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Abstract

Background

The independent skeletal effect of thyrotropin (thyroid stimulating hormone, TSH) has been
suggested in animal studies. However, clinical data on the association between bone loss
and variations in TSH levels is inconsistent. This study aimed to investigate the relationship
between TSH levels and bone mineral density (BMD).

Methods

We conducted a cross-sectional study with 37,431 subjects (33,052 cases with euthyroidism
and 4,379 cases with subclinical thyroid dysfunction) aged over 35 years. We performed thy-
roid function tests and measured BMD at the lumbar spine, femur neck, and total hip.

Results

Levels of TSH and T3 were positively correlated in women (r = 0.076, P = 0.001) and uncor-
related in men. In both men and women, TSH levels correlated positively and T3 levels cor-
related negatively with BMD at all skeletal sites in age and body mass index adjusted
analyses. BMD increased steadily with TSH levels from the subclinical hyperthyroid to sub-
clinical hypothyroid range in subjects with T3 levels in the highest tertile (119.5-200.0 ng/
dL), but was no longer significant in subjects with lower plasma T3 levels.

Conclusions

The variations in TSH levels within the euthyroid and subclinical range were positively cor-
related with BMD in healthy men and women. The negative effect of T3 on BMD appears to
be compensated for by increased TSH in subjects with plasma T3 levels in the upper normal
range.
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Introduction

Overt hyperthyroidism is an established risk factor for low bone mineral density (BMD) [1].
Excess thyroid hormone promotes bone turnover, increasing the risk of trabecular perforation
and fractures [2]. However, the relationship between bone loss and thyroid function is unclear
in subjects with subclinical thyroid dysfunction and euthyroidism [3, 4].

Rodent model studies suggest that low or elevated thyrotropin (thyroid stimulating hor-
mone, TSH) levels may play an important role in bone remodeling and homeostasis [5-8].
This independent skeletal effect of TSH may be clinically relevant in populations with bio-
chemically defined subclinical thyroid dysfunction or euthyroidism, in which TSH levels are
altered from 0.1 to 10.0 mIU/L but thyroid hormone levels are stable within the reference
range. However, previous clinical studies have been unable to discern the effects of TSH and
thyroid hormones on bone loss due to the well-known physiologic reciprocal relationship
between TSH and free thyroxine (T4) in healthy subjects with intact hypothalamic-pituitary-
thyroid axes [9]. Furthermore, many studies lacked statistical power due to an insufficient
number of study participants or had limited generalizability as they focused on postmeno-
pausal women.

In the present study, we sought to investigate the relationship between TSH and BMD in a
large institutional cohort. We also examined whether plasma triiodothyronine (T3), the active
form of thyroid hormone that may vary independently of TSH levels, affects the relationship
between TSH and BMD.

Materials and Methods

These cross-sectional analyses were based on the database of the institutional cohort of Health
Promotion Center of the Samsung Medical Center in Seoul, Korea. From January 2007 to
December 2013, 62,304 adults aged 35 years or older visited the center for routine health
check-ups and underwent BMD and thyroid function tests (TFTs). After exclusion of 16 sub-
jects due to invalid scans, we excluded 8,049 subjects with a history of cancer, diabetes mellitus,
hyperlipidemia, or renal disease. We also excluded 3,995 subjects who were current smokers,
as cigarette smoking is known to alter TSH level and bone metabolism [10, 11]. In addition, we
excluded subjects with a history of thyroid disease, those on thyroxine or antithyroid drug
treatment, and those taking medication that could interfere with thyroid function or bone
metabolism (e.g., hormonal replacement, tamoxifen, bisphosphonate, calcium, or steroids). In
total, 11,682 subjects were excluded according to these criteria. Among the remaining 38,562
subjects included in the final analysis, 33,052 (85.7%) subjects were euthyroid and 4,379
(11.4%) subjects had subclinical thyroid dysfunction. This study was approved by the Institu-
tional Review Board of Samsung Medical Center and the need for informed consent was
waived.

Each subject completed a health-related questionnaire addressing history of thyroid disease,
other comorbidities, smoking habits and medication information at the visit. Current smoking
was defined as smoking regularly for at least the past 12 months. Height and body weight were
measured using a digital scale, and body mass index (BMI) was calculated. Blood samples were
collected from each subject after an 8-hour overnight fast. The concentrations of TSH, total T3,
and free T4 were measured at the central laboratory of Samsung Medical Center using an
immunoradiometric assay kit (Beckman Coulter, Marseille, France) for measurement of TSH
and radioimmunoassay kits (Beckman Coulter) for measurement of total T3 and free T4. Coef-
ficients of variation were as follows: TSH, <3.7%; total T3, <6.3%; and free T4, <10.3%.

The subjects were placed into three groups based on the results of their TFTs [12]: 1) sub-
clinical hyperthyroidism was defined as having TSH levels between 0.10 and 0.50 mIU/L with
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free T4 and total T3 concentrations in the reference range (free T4, 0.70-1.80 ng/dL; T3, 60.0-
200.0 ng/dL), 2) euthyroid status was defined as having TSH levels between 0.51 and 5.00
mIU/L with free T4 and total T3 concentrations in the reference range; 3) subclinical hypothy-
roidism was defined as having TSH levels between 5.01 to 10.00 mIU/L with free T4 and total
T3 concentrations in the reference range. Subjects with overt hyper- or hypothyroidism were
excluded from the analyses.

BMD of the lumbar spine (L1-L4), femur neck, and total hip were measured via dual X-ray
absorptiometry using Lunar Prodigy Advance (Madison, W1, USA) according to the manufac-
turer’s protocol. The left hip was scanned routinely and, in the case of a left hip fracture or
device, the right hip was scanned. For all subjects in this study, BMD was measured with the
same instruments. Data from our center showed that the coefficients of variation for duplicate
measurement in 30 adults were 0.95%, 0.95%, and 1.35% at the lumbar spine, femur neck, and
total hip, respectively.

We stratified subjects with subclinical thyroid dysfunction and euthyroid status. Data from
women and men were analyzed separately. The values of TSH were normalized by base-10 log-
arithmic transformation or categorized as a group variable for further analyses. Possible associ-
ations among various parameters of TFT and BMD were tested using Pearson’s partial
correlation by adjusting for age and BMI. In the euthyroid range of TSH level (0.51 to 5.00
mlIU/L), a further subdivision was made into tertile categories so that all subjects were divided
into five different TSH groups as follows [13]: subclinical hyperthyroid, 0.10-0.50 mIU/L; ter-
tiles within the euthyroid range, 0.51-1.80, 1.81-2.85, and 2.86-5.00 mIU/L; and subclinical
hypothyroid, 5.01-10.00 mIU/L.

Differences in BMD among TSH groups were identified by analysis of covariance
(ANCOVA) by adjusting for age and BMI and expressed as estimated marginal means and
SEM. Plasma T3 levels were grouped into tertiles as follows so that each group contains a third
of the population: 119.5-200.0 ng/dL, 104.1-119.4 ng/dL, and 60.0-104.0 ng/dL. ANCOVA
analyses with the covariates of age and BMI were used to examine whether TSH levels were
related to BMD in each T3 group. Statistical analyses were performed using SAS version 9.4
(SAS Institute, Cary, NC, USA) software. A P value of <0.05 was considered statistically
significant.

Results

Overall, 37,431 adult subjects were analyzed for associations between thyroid function and
BMD (Table 1). The mean age among subjects was 52.1 + 9.2 years (50.1 + 8.3 in women and
58.2 £ 9.2 in men). Among 28,300 women, 338 (1.2%) had subclinical hyperthyroidism, 3,291
(11.6%) had subclinical hypothyroidism, and 24,671 (87.2%) had euthyroidism. Among 9,131
men, 131 (1.4%) had subclinical hyperthyroidism, 619 (6.8%) had subclinical hypothyroidism,
and 8,381 (91.8%) had euthyroidism. There were no significant differences in age or BMI
according to thyroid status.

From the correlation analysis adjusted for age and BMI, there was a robust negative rela-
tionship between TSH and free T4 level (r = -0.131 in women, r = -0.118 in men (all P <0.001;
Table 2), whereas T3 and TSH correlated positively in women (r = 0.076, P <0.001) and did
not correlate in men. The subgroup analysis confined to elderly subjects (>>65 years), revealed
a similar relationship between TSH and T3 (r = 0.051, P = 0.03 in women; r = -0.001, P = 0.95
in men) (S1 Table). In addition, the relationships between the total T3 and free T4 according to
TSH categories within the highest T3 tertile were shown in S1 Fig. In both sexes, TSH corre-
lated positively and T3 correlated negatively with BMD in all skeletal sites (Table 2). Free T4
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Table 1. Characteristics and BMD measurements of study subjects with subclinical thyroid dysfunction and euthyroidism.

Characteristics

N
Age (y), mean (SD)
BMI (kg/m?), mean (SD)
TSH (mIU/L), median (IQR)
Free T4 (ng/dL), mean (SD)
Total T3 (ng/dL), mean (SD)
BMD (mg/cm?), mean (SD)
Lumbar Spine
Femur Neck
Total Hip

Women (n = 28,300)

Subclinical

Hyperthyroid

338
49.9 (8.7)

22.7 (3.0)

0.37 (0.25-0.45)
1.30 (0.21)
114.5 (22.0)

1117 (165)
884 (118)
945 (122)

Euthyroid

24 671
50.1 (8.3)

225 (2.9)

2.37 (1.62-3.27)
1.20 (0.17)
112.0 (18.5)

1136 (165)
892 (122)
953 (126)

Subclinical
Hypothyroid
3291

50.6 (8.3)

22.7 (2.9)

6.13 (5.49-7.18)
1.16 (0.16)
115.9 (19.4)

1139 (163)
894 (121)
956 (124)

Men (n = 9,131)
Subclinical

Hyperthyroid

131
58.3 (9.2)

242 (2.2)

0.40 (0.29-0.45)
1.31 (0.22)
117.4 (20.7)

1206 (178)
936 (124)
1019 (128)

Euthyroid

8381
58.1 (9.2)
24.5 (2.6)

2.09 (1.43-2.94)
1.27 (0.18)
113.9 (18.8)

1215 (178)
947 (125)
1029 (132)

Subclinical
Hypothyroid
619

59.7 (9.6)

24.4 (2.6)

5.92 (5.40-7.05)
1.20 (0.18)
114.4 (18.4)

1243 (193)
961(133)
1041 (137)

doi:10.1371/journal.pone.0145292.t001

was negatively associated with BMD measurements to a lesser degree in women and did not
correlate in men.

To examine the independent dose-response relationship between BMD and TSH level, we
constructed ANCOVA models with age and BMI as covariates [14]. The changes in BMD com-
pared to the changes in TSH across the subclinical range were generally modest at all skeletal
sites (Fig 1). In women, BMD at all skeletal sites increased linearly with TSH from subclinical
hyperthyroid to subclinical hypothyroid range. In men, lumbar spine and femur neck BMD
increased linearly with TSH. Total hip BMD also tended to be elevated in subjects with
increased TSH, although it did not reach statistical significance (P = 0.065).

Table 2. Correlation matrix between serum TSH, thyroid hormone concentrations, and BMD measurements?.

Lumbar Spine Femur Neck Total Hip
Log TSH Free T4 Total T3 BMD BMD BMD

Women

Log TSH (mIU/L) 1

Free T4 (ng/dL) -0.131° 1

Total T3 (ng/dL) 0.076° 0.086° 1

Lumbar Spine BMD (mg/cm?) 0.030° -0.014° -0.062° 1

Femur Neck BMD (mg/cm?) 0.021° -0.019° -0.053° 0.615° 1

Total Hip BMD (mg/cm?) 0.023° -0.028° -0.050° 0.647° 0.893° 1
Men

Log TSH (mIU/L) 1

Free T4 (ng/dL) -0.118° 1

Total T3 (ng/dL) 0.016 0.060° 1

Lumbar Spine BMD (mg/cm?) 0.049° -0.007 -0.038° 1

Femur Neck BMD (mg/cm?) 0.047° -0.010 -0.037° 0.604° 1

Total Hip BMD (mg/cm?) 0.040° -0.017 -0.029° 0.643° 0.893° 1

Abbreviation: Log TSH, logarithmic transformation of TSH concentration.
2 Values are partial correlation coefficients adjusted by age and BMI.

P Correlation is significant at the 0.001 level (2-tailed).

¢ Correlation is significant at the 0.05 level (2-tailed).

doi:10.1371/journal.pone.0145292.t002
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Fig 1. The effect of serum TSH concentration on BMD measurements. Data are shown as estimated
marginal mean and SEM (error bar), with age and BMI used as covariates. P values for trends across strata
of TSH were obtained using ANCOVA.

doi:10.1371/journal.pone.0145292.g001

Differences in BMD between TSH groups were evident after classifying subjects according
to plasma T3 levels. In women, significant positive relationships between TSH and BMD at all
skeletal sites were observed when T3 levels were in the highest tertile (119.5-200.0 ng/dL) (Fig
2). In this group, the differences in BMD among subjects with subclinical hyperthyroidism and
subclinical hypothyroidism were 46, 27, and 25 mg/cm2 at the lumbar spine, femur neck, and
total hip, respectively. However, there was no significant relationship between TSH and BMD
in the group with T3 levels in the middle and lowest tertiles (104.1-119.4 ng/dL and 60.0-104.0
ng/dL respectively), except for BMD at lumbar spine in those with T3 levels in the middle ter-
tile (P = 0.037). In men, significant positive relationships between TSH and BMD at all sites
were observed only in groups with T3 levels in the highest tertile. In subjects with the highest
tertile of T3 levels, the differences in BMD between subjects with subclinical hyperthyroidism
and subclinical hypothyroidism were 51, 40, and 33 mg/cm” at the lumbar spine, femur neck,
and total hip, respectively.

Discussion

In this large cross-sectional study, we demonstrated that variations in TSH levels within sub-
clinical range were related to BMD in a healthy adult population with normal thyroid hormone
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for trends across strata of TSH were obtained by ANCOVA.

doi:10.1371/journal.pone.0145292.9002
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levels. Lower TSH and higher T3 levels were associated with reduced BMD at all skeletal sites
in both sexes. The negative impact of T3 on BMD appeared to be compensated for by increased
TSH only in subjects with T3 levels in the upper normal range.

To the best of our knowledge, this is the first clinical study to show the protective effect of
TSH on bone loss independent of the effects of active thyroid hormone, T3. Based on the dis-
tinct distribution between plasma T3 and TSH levels unrelated to simple feedback inhibitory
mechanisms, we performed stratified analysis to explore the relationships between TSH, T3
and BMD in a large population of healthy men and women. We excluded patients with various
chronic conditions and medication history that may act as confounders in the relationship
between thyroid function and bone mass. Clinicians should consider the modest protective
effect of TSH against bone loss when treating biochemically defined subclinical hyper- or hypo-
thyroidism, particularly when it is in combination with upper normal range plasma T3 levels.

Plasma levels of active thyroid hormone T3 are remarkably stable in healthy adult individu-
als [15] as a result of combined homeostatic mechanisms by the hypothalamic-pituitary-thy-
roid axis and a group of deiodinases found in extrathyroidal tissues, including the skeleton [16,
17]. Plasma T3 equilibrates rapidly in most tissues. In bone, T3 mainly acts on osteoblasts to
increase bone turnover in which resorption outpaces formation [18]. Interestingly, a recent
study of a human osteoblast cell line showed increased expression of deiodinase 2 (which con-
verts prohormone T4 to T3) by administration of TSH [19], suggesting that TSH may indi-
rectly promote bone turnover by increasing local T3 availability in osteoblasts in addition to its
direct action on bone remodeling [20]. When cellular T3 levels are sufficient, deiodinase 2
activities are repressed [21] and the direct action of TSH as a negative regulator of bone remod-
eling dominates.

Previous studies investigating the risk of bone loss and fractures in combination with abnor-
mal TSH levels have been inconsistent. In a study of postmenopausal women, TSH levels
above the reference range were associated with a 35% reduced risk of nonvertebral fractures,
although TSH was not related to statistically significant BMD change [9]. Conversely, an Israeli
study reported that TSH levels within the lower normal range were associated with an
increased risk of hip fractures in elderly women, but not in men [22]. However, Lin et al found
no relationship between TSH and BMD under normal thyroid conditions in a Chinese popula-
tion [23] and a recent cross-sectional analysis of the Cardiovascular Health Study concluded
that subclinical hyperthyroidism was not associated with BMD loss in either the hip or spine in
older men and women [3]. Similarly, a study-level meta-analysis of seven population-based
cohorts did not find an association between subclinical hyperthyroidism and risk of fractures,
but the interpretation was limited by the heterogeneity of the studies included [24]. In the
midst of uncertainty, a recent meta-analysis analyzing the individual data of 13 past studies
involving 70,298 participants found a significantly elevated risk of hip and other fractures in
patients with subclinical hyperthyroidism, particularly those with TSH levels less than 0.10
mIU/L [25].

Given that TSH can either indirectly promote or directly suppress bone turnover according
to local T3 availability, it is not surprising that previous clinical studies, which did not take into
account plasma T3 status, have produced inconsistent results regarding the effect of TSH on
bone remodeling. We observed a significant dose-dependent trend between TSH levels and
BMD exclusively in men and women in the highest tertile T3 level. The findings from our large
population study are consistent with basic mechanistic studies as mentioned above.

There are several limitations to this study. This was a cross-sectional observational study,
and therefore the causal relationship between TSH and T3 and BMD cannot be affirmed by
this data. We cannot address whether the treatment of subclinical thyroid dysfunction could
lead to reciprocal changes in BMD, although nonrandomized trials have suggested that
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normalization of suppressed TSH increases BMD in postmenopausal women with subclinical
hyperthyroidism [26, 27]. Information for markers of bone formation and resorption was not
assessed. The stratified analysis for men with subclinical hyperthyroidism was limited due to
the small number of subjects in the category (0.3% of study population). Lastly, our study sub-
jects were of medium to high socioeconomic status, which could contribute to selection bias,
although data regarding the relationship between socioeconomic status and BMD are conflict-
ing [28].

In conclusion, in a large cohort of health-screening recipients, we demonstrated that varia-
tions in TSH levels even within the subclinical range were positively correlated with BMD in
healthy men and women with normal thyroid hormone levels. Furthermore, plasma T3 status
may affect the relationship between TSH and BMD. Thus the protective effect of TSH against
bone loss should be taken into consideration during treatment decisions regarding subclinical
thyroid dysfunction, particularly when it presents in combination with upper normal range
plasma T3 levels.

Supporting Information

S1 Fig. Distribution of total T3 and free T4 concentrations according to TSH categories in
subjects with the highest T3 tertile (119.5-200.0 ng/dL). Data are shown as mean and SEM
(error bar). P values for trends across strata of TSH were obtained using ANOVA.

(TIF)

S1 Table. Correlation matrix between serum TSH, thyroid hormone concentrations, and
BMD measurements in subjects older than 65 years.
(DOC)
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