig),
which were also found to be significant. For the prolactin pathway (S2 Fig), the enrichment of
MAPK kinases and PI3K kinases is abundant however prolactin itself is not enriched (S11
Table). Finally, for thyroid synthesis pathway (S3 Fig), none of the hormones or receptors are
present but other components through which they operate are (S12 Table). Thus it appears
these pathways could have been flagged due to substantial overlap with the signaling of other
pathways since neither oxytocin, prolactin, or thyroid stimulating hormone nor their receptors
were differentially expressed. These results demonstrate the limitation of GSEA discussed pre-
viously, the topology of genes in the pathways is unaccounted for. SPIA is a complementary
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pathway method that does consider the position of genes in the pathway. It is noteworthy that
SPIA analysis was able to filter prolactin and thyroid hormone synthesis pathways from signifi-
cant results.

Comparison to previous pathway studies which used microarray data or single nucleotide
polymorphisms from genome-wide association studies showed that several pathways were
identified across experimental platforms. Savli et al. looked at gene networks and pathway anal-
ysis in prostate cancer [208]. However, that study used microarray to measure gene expression
and found 738 up-regulated genes and 515 down-regulated genes. This study used RNA
sequencing data and found 5,736 up-regulated genes and 5,379 down-regulated genes. Some
advantages of a sequencing method over microarray approach include more extensive tran-
script identification beyond the coverage of sequence libraries although correlation between
some sequencing approaches and microarray platforms has been demonstrated [34]. Addition-
ally, our patient pool was much larger (173 versus 21 tumor and 52 versus 10 non-malignant).
The methods for identifying pathways was also different. Savli et al. used Ingenuity Pathway
Analysis to identify pathways and construct gene networks. “Axonal guidance signaling”
(down-regulated) and “acute phase response” (up-regulated) were the most significant path-
ways among the up- and down-regulated canonical pathways reported by Savli et al. but were
not found in this study’s results. However other important pathways in prostate cancer were
found in both studies including “actin cytoskeleton” (down-regulated in both), “calcium signal-
ing” (up-regulated in Savli et al., down-regulated in ours), and “MAPK signaling” (down-regu-
lated in both). Jia et al. used a combination of GSEA and Plink set-based tests on microarray
data and genome-wide association studies to identify thirteen KEGG pathways involved in
prostate cancer [209]. In this study, we found five of these KEGG pathways to be important in
prostate cancer: regulation of actin cytoskeleton, small cell lung cancer, cell cycle, chronic mye-
loid leukemia, and TGF-β signaling pathway.

Conclusion
This work presents a comprehensive gene expression profile of human prostate cancer. Differ-
ential gene expression was analyzed in the context of gene sets and pathways to identify signa-
ture pathways associated with prostate cancer. “TGF-β signaling” and “Ran regulation of
mitotic spindle formation” pathways were strongly associated with prostate cancer. Since it is
an underexplored area in prostate cancer, we suggest Ran pathway components for further
investigation in prostate cancer pathogenesis. Several other significant pathways confirm
reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle,
MAPK signaling, and calcium signaling are also altered in prostate cancer. We further observed
that none of the most highly altered genes with the largest increases or decreases in expression
appeared in the significant pathways. Thus we have demonstrated that both differential expres-
sion and pathway analysis are important in extracting meaningful information.

Supporting Information
S1 Fig. KEGG Oxytocin Signaling Pathway. Differentially expressed genes are highlighted in
red.
(PNG)

S2 Fig. KEGG Prolactin Signaling Pathway. Differentially expressed genes are highlighted in
red.
(PNG)
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S3 Fig. KEGG Thyroid Hormone Synthesis Pathway. Differentially expressed genes are
highlighted in red.
(PNG)

S1 Table. Age- and stage matched human prostate cancer mRNA expression dataset. This
file includes the RNAseq expression data for the 225 age- and stage-matched prostate cancer
non-malignant and tumor samples downloaded from The Cancer Genome Atlas and used for
the analyses presented in this work.
(XLSX)

S2 Table. Selected KEGG pathways used for all pathway analyses. This is the set of KEGG
pathways used in Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. Path-
ways likely to have little relevance to prostate cancer (e.g. parasitic, bacterial, and viral infec-
tious diseases, substance dependencies, and specific immune, neurodegenerative, and
cardiovascular diseases) have been excluded.
(XLSX)

S3 Table. Differentially expressed genes in human prostate cancer. A total of 11,115 genes
and transcripts were differentially expressed according to DESeq2 analysis using Wald statis-
tics. All statistical parameters plus the calculated log2 fold change are presented.
(XLSX)

S4 Table. Complete DESeq2 analysis results including all genes and transcripts evaluated.
Complete results of DESeq2 analysis with statistical parameters and calculated log2 fold
change.
(XLSX)

S5 Table. Classification of differentially expressed genes by protein class and gene ontol-
ogy. Complete classification based on PANTHER protein class, GOMolecular Function and
GO Biological Process terms.
(XLSX)

S6 Table. PANTHER overrepresentation results for protein class and gene ontology. This is
the full pathway overrepresentation analysis of protein class and GO Biological Process catego-
ries among DEGs from the dataset.
(XLSX)

S7 Table. Complete GSEA results for BioCarta, Reactome and KEGG gene sets.
(XLSX)

S8 Table. Genes and Transcripts contributing to KEGG Calcium Signaling Pathway enrich-
ment in GSEA. These genes and transcripts from the evaluated TCGA dataset contribute to
the enrichment of the KEGG Calcium Signaling Pathway in non-malignant samples.
(XLSX)

S9 Table. Complete SPIA results for KEGG pathways.
(XLSX)

S10 Table. Genes contributing to KEGG Oxytocin Signaling Pathway enrichment. These
genes and transcripts from the evaluated TCGA dataset contribute to the enrichment of the
KEGG Calcium Signaling Pathway in non-malignant samples.
(XLSX)
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S11 Table. Genes contributing to KEGG Prolactin Signaling Pathway enrichment. These
genes and transcripts from the evaluated TCGA dataset contribute to the enrichment of the
KEGG Calcium Signaling Pathway in non-malignant samples.
(XLSX)

S12 Table. Genes contributing to KEGG Thyroid Hormone Synthesis Pathway enrichment.
These genes and transcripts from the evaluated TCGA dataset contribute to the enrichment of
the KEGG Calcium Signaling Pathway in non-malignant samples.
(XLSX)
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