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Abstract

Poor outcome in response to hepatitis C virus, including higher viral load, hepatocellular
carcinoma and cirrhosis, is more associated with men and postmenopausal women than
with premenopausal women and women receiving hormone replacement therapy, suggest-
ing that B-estradiol plays an innate role in preventing viral infection and liver disease. Con-
sequently, most research in the field has concluded that estrogen affects HCV replication
through viral interactions with estrogen receptor-a. Previously, estrogen-like antagonists,
including Tamoxifen, were shown to reduce HCV RNA production and prevent viral entry,
although the authors did not identify host factors involved. Estrogen can act alternatively
through the membrane-bound G-protein-coupled estrogen receptor, GPR30. Here, human
hepatoma Huh7.5 cells were infected with HCV J6/JFH-1 and treated with estrogen or
Tamoxifen, resulting in a marked decrease in detectable virus. The effect was mimicked by
G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15.
While previous studies have demonstrated that estrogen down-regulated occludin in cervi-
cal cancer cells, its action on liver cells was unknown. Occludin is a tight junction protein
and HCV receptor and here we report that activation and cellular export of MMP-9 led to the
cleavage of occludin upon estrogen treatment of liver cells. This is the first report of the
cleavage of an HCV receptor in response to estrogen. We also identify the occludin cleav-
age site in extracellular Domain D; the motif required for HCV entry and spread. This path-
way gives new insight into a novel innate antiviral pathway and the suboptimal environment
that estrogen provides for the proliferation of the virus. It may also explain the disparate
host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest
that hormone replacement therapy may have beneficial antiviral enhancement properties
for HCV-infected postmenopausal women and show promise for new antiviral treatments
for both men and women.
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Introduction

Nearly 150 million people in the world are infected with Hepatitis C virus (HCV). Vaccine
development has not been successful, but advances in therapy have been dramatically
improved. Finding optimal therapy combinations, including those that use host-directed anti-
viral mechanisms, may be prudent in the event that drug-resistant strains may arise.

Regardless of etiology, HCV infection leads the two sexes to progress to liver disease
unequally. Hepatocellular carcinoma and cirrhosis are more frequent in men and post-meno-
pausal women than in premenopausal women [1]. Moreover, postmenopausal women respond
to antiviral therapy as poorly as men [2], and progression of fibrosis in postmenopausal
patients was lower in women who received hormone replacement therapy (HRT) compared
with untreated [1] and ovariectomized women [3], suggesting that estradiol (E2) may have an
anti-fibrotic or antiviral effect. Furthermore, E2 therapy resulted in reduced liver disease in a
male HCV patient [4] and in mouse models [5].

Interferon-alpha (IFNa) therapy is approved for use in the treatment of chronic HCV.
When comparing response rates to IFNo. therapy, men showed little difference in response to
IFNo therapy based on age, but premenopausal women responded 75% of the time while
women over 40 years showed only a 15.6% response to IFNo. therapy [6]. This suggests that E2
may be associated with a successful response to therapy and clearance of HCV [6] and that
HRT may enhance the effectiveness of drug response in postmenopausal women.

The largest amount of E2 is produced before menopause by the ovaries. The classical mech-
anism of E2 action is through two nuclear E2 receptors (ER-a. and ER-p) that stimulate gene
expression by acting as transcription factors [7]. One non-classical mechanism of E2 action is
through GPR30, also known as G protein-coupled estrogen receptor (GPER) [8], predomi-
nantly found in the membrane of the endoplasmic reticulum. GPR30, a seven-transmembrane
steroid receptor, promotes rapid signaling events through Zn>*-dependent matrix metallopro-
teinases (MMPs), epidermal growth factor (EGFR), PI3-kinase, calcium mobilization, and
nitric oxide production [7, 9, 10].

There are several selective ER modulators (SERMs) that act as both ER antagonists and ago-
nists [11]. The ER antagonist Tamoxifen (Tam) blocked the signaling ability of the nuclear ER
and inhibited HCV infection, attachment and entry [12]. As a SERM compound, Tam is a
nuclear ER antagonist in some tissues, and a GPR30 agonist in others [7].

Epithelial cells have tight junctions (T7J) that form a barrier regulating cellular permeability
and may function as a component of the innate immune system to prevent viral entry or super-
infection. Several viruses, including HCV, utilize the TJs to gain viral entry and spread,
whereby disruption of T]s decreases HCV virus transport between adjacent cells [13]. Specifi-
cally, HCV uses the T] proteins claudin-1 and occludin to enter hepatic cells [14, 15]. Studies
showed that HCV-infected cells were resistant to infection when occludin was down-regulated,
most probably due to a mechanism that prevents superinfection [16].

MMPs are zinc-dependent proteases of extracellular matrix proteins that can also cleave
other molecules such as TJ proteins. In cervical cancer cells, occludin protein was down-regu-
lated by E2 through proteolytic cleavage by MMP-7, leading to tight junction destabilization
[17, 18], further explaining the observation that TJs were disrupted during zinc deficiency [19].
In our study, HCV genotype 2a (J6/JFH-1)-infected Huh7.5 cells showed a marked decrease in
detectable virus when treated with E2. E2, Tam and G1 (a GPR30-specific agonist) down-regu-
lated virus production, which was reversed by G15 (a GPR30-specific antagonist). Further-
more, E2 down-regulated the tight junction proteins and HCV receptors; occludin and
claudin-1. We also show that MMP inhibitors reversed the antiviral effect of E2 by inhibiting
loss of functional occludin; leading to the conclusion that active MMP-9 (gelatinase/type IV
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collagenase) was responsible for occludin cleavage. Here, we establish a new role for E2 in the
pathway that leads to cleavage of an HCV receptor, occludin, which provides protection from
HCYV infection and HCV-associated liver diseases.

Materials and Methods
Chemical reagents and antibodies

17B-estradiol, Tamoxifen, and MMP Inhibitors SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]
methyl]-Thiirane) and CP-471474 (2-[[[4-(4-Fluorophenoxy)phenyl]sulfonyl]amino]-N-
hydroxy-2-methylpropanamide), were obtained from Sigma-Aldrich. Universal type I Inter-
feron (Human Interferon Alpha A/D) was obtained from PBL Interferon Source. GPR30 ago-
nist, G1 (1-(4-(6-Bromobenzo[1,3]dioxol-5-y1)-3a,4,5,9b-tetrahydro-3H-cyclopenta|[c]
quinolin-8-yl)-ethanone), GPR30 antagonist, G15 (cis-4-(6-Bromo-benzo[1,3]dioxol-5-yl)-
3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline) and MMP inhibitor, ONO-4817 (25,4S)-
N-Hydroxy-5-ethoxymethyloxy-2-methyl-4-(4-phenoxybenzoyl) aminopentanamide, and
MMP408 (S)-2-(8-(Methoxycarbonylamino)dibenzo[b,d]furan-3-sulfonamido)-3-methylbu-
tanoic acid, were obtained from Calbiochem. GM6001, known as Ilomastat, or N-[(2R)-2-
(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide was obtained
from Millipore.

Cyclin-D1 mouse monoclonal antibody, claudin-1 and MMP-9 rabbit polyclonal antibodies
were obtained from Cell Signaling Technology. Rabbit polyclonal occludin antibody (Invitro-
gen); HCV-core mouse monoclonal antibody (Thermo Scientific); Scavenger receptor SR-B1
rabbit polyclonal antibody (Novus Biologicals); rabbit polyclonal anti-GAPDH antibody (Tre-
vigen); Secondary horseradish peroxidase (HRP)-conjugated antibodies were obtained from
Kirkegaard & Perry laboratories.

Cells

MCEF?7 cell extract (Santa Cruz) was used as a positive control for cyclin-D1 antibody. Human
hepatoma Huh?7.5 cells were maintained in complete Dulbecco's modified Eagles Medium
(DMEM) containing 10% FBS, L-Glutamine and non-essential amino acids (Invitrogen). Cells
were grown in Phenol Red Free DMEM containing 10% heat-inactivated Charcoal Stripped
FBS (CSFBS) (DMEM-E2minus), L-Glutamine and non-essential amino acids were used for
five days before performing the experiments with Estrogen, G1 or Tamoxifen. All FBS was
screened by PCR to ensure the absence of Bovine viral diarrhea virus as described previously
[20]. Cells were seeded at a high density; 5x10* cells/well (96 well plate) for the inhibition stud-
ies, and 2x10° cells/well in 6-well plate and 2.5x10° cells/ T25 flask for protein and RNA expres-
sion studies, respectively. At high densities, Huh7.5 cells grow in layers, which enhance the
number of tight junctions [21] and occludin expression.

Preparation of HCV stocks

J6/JFH-1 virus genotype 2a (provided by C.M. Rice, Rockefeller University) was prepared as
described [22]. Virus infected cells were grown at 37°C with 5% carbon dioxide for 16 days
when supernatants were cleared by centrifugation and filtered through a 0.45 pm membrane.
To ensure media was free of Phenol Red (an estrogen mimic), supernatants were dialyzed twice
over 48 hr, using 1X PBS and Slide- A-lyzer Dialysis Cassettes G2 (cutoff of 10,000 MW;
Pierce). Virus stocks were titrated in Huh7.5 cells, as described below.

PLOS ONE | DOI:10.1371/journal.pone.0145212 January 5, 2016 3/19



@’PLOS ‘ ONE

Estrogen-Mediated Occludin Cleavage Inhibits HCV

Table 1. Experimental procedure for evaluating virus growth by FFA.

Treatment Day 0 Cell
Seeding
A Virus growth with 5x10* Huh7.5
E2, G1, Tam +/- cells in 96 well
MMP inhibitors. plate.

B Virus growth with 5x104 Huh7.5
G15 pre-incubation.  cells in 96 well
plate.

Day 1 Pre-Treatment Day 2 Infection and Treatment Day 4 Endpoint

E2, G1 or Tam for 24 hr in the Media removal and virus inoculation. Media removal and cell fixation,

presence or absence of an After 6 hr, media was replaced by immuno-histochemistry for foci
MMP inhibitor. same treatment as on Day 1 for 48 staining for foci quantitation.

hr.
Pre-incubation with G15 for 60 Media removal and virus inoculation. Media removal and cell fixation,
min. Then, addition of E2 or G1  After 6 hr, media was replaced by immuno-histochemistry for foci
for 24 hr in the presence of same treatment as on Day 1 for 48 staining for foci quantitation.
G15. hr.

(A) Protocol for E2, G1 or Tam treatment of HCV-infected cells in the presence or absence of MMP inhibitors. Results are shown in Figs 1D, 2A, 2B and
5A-5E. (B) Protocol for GPR30 pathway confirmation through pre-incubation with the specific-GPR30 antagonist G15. Results are shown in Fig 2C and

2D.

doi:10.1371/journal.pone.0145212.t001

HCV titer determination

Viral titers were determined by focus forming assays as previously described by Silberstein

et al. 2010 and [23] with some exceptions: The cells were fixed at 2 dpi, fixed with 2% formalde-
hyde and stained with HCV anti-core antibody and developed using an Avidin-HRP conju-
gated with Diaminiobenzidine (DAB) as substrate (Vectastain ABC Kit, Mouse IgG Vector
Laboratories). Stained foci were counted in quintuplicate wells and data represent the absolute
mean foci number.

Virus Inhibition assays

Huh7.5 cells (seeded at 5x10* cells/100ul/well density) were pre-treated for 24 hr with E2, Tam,
G1, and/or MMP inhibitors. Media was removed and cells were infected with J6/JFH1 for 6 hr,
the supernatant was removed and treatment continued for 2 additional days (Table 1A). Cells
were pre-incubated with G15 for 1 hour, and then incubated with E2 or G1 before and after
HCYV infection (Table 1B).

In all inhibition experiments, viral growth was determined by focus forming assay. Stained
foci were counted in triplicate or quintuplicate wells and data represent the absolute mean foci
number or percentage of inhibition [% Inhib = (C-T) x 100/C] (where C is the mean foci num-
ber of the control group (solvent or with antagonist/inhibitor alone) and T is the mean foci
number of the treated group.

HCV RNA quantification

Total cellular RNA was extracted from Huh?7.5-infected cells using RNeasy minikit, following
the manufacturer’s recommendation (Qiagen), and quantitated using a Nanodrop 1000 Spec-
trophotometer (Thermo Fisher Scientific, Inc.). RNA was analyzed by quantitative RT-PCR as
described [20].

Effect of E2, G1 and G15 on HCV receptors expression

Huh7.5 (2.5x10°) cells were seeded in T25 flasks in 10% Charcoal Stripped FBS Phenol Red
Free media (CSFBS DMEM-E2 minus media) for 24 hr. Next, media was replaced by 0.5%
CSFBS DMEM-E2 minus media. After 24 hr of starvation, cells were treated with 10 uM p-
estradiol (in 0.5% CSFBS DMEM-E2 minus) for 0, 6, 12 and 24hr. Alternatively, cells were
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Fig 1. Estrogen abrogates HCV infection. (A) Huh7.5 cells respond to estrogen treatment measured by cyclin-D1 expression. (B) HCV core protein in J6/
JFH1-infected Huh7.5 cells treated with E2 or Universal Type | IFN. (C) HCV intracellular core protein in J6/JFH1-infected Huh7.5 cells treated with E2, as
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measured by Flow Cytometry. (D) HCV RNA quantitated relative to GAPDH RNA levels from infected Huh7.5 cells treated with E2 or IFN. (E) Virus growth
measured by absolute mean focus forming units (FFU). Error bars indicate the statistical standard deviation from the mean (+SD). Statistical significance is
indicated by asterisks where: (*** = P < 0.001; **** = P < 0.0001). (F) Representative images of foci after 48 hr of E2 treatment. Magnification 40X (below);

100X (above).
doi:10.1371/journal.pone.0145212.g001

treated with B-estradiol (1 nM and 100 nM), or with GPR30 agonist G1 (1 nM and 10 nM), in
0.5% CSFBS DMEM-E2 minus, for 24 hr (Fig 3).

Inhibition of E2 effects on occludin expression was studied using Huh7.5 cells pre-incubated
with increasing concentrations of G15 (0, 0.5, 5 and 10 pM) for 1 hr, and then 1 uM E2 was
added for additional 20 hr. It should be noted that G15 was present in the media throughout
the whole incubation period (Fig 4).

Immunoblot analysis

Immunoblots were performed as previously described [20]. The SuperSignal West Pico or
Femto Chemiluminescence Substrate kits (Pierce) were used for detection as recommended by
the manufacturer. Intensity of immunoblot bands was quantified by imaging analysis in a Syn-
geneG:box and the percentage of occludin forms were calculated relative to GAPDH protein
levels.

Extraction and quantification of occludin mRNA

Total RNA was extracted from Huh?7.5 cell lysate using the Qiagen QIAamp Viral RNA mini
Kit following the manufacturer’s protocols and reverse-transcription was performed using the
Invitrogen SuperScript IIT cDNA synthesis kit. The resulting cDNA was then amplified using
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Fig 2. GPR30 signaling inhibits HCV growth. (A) Increasing levels of Tamoxifen, (B) E2 and G1 inhibit
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on hepatoma cells.

doi:10.1371/journal.pone.0145212.9002
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Fig 3. Effect of E2 on occludin and claudin-1. (A) Immunoblots of occludin and (B) claudin-1 protein from
Huh7.5 cells treated with 10 uM E2. (C) Expression of HCV receptors occludin, claudin-1 and SR-B1 in
Huh7.5 cells treated with increasing amounts of E2 or (D) G1. Intensity of immunoblot bands was quantified
relative to GAPDH protein levels (right).

doi:10.1371/journal.pone.0145212.g003

the oligonucleotides for occludin as described in [24] and for GAPDH previously described in
[18].

Subcellular protein fractionation

Huh?7.5 (107) cells were seeded in T25 flasks containing DMEM-E2 minus for 24 hr. Subse-
quently, cells were washed twice with DMEM-E2 minus (serum free) and treated with E2, in
serum free media, for different time points. Total cells were harvested, counted (Vi-Cell XR,
Beckman Coulter) and membranes were separated from the cytosol and nucleus using the Sub-
cellular Protein Fractionation Kit for cultured cells (Thermo Scientific). Culture supernatants
were cleared by centrifugation and concentrated using Amicon Ultra Centrifuge Filters 30K
(Millipore) and 50 pg of total membrane proteins and the equivalent volume to 10° cells from a
culture supernatant were analyzed by immunoblot.

Flow cytometry analyses: Detection of occludin and HCV core proteins

Cells were collected by incubation with Accumax™ Cell Detachment Solution (Sigma), pelleted
(300xg for 5 minutes), washed twice with Flow cytometry staining Buffer (R&D Systems) and
blocked with Human Fc Blocking Solution (R&D Systems) for 15 minutes at 4°C. Cell viability
was established with the LIVE/DEAD Fixable Aqua Dead cell stain kit (Life Technologies), fol-
lowing manufacturer instructions.

For HCV core staining, fixation was carried out by using Flow cytometry Fixation Buffer
(R&D Systems) and incubating the cells for 10 minutes at room temperature. Permeabilization
was performed with Flow cytometry permeabilization Buffer (R&D Systems). After an incuba-
tion of 15 minutes at room temperature, cells were stained with 1 pg (per 10° cells) of mouse
anti-HCV core monoclonal antibody (Pierce, Thermo Scientific) and Alexa Fluor
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doi:10.1371/journal.pone.0145212.9004

488-conjugated goat anti-mouse IgG (H+L) (Life Technologies) diluted 1/2000. All flow
cytometry studies were performed on a FACS Calibur cytometer (BD Biosciences, San Diego,
CA, USA) with data analyses conducted using FlowJo 7.6.3 software (Tree Star, Inc., Ashland,
OR, USA).

MMP-9 knock down with siRNA

Huh7.5 (10°) cells were seeded and reverse transfected in 6 well plates, in DMEM-E2 minus for
24 hr, with 20 nM final concentration of small interfering RNA (siRNA) following the manu-
facturer protocols (Dharmacon, Inc., Lafayette, CO). siRNA, Dharmafect 4 Transfection
reagent, 5X siRNA buffer and siGLO Transfection Indicator were obtained from Dharmacon.
siRNA specific to MMP-9 (ON-TARGET plus Human MMP-9 siRNA “SMART pool”, Target
sequences: GCAUAAGGACGACGUGAAU, GGACCAAGGAUACAGUUUG, GCGCUC
AUGUACCCUAUGU, and GAACCAAUCUCACCGACAG). MMP-9 sequence-Scrambled
siRNA was used as a negative control (ON-TARGET plus Non-Targeting siRNA, Target
sequence: UGGUUUACAUGUUUUCCUA).

Statistical analysis

All experiments were repeated a minimum of three times. Data were expressed as mean + standard
deviation. Differences between treatment and control groups were determined by One-way analysis
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of variance (ANOVA) followed by Bonferroni posttest. Significance was assumed to be at two tailed
p<0.01 (* =P<0.05;** =P < 0.01;*** =P < 0.001; **** =P < 0.0001).

Results
B-estradiol down-regulates HCV

To study the effects of E2 on HCV growth, we first determined that Huh7.5 cells were respon-
sive to E2 treatment. ER activation induces transcription of cyclin-D1 [25]. We treated Huh7.5
cells with 100 nM E2 for 48 hr and they responded to E2 treatment as demonstrated by
increased cyclin-D1 expression (Fig 1A); MCF?7 cells were used as a positive control for the
cyclin-D1 antibody. Ethanol, the E2 solvent, was used in all experimental controls. To deter-
mine the effect of E2 on HCV growth, cells were pretreated with E2 at doses ranging from
physiological (1 nM) to HRT levels (10 uM). After 24 hr, cells were infected with J6/JFH-1

[22], and treated for an additional 72 hr with E2 or IFNo. (Fig 1 and Table 1A). To ensure that
our system would respond as previously reported, HCV infection was monitored by expression
of core protein, HCV RNA and viral growth. HCV core protein expression decreased by 60%
with 1 nM E2 treatment and by 100% with 10 uM E2 treatment or IFNa: as detected by immu-
noblot (Fig 1B). When analyzed by flow cytometry, there was a dosage-dependent decrease in
HCV core protein with increasing concentrations of E2 (Fig 1C). Down-regulation of HCV
protein was consistent with a decrease in relative HCV RNA levels, measured by quantitative
reverse-transcriptase real-time PCR (TaqMan; Fig 1D). When treated with 1 nM E2, HCV
RNA levels decreased to only 5% of the untreated control samples (0). In addition, virus growth
decreased in a dosage-dependent manner, measured in focus forming units (FFU). Increasing
concentrations of E2 (100 pM-10 uM) resulted in decreased HCV foci number, with virus inhi-
bition of 43-92% (Fig 1E and 1E inset). Interestingly, E2 treatment reduced foci number and
also resulted in decreased size of the foci (Fig 1F), suggesting that E2 also affects a viral mecha-
nism post-initial infection, such as replication or viral spread.

Estrogen mediates control of HCV through the GPR30 pathway

E2 signaling is promoted by ER-a, ER-B or GPR30 [8]. In some cells, Tam inhibits E2 by com-
petitive binding to the ER(s) [26, 27, 28]; however, both E2 and Tam activate GPR30. Increas-
ing amounts of Tam added 24 hr before infection and for 48 hr after infection inhibited HCV
growth (Table 1A and Fig 2A). Viral inhibition (30-60%) was observed with dose increases in
Tam (100 pM-1 puM), similar to the results observed for E2 treatment (Fig 1E) and consistent
with activation of GPR30 by both E2 and Tam. These data are consistent with a previous
report, whereby Tam inhibited HCV growth [12].

Signaling through GPR30 was confirmed with a GPR30-specific agonist known as G1 [28].
Increasing concentrations of E2 (1 nM-10 uM) or G1 (1 pM-1 uM) decreased HCV foci num-
ber, with virus inhibition of 50-70% for E2 and 55-80% for G1 treatment (Fig 2B). Inhibition
of HCV by E2 and G1 (Fig 2B, insets) display the same shaped curve, indicative of a high-
potency receptor agonist that exhibits similar behaviors with respect to inhibition of HCV
growth. These data suggest that E2 and G1 inhibited HCV in a dosage-dependent manner
through the GPR30 receptor.

To further confirm the involvement of GPR30, cells were pre-incubated for 1hr with
increasing concentrations of G15, a GPR30-specific antagonist [29]. G1 or E2 were added to
the cells before and after HCV infection, in the presence of G15. Treatment with G15 alone
had no significant effect on HCV growth (Fig 2C and 2D, left), but increasing concentrations
of G15 reversed (or blocked) the inhibitory effect of G1 (Fig 2C, right) and E2 (Fig 2D) on
HCYV growth. To determine the statistical significance of the effect of G15 on G1 action, we
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compared the treatments by pairs (Fig 2C. dashed lines). HCV growth was inhibited signifi-
cantly with 10 nM G1 and in combination with low levels of G15 treatment (0 and 1 pM G15).
At 100 pM and 10 nM G15, HCV growth was restored in the presence of G1. There was no sig-
nificant difference between the cells that received G15 alone and those that received G15 and
E2, confirming that G15 reversed the inhibitory effect of E2 (Fig 2D). Taken together, these
data demonstrate that HCV was inhibited by E2, Tam and G1 and the inhibition of HCV was
blocked by the addition of G15, a specific antagonist of the GPR30 receptor, indicating that E2
antagonizes HCV via the GPR30 pathway. These data do not exclude the possibility that the
nuclear ERs are also acting on HCV.

Mechanism of action: Effect of E2 on occludin and claudin-1

In cervical vaginal cells, E2 led to the cleavage of occludin into a truncated-inactive form
through activation of host proteinases [17]. To elucidate the mechanism of E2 action on HCV
growth, we observed the expression of the HCV receptors/tight junction proteins occludin and
claudin-1. After E2 treatment, a time-dependent decrease was observed for both occludin and
claudin-1 protein at HRT levels (Fig 3A and 3B). At physiological levels, occludin and claudin-
1 expression was down-regulated by E2 as well, but not the scavenger receptor-B1 (SR-B1; Fig
3C), which is also an HCV receptor. Increasing amounts of G1 caused a similar pattern of
expression, indicating that GPR30 activation in liver cells resulted in a specific decrease in
occludin and claudin-1 expression (Fig 3D).

Huh7.5 cells treated with increasing amounts of E2 yielded a dose-dependent decrease in
full-length 59 KDa occludin with a concomitant increase in a 38 KDa form of occludin (Fig
4A). A highly-sensitive chemiluminescence substrate (FEMTO; Pierce) was required to visual-
ize the truncated form of occludin. No effect of E2 was observed when occludin cDNA levels
were visualized by RT-PCR amplification (Fig 4B). To confirm that GPR30 signaling resulted
in proteolytic cleavage of occludin protein, Huh7.5 cells were pre-treated with G15 (Fig 4C). As
expected, the truncated form of occludin increases with E2 treatment and no G15 (0 G15; Fig
4C). As the level of G15 was increased, the relative amount of 38 KDa occludin also decreased
(Fig 4C, right), indicating that occludin cleavage, was blocked by G15. Note that the truncated,
38 KDa, form of occludin is present in the absence of E2, indicating that there is some constitu-
tive cleavage of occludin that can be blocked with G15 alone, due to inhibition of GPR30.
Because G15 is specific for the inhibition of GPR30, these data support the role of E2 in GPR30
activation leading to occludin cleavage from a 59 KDa form to a 38 KDa form.

Modulation of HCV by Matrix Metalloproteinase

Previously, E2 was shown to lead to occludin cleavage by MMP-7 in cervical-vaginal cells [17,
18]. HCV-infected Huh7.5 cells were treated with E2 or G1 in the presence of an MMP inhibi-
tor (Fig 5A-5E). HCV growth was measured by focus forming assay with increasing concentra-
tions of the broad range inhibitor ONO-4817 [30]. As expected, this MMP inhibitor exhibited
no effect on HCV growth when used alone (Fig 5A, left). However, when 50 nM of the MMP
inhibitor was used in combination with E2 or G1, the growth of HCV was restored (Fig 5A,
center and right with insets), suggesting that it reversed E2’s inhibition of HCV. Statistical cal-
culations were made between the corresponding controls in the far left panel (no G1 or E2)
and the addition of hormone/agonist in both right panels of Fig 5A. E2 (100 nM) and G1 (10
nM) resulted in decreased HCV foci number, with virus inhibition around 50% (Fig 5A and
5A inset). In the presence of the MMP inhibitor, ONO-4817, the percent inhibition decreased,
meaning that the MMP inhibitor blocked or reversed the effects of E2 and G1 on HCV growth.
Complete restoration of virus growth in the presence of hormone or GPR30 agonist and MMP
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Fig 5. E2 modulates matrix metalloproteinase to inhibit HCV growth. (A) Response of increasing concentrations of the broad-spectrum MMP inhibitor,
ONO-4817 on J6/JFH1-infected Huh7.5 cells, in the presence or absence of E2 (center panel), and G1 (right panel) on HCV growth. Increasing
concentrations of the broad spectrum MMP inhibitors (B) CP471,474 (C) llomastat (D) MMP408 or (E) SB-3CT. Data represent the absolute mean foci
number of three independent experiments and error bars represent the standard deviation from the mean (+SD). Statistical significance is expressed as
asterisks where; (* = P< 0.05; ** =P < 0.01; **** = P < 0.0001).

doi:10.1371/journal.pone.0145212.9005

inhibitor is demonstrated as non-significant because the results are similar to the respective
controls. The restoration of virus growth in the presence of hormone and a broad spectrum
MMP inhibitor suggest that one or more MMPs are responsible for the inhibition of HCV in
response to E2 activation of GPR30 (summarized in Table 2).

MMP inhibitors target different groups of MMPs [30, 31, 32, 33, 34]. MMP Inhibitors
ONO-4817, CP-471,474, Illomastat, and SB-3CT reversed the effect of E2 on HCV growth (Fig
5A-5C and 5E, Table 2) while MMP408 did not (Fig 5D). ONO-4817 reversed E2’s effects,
indicating that MMP-2, -3, -8, -9, -12 or -13 were potentially involved in HCV down-regula-
tion (Table 1). CP-471,474 activity ruled out MMP-8 and -12 (Fig 5B) while ONO-4817 activ-
ity also ruled out MMP-1 (Table 1). llomastat can inhibit MMP-1, -2-3, -8, and -9 and was
effective at reversing E2’s inhibition of HCV, indicating that MMP-2, -3 and -9 were possible
candidates (Table 2). However, not all MMP inhibitors reversed the effect of E2; MMP408
inactivity ruled out MMP-3, -12 and 13 (Fig 5D), leaving only MMP-2 and MMP-9 as possible
options (Table 1). While SB-3CT can inhibit MMP-2 with a Ki = 14nM, a higher concentration
is needed to inhibit MMP-9, Ki = 600nM [32]. SB-3CT was not effective at reversing the effect
of E2 at nanomolar levels but was effective at micromolar levels, narrowing the possible candi-
dates down to MMP-9 (Fig 5E, Table 2). Consistent with our findings, Razandi et al. found that
E2 signals through GPR30, leading to activation of MMP-2 and MMP-9 in breast cancer cells
[35].

MMP-9 modulates occludin cleavage

To link GPR30 activation by E2 with MMP-9 cleavage of occludin, Huh7.5 cells were treated
with G1 in the presence or absence of increasing concentrations of the MMP inhibitor, ONO-
4817. Consistent with our data shown in Fig 3D, full-length occludin levels decreased with G1
treatment alone (+), which was reversed with increased amounts of ONO-4817 (Fig 6A), sug-
gesting that G1 leads to cleavage of occludin by an MMP. As seen before with E2 treatment
(Fig 4A), two forms of occludin appeared with G1 treatment, a 59 KDa and a 38 KDa form (Fig
6B). The truncated form of occludin was present without any drug; decreased with the addition
of MMP inhibitor and increased with G1 treatment alone. The 59 KDa band increased con-
comitantly with a decrease in the 38 KDa band in the presence of ONO-4817, consistent with

Table 2. Identification of the MMP responsible for HCV growth inhibition.

Inhibitor Target MMPs Reversed E2 Inhibition of HCV
ONO-4817 2,3,8,9,12,13
CP-471,474 1,2,3,9,13
llomastat 1,2,3,8,9
(GM 6001)
MMP408 3,12,13 -
SB-3CT (uM) 9 +
SB-3CT (nM) 2 -
DMSO (vehicle) - -

doi:10.1371/journal.pone.0145212.t002
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doi:10.1371/journal.pone.0145212.9006
the integrity of the full-length protein due to inhibition of an MMP. The 38 KDa form was

observed in the absence of G1, suggesting that an MMP is constitutively active and consistent
with an increase in the 59 KDa form in the presence of ONO-4817 alone (Fig 6B).
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We observed both full-length and truncated forms of occludin on immunoblots that were
probed with an antibody directed at its C-terminus. Because 38 KDa corresponds to approxi-
mately 345 amino acids (~110 Daltons/aa) containing the C-terminus, the MMP-9 proteinase
digestion site must lay between domains C and D, somewhere between the plasma membrane
and the extracellular side of occludin (Fig 6C).

To identify the cellular location of active MMP-9, sub-cellular protein fractionation was per-
formed after E2 treatment and the pro- (92 KDa) and active- (~64 KDa) forms of MMP-9 [36,
37] were detected by immunoblot in the membrane fraction and in the supernatant as well (Fig
6D). Membranes were extracted and the conditioned media (extracellular fraction) was con-
centrated. Both pro-MMP-9 and active MMP-9 were up-regulated by E2 in the supernatant
after 18 hr of E2 treatment. No change was observed in active, membrane-associated MMP-9,
but an increase in the extracellular fraction for both forms of MMP-9 was observed with E2
treatment. This suggests that proteolytic cleavage did not occur in Domain C but occurred in
the extracellular Domain D, where active MMP-9 was secreted upon E2 treatment (Fig 6C and
6D). When MMP-9 expression was knocked-down with siRNA, both pro- and active forms
were not detectable in the supernatant (Fig 6E). Treatment with increasing levels of E2 did not
result in an increase in the cleaved form of occludin when MMP-9 was absent (MMP9), but
only when MMP-9 was present (scrambled siRNA; Fig 6E). These data are consistent with a
role for MMP-9 in the cleavage of occludin.

Discussion

Here, we present the molecular pathway by which E2 causes inhibition of HCV spread and/or
entry through down-regulation of functional occludin (Fig 7). Both Tam and E2 inhibited
virus growth (Figs 1 and 2), but to identify the ER used to down-regulate HCV, a GPR30-speci-
fic-agonist (G1) or a GPR30-specific-antagonist (G15) were employed. G15 was capable of
reversing G1 and E2 effects (Fig 2) leading to the conclusion that HCV inhibition occurred
through activation of the GPR30 receptor. The effect of E2 on HCV growth and occludin cleav-
age was mimicked by G1 and reversed by G15, confirming the involvement of GPR30 (Figs 2-
4). The field of candidate MMPs responsible for limiting HCV growth was narrowed to MMP-
9 with the use of broad and narrow range MMP inhibitors (Fig 5, Table 2). G1, which is a spe-
cific activator of GPR30, caused an increase in the truncated form of occludin, which was
reversed with MMP inhibitors or by an MMP-9-specific siRNA (Fig 6); confirming that the
negative effects of GPR30 activation can be blocked by loss of MMP-9 function and consistent
with MMP-9 activation leading to occludin cleavage. These findings were reported in breast
cancer cells by Razandi et al. (2003)[35].

We found that E2 activated GPR30, increasing MMP-9 activation and export to the extra-
cellular space leading to cleavage of occludin in Domain D (Figs 6 and 7).

An intact Marvel Domain D in occludin (Fig 6C) is required for HCV entry [15, 24, 38].
This second extracellular loop (Domain D) forms the tight junction/cell barrier between cells
[39] and cleavage of occludin at this second extracellular loop disrupts occludin-occludin and
occludin-claudin-1 interactions [18]. These data are consistent with the observation that HCV
cell-to-cell spread is inhibited after occludin cleavage (Fig 1E). Because Huh7.5 cells are not
capable of polarization [40, 41, 42], we could not determine if the T integrity was affected by
E2-induced cleavage of occludin, however this line of study should be pursued in the future.

Because pro-MMP-9 and active MMP-9 appeared in the extracellular fraction (Fig 6D) and
a basal level of occludin cleavage (Fig 4A) was present in the absence of E2, we speculate that
other factors might be involved in the up-regulation of MMP activity. This is consistent with
previous studies showing up-regulated MMP-9 mRNA expression in HCV patients [43] and in
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virus-infected Huh7.5.1 cells [44]. While little is known about the activation of the MMPs,
TIMPs (tissue inhibitor of the MMPs) are physiological, natural MMP inhibitors that regulate
MMP activity by complexing with unprocessed forms of MMPs [45]. We cannot exclude the
possibility that E2 or HCV or both, may be playing a role in pro-MMP-TIMP associations or
dissociations. TIMPs might limit cleavage of occludin to a basal level, consistent with the
appearance of the 38 KDa occludin in the absence of E2 or G1 (Figs 4A and 6B). This basal
level may be altered in the presence of E2, leading to MMP up-regulation, although the mecha-
nism is not clear and TIMP activities are not well understood.

Among normal MMP functions are the destabilization of tight junctions, degradation of
extracellular matrix proteins, involvement in cell motility, wound repair and tissue invasive-
ness. The normal healing process after liver injury involves the accumulation and deposition of
collagen (scar formation) and matrix reorganization (scar remodeling) and is a dynamic pro-
cess whereby MMPs and TIMPs are involved. Excess healing results in liver fibrosis, which can
lead to cirrhosis over time. Voloshenyuk and Gardner reported that E2 reduces the distribution
of collagen in the hearts of rats and affects the equilibrium between TIMP1-MMP-9 and
TIMP2-MMP-2 and MMP secretion [46]. Considering that one of the targets of MMP-9 is col-
lagen, our data may suggest an explanation for the lower levels of fibrosis in pre-menopausal
women compared with post-menopausal women and men that are infected with HCV. More
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studies need to be done to establish the role of MMP-9 and E2 in modulation of collagen accu-
mulation and the prevention of fibrosis.

In contrast to our results, it has been reported previously that E2 inhibits HCV exclusively
through ERo because G1 had no effect on HCV virion production [47]. However, in that
study, cells were treated with E2 after and during infection, and only 2 hr before HCV infec-
tion. We found that E2 down-regulated HCV through GPR30 when cells were pretreated for
24 hr and treated after infection (48 hr); (Table 1A, Fig 2). As seen in Fig 3A and 3C, 6 hr of
treatment (at 10 uM E2) and 24 hr of treatment (at 1 and 100 nM E2) were required for a
decrease in occludin protein, thus, explaining differences that the two labs observed. Further-
more, Murakami and coworkers treated HCV for 5 days, comparing E2 with Tam and other
SERMs [12]. They saw no inhibitory effect of E2 or G1 on HCV, while the other SERMs inhib-
ited the virus. Therefore, they concluded that GPR30 was not involved. Because E2 has a short
half-life (13-17 hr) and Tam has a half-life of 5-7 days, no effect would be seen by E2 if only
looking at a 5 day time point. In fact, we observed a rescue of virus after 48 hr of E2 treatment
(data not shown), indicating that E2 activity had been extinguished and explaining the negative
effect over 5 days of treatment. Our work, however, does not exclude the possibility that ER-o
may also play a role in HCV control.

Our demonstration that E2 down-regulates HCV entry and spread through the GPR30
pathway by promoting occludin cleavage by MMP-9 represents a new understanding of a cellu-
lar pathway that participates in an innate antiviral response. Huet et al. (2011) also found that
occludin was cleaved by MMP-9, but in human corneal epithelial cells [48]. These data set the
stage for further investigations into novel therapies that target host innate defenses, and under-
scores the importance of employing HRT in post-menopausal women infected with HCV. Our
work shows that E2 provides a less than ideal environment for the virus to spread by reducing
the availability of HCV receptors. Activation of the GPR30 pathway by E2 explains the sexual
dichotomy that occurs during HCV infection and why premenopausal women suffer less-
severe pathologies and postmenopausal women progress towards disease as poorly as men.
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