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Abstract
The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements

needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream

effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent

of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless,

the molecular mechanism involved in this process has been poorly characterized. This work

analyzes the role of different GTPases of the Rho family and some downstream effectors in

the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization

of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were

treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho

family. In addition, the internalization was reduced in HeLa cells that overexpressed the

dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho

GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacte-

rium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells

overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression

of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly,

when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to mem-

brane cell fractions. Our results suggest that the GTPases of the Rho family play an impor-

tant role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present

evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in

that process.

Introduction
The dynamic remodeling of actin cytoskeleton is intimately involved in essential cellular
processes such as cell adhesion and motility [1], apoptosis [2], endocytosis and phagocyto-
sis [3].
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The small GTPases of the Rho family regulate a wide range of cellular activities including
cell cycle, morphogenesis, gene transcription, cell adhesion and motility, and vesicular traffick-
ing [4–6]. Some of these functions are tightly associated with the actin cytoskeleton dynamics.
The best characterized members of the Rho family are RhoA, Rac1, and Cdc42 which, during
cell motility, regulate the formation of stress fibers, lamellipodia and filopodia, respectively,
[7,8]. Rho GTPases and the actin cytoskeleton are known to be involved in macropinocytosis
and clathrin-dependent and independent endocytosis [3,9,10], and also in endoplasmic reticu-
lum (ER)-Golgi transport during cell secretion [3,11,12].

To form actin filaments, actin nucleation requires factors that can be classified into three
groups: the Arp2/3 complex and its nucleation promoting factors, formins, and the tandem-
monomer-binding nucleators [13]. The factors mDia1 and mDia2 are members of a subset of
formins known as Diaphanous-related formins (Drfs), which have the ability to nucleate and
polymerize linear actin filaments [14,15]. At the plasma membrane, both mDia1 and mDia2
can form lamellipodia and filopodia [16,17]. Within the cytoplasm, mDia1 gives rise to stress
fibers [18,19] and mDia2 controls the actin dynamics that contributes to vesicle movement
[20]. The factors mDia1 and mDia2 have been demonstrated to be involved in actin dynamics
leading to the formation of the phagocytic cup in macrophages [21]. In particular, mDia binds
directly to both profilin and RhoA, which are recruited around phagocytic cups that are
induced by fibronectin-coated beads, suggesting that RhoA regulates actin polymerization by
targeting profilin through p140mDia beneath the specific region of plasma membranes [22]. In
addition, the interaction of IQGAP with mDia1 is required for phagocytosis and phagocytic
cup formation. Moreover, IQGAP mediates the localization of the actin filament nucleator
mDia1 [23].

The three Rho isoforms (A, B and C) have several common effectors such as mDia and
Rho-kinases (ROCK) 1 and 2, which are both essential for stress fibers formation and focal
adhesion organization during cell movement [24,25]. The activation of Rho-kinase also modu-
lates contractile ring formation during cytokinesis [26]. ROCK1 appears to be essential for the
formation of stress fibers, whereas ROCK2 appears to be necessary for phagocytosis and cell
contraction, both of which are dependent on the phosphorylation of the myosin light chain
(MLC) and the MLC phosphatase [27–29].

Phagocytosis is the process developed by cells to engulf particulate material such as apopto-
tic cells, cell debris and, even, inert particles. Moreover, phagocytosis represents a crucial event
that triggers host’s defense mechanisms against invading pathogens. Nevertheless, several path-
ogens have acquired different strategies to evade these mechanisms to survive and multiply
within the host´s cell [30,31]. The phagocytic process is initiated by a recognition step in which
ligands on the particle surface bind receptors on the membrane of host’s cells [32]. The ligand-
receptor interaction leads to actin cytoskeleton and membrane rearrangements that permit, in
the first place, particle engulfment and, in the second, particle sequestration into a phagosome
which precedes maturation into a phagolysosome [33,34].

The GTPases of the Rho family control the actin cytoskeleton rearrangements needed for
particle internalization by the phagocytes [35]. Fcγ and complement receptor-mediated phago-
cytosis, also termed Type I and Type II phagocytosis respectively, have been described in mac-
rophages. Cdc42 and Rac1 are activated early in FcγR-mediated phagocytosis, mostly at the
rims of the cup [36,37]. Firstly, Cdc42 activates and accumulates preferentially in the tips of the
extending pseudopodia [37]. Soon afterwards, after Cdc42 activation and during closure, Rac1
is activated and localized throughout the phagocytic cup, while Rac2 is activated later on,
mostly at the base of the cup [37,38]. RhoA seems to be primarily involved in CR3-mediated
phagocytosis [36,39]. Even though some reports support the hypothesis that RhoA is unneces-
sary in FcγR-mediated phagocytosis [21,36,40], others suggest otherwise [41,42].
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Coxiella burnetii, the causative agent of human Q fever, is an obligate intracellular bacte-
rium found in a wide range of hosts, including livestock and humans. In the case of humans,
they acquire the primary infection via the inhalation of contaminated aerosols [43,44]. Infected
animals excrete C. burnetii in milk, urine and feces, and the bacteria are dispersed together
with the amniotic fluids and the placenta during animal birthing. C. burnetii can survive long
periods in the environment, since it is highly resistant to heat, drying and common disinfec-
tants. C. burnetii infects mainly monocytes/macrophages, but it can also infect a wide variety
of host cells in vitro [45]. This bacterium resides in an acidic parasitophorous vacuole (PV),
which has late endosome-lysosome characteristics [46–49]. Recently it has been shown that the
PV also interacts with the autophagic pathway, acquiring autophagosomal features [46,48,50].
Interestingly, we have shown that the PV biogenesis is regulated by actin and Rho family
GTPases [51]. More recently, we have demonstrated that cortactin is involved in C. burnetii
entry into the host´s cells [52].

It has been demonstrated that cytochalasin D inhibits C. burnetii uptake [53–55] and that
the C3 exotransferase of Clostridium botulinum, a GTPase Rho inhibitor, inhibits membrane
protrusion when the cells are infected with C. burnetii [56]. Yet, the role that the actin cytoskel-
eton of the host´s cell plays in the C. burnetii entry process remains to be fully characterized.

This report describes the involvement of the GTPases of the Rho family, and the effectors
ROCK and mDia1 in C. burnetii internalization into HeLa and RAW cells. We observed that
the overexpression of dominant negative mutants of RhoA, Rac1 and Cdc42 in HeLa cells
inhibited bacterium uptake, thereby suggesting that these three GTPases are important for
internalization. Similar results were obtained when specific siRNA to RhoA and Rac1 were
used. We also analyzed the role of ROCK in internalization using a specific inhibitor, and by
silencing the protein with a siRNA. Both treatments diminished C. burnetii internalization.
Furthermore, we studied the participation of mDia1 in that process and found that the overex-
pression of a negative mutant of mDia1 reduced C. burnetii uptake. In summary, our results
indicate that the GTPases of the Rho family and the RhoA effectors mDia1 and ROCK regulate
the internalization of C. burnetii.

Materials and Methods

Materials
Dulbecco’s Modified Eagle's Medium (D-MEM), fetal bovine serum (FBS), penicillin and
streptomycin were obtained from Gibco BRL/Life Technologies (Buenos Aires, Argentina).
Plasmids encoding EGFP-Rac1, -Cdc42 and -RhoA dominant negative mutants were kindly
provided by Dr Philippe Chavrier (Centre National de la Recherche Scientifique/Institut Curie,
Paris, France) and Mark R. Phillips (Laboratory of Molecular Rheumatology, NYU, School of
Medicine, USA). Plasmids encoding EGFP-mDia1 WT, and the truncated forms -mDia1-ΔN3
and -mDia1-N1 were kindly provided by Dr. Fernandez-Borja (The Netherlands Cancer
Institute, Division of Tumor Biology, The Netherlands). Small interfering RNAs (siRNAs)
against RhoA (1129127), Rock1 (1130663) and Rac1 (1126011) were purchased from Bioneer
(Alameda, USA). The monoclonal anti-RhoA antibody was purchased from Santa Cruz Bio-
technology (California, USA); and the monoclonal anti-Rac1 antibody, the monoclonal anti-
mDia1 and anti-actin Ab-5 were purchased from BD (Buenos Aires, Argentina). The monoclo-
nal anti-E cadherin antibody (Cell Signaling Technology) was a gift of Dr. Ciocca (Laboratorio
de Oncología, IMBECU-CONICET, Mendoza, Argentina). Secondary antibodies were pur-
chased from Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA, USA The rabbit
polyclonal anti-Coxiella antiserum was kindly provided by Dr Robert Heinzen (Rocky Moun-
tain Laboratories, NIAID, NIH, Hamilton, MT, USA). Toxin B, from Clostridium difficile, and
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the inhibitor Y27632 were fromMerck-Calbiochem1 (Buenos Aires, Argentina). Phalloidin-
FITC and the protease inhibitor cocktail were from Sigma-Aldrich (Buenos Aires, Argentina).

Cell culture
HeLa cells (Asociación Banco Argentino de Células, Buenos Aires, Argentina) were grown in
DMEM supplemented with 10% heat-inactivated FBS, 2.2 g/l sodium bicarbonate, 2 mM gluta-
mine, 100 IU/ml penicillin and 100 μg/ml streptomycin, pH 7, at 37°C under a 5% CO2 atmo-
sphere. RAW cells were grown in RPMI supplemented with 10% heat-inactivated FBS, 2.2 g/l
sodium bicarbonate, 2 mM glutamine, 100 IU/ml penicillin and 100 μg/ml streptomycin, pH 7,
at 37°C under a 5% CO2 atmosphere.

Propagation of phase II C. burnetii
Clone 4 phase II Nine Mile strain of C. burnetii which are infective for cells in culture but not
for mammals, were provided by Ted Hackstadt (Rocky Mountain Laboratories, NIAID, NIH,
Hamilton, MT, USA) and handled in a biosafety level II facility. Non-confluent Vero cells were
cultured in T25 flasks at 37°C under a 5% CO2 atmosphere in DMEM supplemented with 5%
FBS, 0.22 g/l sodium bicarbonate and 20 mMHepes, pH 7 (MfbH). Cultures were infected
with C. burnetii phase II suspensions for 6 days at 37°C under a 5% CO2 atmosphere. In order
to prepare cell lysates, cells were frozen at -70°C, then thawed at 37°C, scraped and passed 20
times through a 27-gauge needle connected to a syringe. Cell lysates were centrifuged at 800 x g
for 10 min at 4°C. Supernatants were centrifuged at 24,000 x g for 30 min at 4°C, and pellets
containing C. burnetii were resuspended in phosphate-buffered saline (PBS; 10 mM sodium
phosphate, 0.9% NaCl), aliquoted and frozen at -70°C.

Infection of HeLa and RAW cells with C. burnetii
Cells (5 x 105) were seeded on sterile glass coverslips placed in 24-well plates and grown over-
night in MfbH medium. For infection, a 5 μl aliquot of C. burnetii suspension was added per
well (Multiplicity of infection: 20–40). Cells were incubated for different lengths of time at
37°C under a 5% CO2 atmosphere. Cells were fixed and processed for indirect
immunofluorescence.

Subcellular fractionation
HeLa cells were cultured in 60-mm dishes and infected as described above for different lengths
of time. Cells were washed with cold PBS and homogenization buffer HB (250 mM sucrose, 3
mM imidazole, pH 7.4), and scraped in HB containing protease inhibitors and 0.5 mM EDTA.
Scraped cells were homogenized using a Dounce type homogenizer with a Teflon pestle. The
homogenate was centrifuged at 13000 xg for 15 sec at 4°C. An aliquot of the supernatant (post-
nuclear supernatant) was frozen at -20°C (total fraction: T) and the rest was centrifuged at
100,000 x g for 30 min at 4°C. The supernatant obtained and the pellet represented the cytosolic
(C) and membrane (M) fractions, respectively. Both fractions were analyzed by SDS-PAGE
andWestern blot.

Immunofluorescence
Cells were fixed with 2% paraformaldehyde in PBS for 10 min at 37°C, washed with PBS and
blocked with 50 mMNH4Cl in PBS. After washing, cells were incubated with a rabbit antise-
rum against C. burnetii (1:1000) and a donkey anti-rabbit secondary antiserum conjugated to
Cy5 diluted 1:600 in PBS containing 0.5% BSA (non-permeabilizing conditions). In this
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condition, only extracellular bacteria were stained in white pseudo color. After washing, cells
were incubated with the same rabbit antiserum against C. burnetii (1:1000) and a donkey anti-
rabbit secondary antibody conjugated to Cy3 diluted 1:600 in PBS containing 0.5% BSA and
0.05% saponin (permeabilizing conditions). Under these conditions, the white-labeled extracel-
lular bacteria were stained in red pseudo color, thus the extracellular one acquired both white
and red pseudo colors, while the intracellular ones were only stained in red pseudo color. F-
actin was stained with phalloidin-FITC. Coverslips were mounted with Mowiol (Sigma-
Aldrich, Buenos Aires, Argentina) and examined under fluorescence microscopy (FV1000
Olympus Confocal Microscope and the FV 10-ASW 1.7 software, Olympus, Japan).

Cell transfection
HeLa cells were transfected for 6 h with 2 μg/ml pEGFP empty vector or pEGFP plasmids
expressing the fusion proteins of EGFP with the dominant negative mutants RhoA N19, Rac1
N17 or Cdc42 N17, mDia1 WT or the truncated forms mDia1-ΔN3 and mDia1-N1. Cell trans-
fection was carried out using Lipofectamine1 2000 (Invitrogen, Buenos Aires, Argentina),
according to the manufacturer’s instructions. After 6 h of transfection, cells were washed and
incubated for 18 h in MfbH medium at 37°C under a 5% CO2 atmosphere The siRNA transfec-
tion was performed employing Lipofectamine1 2000 according to the manufacturer’s instruc-
tions (Bioneer, Alameda, USA).

Western blotting
HeLa and RAW cells were cultured in 60 mm dishes and infected as described earlier for different
lengths of time. After infection, cells were washed with PBS, scraped into ice-cold lysis buffer (50
mM Tris-HCl, pH 7.2, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS, 50 mMNaCl, 10 mM
MgCl2, 2 mMNa3VO4, 10 mMNaF, 0.5 mg/ml DTT, 2 mM EDTA) supplemented with a
protease inhibitor cocktail and kept on ice for 20 min. Lysates were clarified by centrifugation at
2000 x g for 15 min at 4°C. Clarified lysates were transferred to clean tubes, mixed with Laemmli
buffer and boiled for 5 min. Samples were resolved by SDS-PAGE and the proteins transferred to
nitrocellulose membranes using standard procedures. Membranes were blocked for 2 h at 4°C in
Tween-Tris-buffered saline (TTBS; 0.1% Tween 20, 100 mMTris/HCl, 0.9% NaCl) supple-
mented with 5% BSA, then incubated overnight at 4°C with the appropriate primary antibodies.
Membranes were washed three times with TTBS and then incubated for 2 h at room temperature
with appropriate peroxidase-conjugated secondary antibodies. Membranes were washed again
with TTBS and developed using the ECLWestern blotting system (GE Healthcare) according to
the supplier’s recommendations. Anti-actin and anti-E cadherin antibodies were used as loading
controls. Band densitometry was carried out using ImageJ software (NIH, USA).

Fluorescence microscopy
Cells were analyzed by fluorescence microscopy using an FV1000 Olympus Confocal Micro-
scope and the FV 10-ASW 1.7 software (Olympus, Japan). Images were processed using ImageJ
software. Cell boundaries were marked with dotted lines in all figures showing experiments
performed with transfected cells.

Statistical analysis
Differences between conditions were tested by one-way analysis of variance (ANOVA) and
Dunnett’s post hoc tests or Student’s t single group test. Differences were considered significant
at p< 0.05.
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Results

Clostridium difficile toxin B, an inhibitor of Rho family GTPases,
diminishes the internalization of C. burnetii by phagocytic and non-
phagocytic cells
It is well known that to accomplish internalization into the host´s cells, several pathogens mod-
ulate the GTPases of the Rho family [57]. In previous works, we have demonstrated that actin
and Rho GTPases are involved in the intracellular trafficking of C. burnetii [51]. However,
comprehensive studies regarding the role of these GTPases in C. burnetii entry into host cells
are scarce. Clostridium difficile toxin B is a pharmacological tool used to study Rho GTPases
function. This toxin is a protein that monoglucosylates RhoA, Rac1 and Cdc42, leading to their
irreversible inactivation [58,59].

To determine the role of Rho GTPases in the internalization of C. burnetii, RAW and HeLa
cells (phagocytic and non-phagocytic cells, respectively), were infected for 4 h at 37°C in the
presence of different toxin B concentrations. Cells were fixed, processed for indirect immuno-
fluorescence and analyzed by confocal microscopy to evaluate cell morphology and the number
of intracellular bacteria. F-actin was stained with phalloidin-FITC. Control cells (DMSO-
treated) the typical HeLa cell morphology with typical cortical actin, filopodia and stress fibers
(Fig 1A, panel a). As expected, the toxin altered HeLa morphology mainly at high concentra-
tions, a condition under which cells became rounded and lost the typical actin structure (Fig
1A, panel p). In the inset panels of Fig 1A, intracellular bacteria are shown in red pseudo color
(yellow arrowheads) while the extracellular ones are shown in red and white pseudo colors
(arrows). The number of intracellular bacteria was lower in cells treated with toxin B as com-
pared to the control (Fig 1A, insets, and B). Toxin treatment inhibited C. burnetii internaliza-
tion in a dose-dependent manner. Similar results were observed when RAW cells were infected
(Fig 2). Even though the toxin-treated RAW cells exhibited milder changes in their shapes as
compared to non-treated cells (Fig 2A), they lost the typical actin structures and were less effi-
cient in C. burnetii internalization (Fig 2A, insets, and 2B). Treatment with increasing concen-
trations of toxin B did not affect significantly the number of total bacteria associated to HeLa
(Fig 1C) or RAW (Fig 2C) cell surfaces. These findings would indicate that the progressive
inhibition of the bacterium internalization is not due to a defective in bacterial cell adherence.

These results suggest that the GTPases belonging to the Rho family play a role in C. burnetii
entry into both phagocytic and non-phagocytic cells.

RhoA and Rac1 GTPases are recruited to the membrane fraction
obtained from HeLa cells infected with C. burnetii
It is known that the GTPases of the Rho family regulate the actin cytoskeleton reorganization
beneath the plasma membrane of the host´s cells in contact with particles or microorganisms
to be engulfed during phagocytosis [60,61]. GTPases cycle between an active state (GTP-
bound) and an inactive one (GDP-bound). It is also known that in the GTP-bound form,
GTPases are recruited to membranes and initiate intracellular signal cascades that regulate dif-
ferent cell functions [62,63].

We suggest that C. burnetii estimulates recruitment of Rho GTPases to the host´s cell mem-
brane during phagocytosis. To test our hypotesis, HeLa cells were infected for different periods
of time, lysed and cetrifuged to obtain membrane and cytosolic fractions. Postnuclear superna-
tant (T: total fraction), cytosol (C) and membrane (M) fractions were analyzed by SDS-PAGE
andWestern blot. Fig 3A and 3B depicts that RhoA recruitment to the membrane fraction
increased after 30 min and peaked after 60 min of infection. After this timepoint, the levels of

C. burnetii Phagocytosis and Rho GTPases

PLOS ONE | DOI:10.1371/journal.pone.0145211 December 16, 2015 6 / 29



C. burnetii Phagocytosis and Rho GTPases

PLOS ONE | DOI:10.1371/journal.pone.0145211 December 16, 2015 7 / 29



Rho membrane association decreased to basal levels. This result suggests that RhoA is activated
during C. burnetii-host´s cell interaction. Interestingly, when the Rac1 membrane recuitment
was analyzed, as shown in Fig 3C and 3D, the maximum level was observed after 30 min of
infection, sugesting that Rac1 is also activated, though earlier than RhoA. The membrane
recruitment of Cdc42 during infection was also analyzed, but unfortunately the antibody
against Cdc42 used was unable to detect the protein even in the total fraction (data not shown).
Similar results were obtained in HeLa cells incubated with heat-killed C. burnetii (S1 Fig).
Therefore, the same signaling cascade can be activated by live and heat-killed C. burnetii during
phagocytosis.

Internalization of C. burnetii by HeLa cells is inhibited by overexpression
of Rho GTPases dominant negative mutants or by silencing these
proteins
The inhibitory effect of toxin B in C. burnetii internalization and recruitment of Rho GTPases
to a membrane fraction obtained from infected cells suggests that Rho GTPases are activated
during infection. An experimental approach to assess the requirement for the active forms of
Rho GTPases during the bacterium entry consists in overexpressing the dominant negative
mutants of these proteins. HeLa cells were transfected with pEGFP-RhoA N19, pEGFP-Cdc42
N17 or pEGFP-Rac1 N17 and then infected for 4 h at 37°C. Cells were fixed and processed as
mentioned before to evaluate the number of intracellular bacteria. As displayed in Fig 4A, the
overexpressed dominant negative mutants featured a diffused distribution in the cytoplasm
(Fig 4A, panels f, k and p).

In HeLa cells overexpressing EGFP, a larger number of intracellular bacteria (red pseudo
color, yellow arrowheads) was observed in relation to the extracellular ones (red and white
pseudo colors, arrows) (Fig 4A, panel e). In HeLa cells overexpressing the dominant negative
mutants of the three Rho GTPases, a significant inhibition of C. burnetii internalization was
observed (Fig 4A, panels j, o and t, and B). Total bacteria associated to the cells was not signifi-
cantly different among the tested constructs (Fig 4C), thus indicating that the low percentage
of internalized bacteria is not due to a defective bacterial adherence to cells. The strongest
inhibitory effect was observed in cells overexpressing the dominant negative mutant of RhoA
(i.e., RhoA N19). These results suggest that the active forms of RhoA, Cdc42 and Rac1 are
important for the entry of C. burnetii into host´s cells.

To confirm the role of RhoA and Rac1 in the internalization process, these proteins were
knocked down by specific siRNAs. HeLa cells were transfected with siRNAs against RhoA and
Rac1 and then infected for 4 h at 37°C. Cells were either lysed to analyze the depletion levels of
RhoA and Rac1 proteins (see Fig 5D) or fixed and processed as mentioned above in order to
evaluate the number of intracellular bacteria. The number of intracellular bacteria (red pseudo

Fig 1. Clostridium difficile toxin B diminishes the internalization ofC. burnetii by HeLa cells. (A) HeLa cells were infected withC. burnetii for 4 h at
37°C in the presence of 0.05% DMSO (control, panels a-e) or with different concentrations of Clostridium difficile toxin B (panels f-t). Cells were fixed and
processed for indirect immunofluorescence to determine C. burnetii internalization and F-actin distribution as described in Materials and Methods. Cells were
analyzed by confocal microscopy. Micrographs of representative cells are shown. Cells were incubated sequentially with an antibody againstC. burnetii and
an appropriate secondary antibody conjugated to Cy5 (white pseudo color) under non-permeabilizing conditions. Under this condition, extracellular bacteria
were stained in white pseudo color (panels c, h, m, and r). Then, cells were re-incubated with the same anti-C. burnetii antibody and an appropriate
secondary antibody conjugated to Cy3 (red pseudo color) under permeabilizing conditions. Under this condition total bacteria were stained in red pseudo
color (panels b, g, l, and q). In the merged images (panels d, i, n and s) and the insets of the merged images (panels e, j, o, and t), extracellular C. burnetii is
shown in white and red pseudo colors (arrows), while intracellular C. burnetii is shown in red pseudo color (yellow arrowheads). F-actin was labeled with
phalloidin-FITC (green, panels a, f, k, and p). Bars scale: 5 μm. (B) Quantification of C. burnetii internalized in control and toxin-treated HeLa cells. (C)
Quantification of totalC. burnetii associated to control and treated HeLa cells. Between 100 and 120 cells and 1200 and 1600 bacteria were counted in each
experiment. Results are expressed as means ± SE of three independent experiments. *p < 0.05, **p < 0.01 compared to the DMSO treatment (one-way
ANOVA and Dunnett's post hoc test). ns: non-significant differences between groups (p > 0.05).

doi:10.1371/journal.pone.0145211.g001
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color, yellow arrowheads) was lower in HeLa cells transfected with Rac1 (Fig 5A, panels c and
d, and B) and RhoA (Fig 5A, panels e and f, and B) siRNAs as compared to that observed in
cells transfected with the scramble siRNA (Fig 5A, panels a and b, and B). The depletion of the
endogenous RhoA or Rac1 proteins diminished C. burnetii internalization without significantly
affecting the number of total bacteria associated to HeLa cells. This finding suggests that the
inhibition of the bacterium internalization is not explained by a defect in bacteria adherence to
the cells (Fig 5C). These inhibitory effects are in agreement with those produced by the overex-
pression of the dominant negative mutants RhoA N19 and Rac1 N17.

To test the possibility of a combined effect that would further inhibit C. burnetii entry, HeLa
cells were cotransfected with siRNAs targeted to RhoA and Rac1 and then infected for 4 h at
37°C. Cells were fixed and processed as described above to evaluate the number of intracellular
bacteria. The level of C. burnetii internalization in cells depleted for both RhoA and Rac1 (Fig
5A, panels i and j, and B) was similar (Fig 5A, panels e and f, and B). The number of total bacte-
ria associated to HeLa cells did not change significantly (Fig 5C) indicating that the low per-
centage of internalized bacteria does not result from a defective bacterial adherence to cells.
These results suggest that there is no additive effect of RhoA and Rac1 on C. burnetii internali-
zation and that these GTPases participate in two parallel pathways. However, this hypothesis
should be confirmed.

ROCK, an effector of RhoA, is involved in the internalization of C.
burnetii
It is known that during cell adhesion and migration, RhoA regulates stress fiber formation and
contraction through the ROCK-dependent phosphorylation of the myosin light chain [64,65].
ROCK has also been demonstrated to be involved in phagocytosis [28,29]. Taking into account
the recruitment of RhoA at the membranous fraction in cells infected with C. burnetii (Fig 3A
and 3B), the role of RhoA in C. burnetii internalization (Fig 4A and 4B), and that ROCK is a
downstream effector of RhoA, we decided to assess if this kinase participates in the bacterium
uptake. One strategy to assess this issue was to diminish the cell synthesis of ROCK. To this
end, HeLa cells were transfected with siRNA against ROCK and then infected for 4 h at 37°C.
Cells were either lysed to analyze the depletion levels of ROCK protein (see Fig 5D) or fixed
and processed as outlined above to evaluate the number of intracellular bacteria. The number
of intracellular bacteria (red pseudo color, yellow arrowheads) was lower in HeLa cells trans-
fected with ROCK siRNAs (Fig 5A, panels g and h, and B) in relation to the number of bacteria
observed in cells transfected with the scramble siRNA (Fig 5A, panels a and b, and B). The
depletion of the endogenous ROCK protein decreased C. burnetti internalization without sig-
nificantly affecting the number of total bacteria associated to cells. This evidences that the inhi-
bition of the bacterium internalization is not due to a defect in bacterial cell adherence (Fig
5C). These results suggest that ROCK plays a key role in the internalization of C. burnetii.

Fig 2. Clostridium difficile toxin B diminishes internalization ofC. burnetii by RAWmacrophages. (A) RAW cells were infected with C. burnetii for 4 h
at 37°C in the presence of 0.05% DMSO (control, panels a-e) or different concentrations of Clostridium difficile toxin B (panels f-t). Cells were fixed and
processed for indirect immunofluorescence to determine C. burnetii internalization and F-actin distribution as described in Materials and Methods. Cells were
analyzed by confocal microscopy. Micrographs of representative cells are shown. As indicated in Fig 1, extracellular and total bacteria were stained in white
pseudo color (panels c, h, m, and r) and red pseudo color (panels b, g, l, and q), respectively. In the merged images (panels d, i, n, and s) and the insets of the
merged images (panels e, j, o, and t), extracellular C. burnetii is shown in white and red pseudo colors (arrows), while intracellularC. burnetii is shown in red
pseudo color (yellow arrowheads). F-actin was labeled with phalloidin-FITC (green). Bar scale: 10 μm. (B) Quantification of C. burnetii internalized in control
and toxin-treated RAW cells. (C) Quantification of total C. burnetii associated to control or toxin-treated cells. Between 100 and 120 cells and 1200 and 1600
bacteria were counted in each experiment. Results are expressed as means ± SE of three independent experiments. **p < 0.01, ***p < 0.001, compared to
DMSO treatment (one-way ANOVA and Dunnett's post hoc test). ns: non-significant differences between groups (p > 0.05).

doi:10.1371/journal.pone.0145211.g002
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Fig 3. RhoA and Rac1 are recruited to a membrane fraction obtained from cells infected withC. burnetii. HeLa cells were infected with C. burnetii for
different lengths of time, lysed and centrifuged to obtain postnuclear supernatant, membrane and cytosolic fractions as described in Materials and Methods.
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The other experimental approach to assess the role of ROCK in the uptake of C. burnetii
was to inhibit the kinase by a specific inhibitor. To this end, HeLa or RAW cells were pre-incu-
bated with different concentrations of Y27632, a ROCK inhibitor, and then infected for 4 h at
37°C. Cells were fixed and processed as described earlier so as to evaluate the number of intra-
cellular bacteria. As displayed in Fig 6A and 6B, Y27632 inhibited C. burnetii internalization in
a dose-dependent manner without affecting the total bacteria associated to the cells (Fig 6C),
thus indicating that the adhesion of the bacteria to the cell surface is not affected by the inhibi-
tor. As expected, the inhibitor altered the stress fibers formation (Fig 6A). Similar results were
obtained using RAW cells (Fig 6D–6F). These results suggest that ROCK participates in the
internalization of C. burnetii regardless of the cell lines used (e.g. epithelial cells or
macrophages).

The factor mDia1, an effector of RhoA, is recruited to the membrane
fraction obtained from HeLa cells infected with C. burnetii
The factor mDia1 belongs to the formin family of proteins which behave as actin nucleator fac-
tors regulating actin dynamics [14,15]. Upon activation by RhoA, mDia1 is recruited to cell
membrane to become functional [22,66]. Therefore, we decided to assess whether mDia1 is
recruited to the cell membrane during infection. Then, HeLa cells were infected for different
periods of time, lysed and centrifuged to obtain a membrane and a cytosolic fraction. Postnuc-
lear supernatant (T: total fraction), cytosol (C) and membrane (M) fraction were analyzed by
SDS-PAGE and Western blot. Fig 7A and 7B, shows that mDia1 recruitment to the membrane
fraction increased after 30 min and reached its peak after 60 min of infection, a time point after
which the levels of protein association decreased to basal levels. The mDia1 showed similar
membrane recruitment kinetics when the experiments were performed with heat-killed C. bur-
netii (S1 Fig). The latter result strongly suggests that mDia1 is activated during C. burnetii-host
´s cell interaction. Interestingly, the infection time of maximummDia1 recruitment was similar
to that observed for RhoA (Fig 3A and 3B).

Internalization of C. burnetii by HeLa cells is stimulated by
overexpression of a constitutively active variant of mDia1
The best-studied formins are diaphanous-related formins (DRFs), which are direct effectors of
the Rho GTPases family. DRF proteins, such as mDia, have the actin assembly activity in the
C-terminal end and the regulatory region in the N-terminal end, which mediates intramolecu-
lar interactions with the C terminus to maintain formins in an autoinhibited state [67]. The C-
terminal end contains three structural and functional elements: (a) the profilin-binding FH1,
(b) the actin-binding FH2, and (c) the diaphanous autoregulatory domain (DAD). The N ter-
minus consists of four distinct structural domains, including (a) the GTPase binding domain
(GBD), which binds Rho family GTPases in the GTP-bound state; (b) the diaphanous inhibi-
tory domain (DID), which binds the C-terminal autoinhibitory DAD segment and also inter-
acts with Rho GTPases; (c) the dimerization domain (DD); and (d) a coiled-coil (CC) region.
The inactive mDia adopts an autoinhibitory conformation mediated by an intramolecular

(A) Postnuclear supernatant (T: total), cytosol (C) and membrane (M) fractions were analyzed by SDS-PAGE andWestern blot using antibodies against
RhoA and Rac1. Anti-actin and anti-E cadherin antibodies were used as loading controls. (B) Quantification of RhoA or Rac1 recruitment to the membrane
fraction. The band intensities corresponding to RhoA, Rac1, E cadherin and actin were measured by the ImageJ software, and the band intensity ratio
between RhoA and E cadherin, and Rac1 and E cadherin in the membrane fractions was calculated. Results are expressed as means ± SE from at least
three independent experiments. Mean values were compared with the 0 min infection condition by Student’s t test for single group mean (*p < 0.05,
***p < 0.001). ns: non-significant differences between groups (p > 0.05). RU: Relative Units.

doi:10.1371/journal.pone.0145211.g003
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interaction between the DAD, DID and a part of the GBD domains. Binding of GTP-bound
Rho protein (GTP Rho) to the GBD domain promotes formin release from the autoinhibited
state [67,68].

To test whether mDia1 plays a role in the internalization process, HeLa cells were trans-
fected with pEGFP-mDia1 wild type (WT), pEGFP-mDia1-N1 or pEGFP-mDia1-ΔN3. The
truncated mutants mDia1-N1 (N-terminal Rho-binding domains) and mDia1-ΔN3 (C-termi-
nal FH1 and FH2 domains) function as dominant negative and constitutively active forms,
respectively [18]. After transfection, cells were infected for 4 h at 37°C, fixed and processed as
specified above to evaluate the number of intracellular bacteria. The different overexpressed
constructs of mDia1 (Fig 8A) featured a distribution similar to that reported by Watanabe et al
[18]. C. burnetii internalization diminished in cell overexpressing EGFP-mDia1-N1 suggesting
that the FH2 and FH3 domains are important for actin cytoskeleton remodeling involved in C.
burnetii uptake. In turn, an increase in internalization was observed in cells overexpressing the
active EGFP-mDia1-ΔN3 construct (Fig 8A and 8B). The overexpression of all constructs did
not significantly affect the amount of total bacteria associated to the cells. This finding evi-
dences that changes in the bacterium internalization process is not due to a defect in bacteria
adherence to the cells (Fig 8C).

Taken together, these results indicate that the RhoA effector mDia1 is activated and
recruited to the membranes upon infection with Coxiella and, in addition, its function is
important for C. burnetii entry into host cells.

The overexpression of a constitutively active variant of mDia1 stimulated
internalization of C. burnetii in RhoA-depleted HeLa cells
To examine the relationship between mDia91 and RhoA in the internalization process, HeLa
cells were cotransfected with siRNAs targeted to RhoA and pEGFP-mDia1 WT or pEGFP-
mDia1-ΔN3 (constitutively active form) and then infected for 4 h at 37°C. Cells were fixed and
processed as specified above to evaluate the number of intracellular bacteria. The internaliza-
tion of C. burnetii was found to be diminished in WT EGFP-mDia1 overexpressing cells that
were transfected with RhoA siRNA as compared to those transfected with scramble siRNA.
Interestingly, the internalization of C. burnetii increased in EGFP-mDia1-ΔN3 overexpressing
cells that were transfected with RhoA or scramble siRNAs (Fig 9A and 9B). These results indi-
cate that the constitutively active form of mDia1 restores C. burnetii uptake in cells depleted of
RhoA. As expected, once mDia1 is activated, its function can be performed independently of
RhoA.

Discussion
Several pathogens are able to modulate the host´s cells functions as an evasion mechanism.
During the interaction with host´s cells, the microorganisms can remain adhered to the cell

Fig 4. C. burnetti internalization is inhibited by overexpression of the dominant negative mutants of Rho GTPases. (A) HeLa cells were transfected
with pEGFP (panels a-e), pEGFP-RhoA N19 (panels f-j), pEGFP-Cdc42 N17 (panels k-o), or pEGFP-Rac1 N17 (panels p-t). Cells were infected for 4 h at
37°C with C. burnetii and subsequently fixed and processed for immunofluorescence to determine the levels of C. burnetii internalization as described in
Materials and Methods. Cells were analyzed by confocal microscopy. Representative micrographs are presented. As indicated in Fig 1, extracellular and total
bacteria were stained in white pseudo color (panels c, h, m, and r) and red pseudo color (panels b, g, l, and q), respectively. In the merged images (panels d,
i, n, and s) and the insets of the merged images (panels e, j, o, and t), extracellular C. burnetii is shown in white and red pseudo colors (arrows), while
intracellular C. burnetii is shown in red pseudo color (yellow arrowheads). Bars scale: 5 μm. (B) Quantification of C. burnetii internalized by transfected HeLa
cells. (C) Quantification of totalC. burnetii associated to HeLa cells. Between 40 and 60 cells and between 400 and 600 bacteria were counted in each
experiment. Results are expressed as means ± SE of three independent experiments. *p < 0.05, **p < 0.01 compared to the EGFP control (one-way
ANOVA and Dunnett's post hoc test). ns: non-significant differences between groups (p > 0.05).

doi:10.1371/journal.pone.0145211.g004
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Fig 5. Knockdown of Rho GTPases and Rock inhibits internalization of C. burnetii. (A) HeLa cells were co-transfected with pEGFP and a scramble
(panels a and b), Rac1 (panels c and d), RhoA (panels e and f) or ROCK (panels g and h) siRNAs or the RhoA/Rac1 siRNA combination (panels i and j). Cells
were infected for 4 h at 37°C with C. burnetii and then fixed and processed for immunofluorescence to determineC. burnetii internalization as described in
Materials and Methods. Cells were analyzed by confocal microscopy. Representative micrographs of cells are presented. As indicated in Fig 1, in the merged
images (panels a, c, e, g, and i) and the insets of the merged images (panels d, d, f, h, and j), extracellular C. burnetii is shown in white and red pseudo colors
(arrows), while intracellular C. burnetii is shown in red pseudo color (yellow arrowheads). Scale bar: 5 μm. (B) Quantification of C. burnetii internalized by
transfected HeLa cells. (C) Quantification of totalC. burnetii associated to HeLa cells. Between 40 and 60 cells and between 400 and 600 bacteria were
counted in each experiment. Results are expressed as means ± SE of three independent experiments. ***p < 0.001, compared to scramble siRNA (one-way
ANOVA and Dunnett's post hoc test). ns: non-significant differences between groups (p > 0.05). (D) Lysates of cotransfected HeLa cells were analyzed by
SDS-PAGE andWestern blot using antibodies against Rac1, RhoA and ROCK. An anti-actin antibody was used as loading control. Scr: scramble siRNA.

doi:10.1371/journal.pone.0145211.g005
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surface or being internalized and then become sequestered into an intracellular vacuole that
prevents the fusion with lysosomes. Once internalized, other pathogens lyse the phagosome
and multiply within the cytoplasm using host’s actin filaments to disseminate to neighboring
cells [69].

It is well known that C. burnetii is a pathogen that transits along the phagocytic pathway
interacting with different endosomal compartments, generating a PV with autophagolysosomal
characteristics; however, the C. burnetii entry to the host´s cells is a poorly characterized mech-
anism. Nonetheless, it has previously been demonstrated that C. burnetii NMII and NMI inter-
nalization is diminished in fibroblasts and monocytes treated with cytochalasin D, an inhibitor
of actin polymerization, suggesting a participation of the actin cytoskeleton in that process
[53–55]. In this work, similar results were obtained in HeLa and RAW cells infected with C.
burnetiiNMII and treated with cytochalasin D (data not shown). Meconi et al. [56] have postu-
lated that monocytes incubated with C. burnetii NMI exhibited dramatic plasma membrane
extensions and protrusions associated to actin cytoskeleton reorganization. Conversely, only a
few membrane folds were observed in cells incubated with the attenuated C. burnetii NMII
[56]. However, the molecular events related to the morphological changes observed in the
plasma membrane and the entry of C. burnetii NMI or NMII into monocytes were not ana-
lyzed. Interestingly, and despite the more profound changes in the host´s plasma membrane
induced by virulent C. burnetii compared to that caused by the avirulent bacterium, the inter-
nalization of the latter was more efficient [54]. All together, these observations are in agreement
with our experimental model in which discreet plasma membrane extensions stimulated by
avirulent C. burnetti are associated with a minor actin cytoskeleton rearrangement that allows
effective C. burnetii internalization. Adhesion and invasion of bacteria to the host’s cell can be
either an active or a passive process. The active one, termed "triggering mechanism", involves a
bacterial type 3 secretion system (T3SS) that injects effectors into the host´s cell cytoplasm to
stimulate uncontrolled actin rearrangement ruffles formation and bacteria internalization. The
passive process or "zippering mechanism", involves a narrow interaction between bacteria
(ligands) and host´s cell (receptors) surfaces, pseudopodia formation and bacterial uptake
[70,71]. Cumulative evidence indicates that C. burnetii uses a zipper mechanism to entry into
the host´s cell [72]. C. burnetii enters the cell by a sinking process that involves the extension of
much lower prominent pseudopodia as compared to other bacteria or IgG-opsonized particles
[73,74].

We have previously demonstrated that the formation of C. burnetii containing PV depends
on actin and GTPases of the Rho family [51]. More recently, after studying the early interaction
between C. burnetii and the host´s cell, we showed that cortactin, a protein that participates in
the regulation of actin cytoskeleton dynamics, plays a role in the C. burnetii internalization
step [52]. The present study contributes to further understand the role of the GTPases of the
Rho family in bacterial pathogenesis. We provide evidence that Rac1, Cdc42 and, particularly,
RhoA, and their effectors mDia1 and ROCK, are involved in signal transduction pathways that

Fig 6. The specific inhibitor of ROCK, Y27632, diminishesC. burnetii internalization by HeLa or RAW cells. (A) HeLa or (D) RAW cells were infected
with C. burnetii for 4 h at 37°C in the presence of 0.05%DMSO (control, A, panel a; D, panel a) or different concentrations of Y27632 (A, panels b-d; D,
panels b-d). Cells were fixed and processed for indirect immunofluorescence to determineC. burnetii internalization and F-actin distribution as described in
Materials and Methods. Cells were analyzed by confocal microscopy. Representative micrographs of cells are presented. F-actin was labeled with phalloidin-
FITC (green). Representative micrographs of cells are presented. As indicated in Fig 1, in the merged images (A, panels a, b, c, and d; D, panels a, b, c, and
d), extracellular C. burnetii is shown in white and red pseudo colors (arrows), while intracellular C. burnetii is shown in red pseudo color (yellow arrowheads).
Between 100 and 120 cells and between 1200 and 1600 bacteria were counted in each experiment. Scale bar: 5 μm (A); 10 μm (D). Quantification of C.
burnetii internalized by Y27632-treated HeLa (B) or RAW (E) cells. Quantification of totalC. burnetii associated to HeLa (C) or RAW (F) cells. Results are
expressed as means ± SE of three independent experiments. ***p < 0.001, compared to DMSO treatment (one-way ANOVA and Dunnett's post hoc test).
ns: non-significant differences between groups (p > 0.05).

doi:10.1371/journal.pone.0145211.g006
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are involved in the internalization of avirulent C. burnetii into phagocytic and non-phagocytic
cells. The use of different cellular models have facilitated important progresses to better under-
stand C. burnetii-host´s cells interaction [75–77], as well as to study the host-cell interplay of
other pathogens [78,79]. In this work, RAW and HeLa cell lines were used as professional and
non-professional phagocytes, respectively, demonstrating that similar molecular mechanisms
are involved in both infection models.

The GTPases of the Rho family, main regulators of actin cytoskeleton dynamics, participate
in phagocytosis and invasion of several pathogens [80,81]. Our data demonstrate the role of
Rho GTPases in C. burnetii internalization in both HeLa and RAW cells by using C. difficile
toxin B, a pharmacological tool used in other experimental models of infection of HeLa cells
with Chlamydia trachomatis [82] or Neisseria meningitidis [83]. Meconi et al [56] have demon-
strated that monocytes treated with the C3 exotransferase of C. botulinum, an inhibitor of Rho
GTPases, drastically diminished the formation of membrane protrusions induced by infection
with C. burnetii NMI [56]; however, these authors have not assessed the bacterium internaliza-
tion. In this study, C. difficile toxin B abrogated C. burnetii uptake in HeLa as well as RAW
cells, suggesting that the GTPases of the Rho family have a critical regulatory function in the
internalization process.

It has previously been demonstrated that GTPases, when activated, are recruited to mem-
branes from the cytoplasm [62,63,84]. We observed that Rac1 and RhoA associated to a mem-
brane fraction obtained from cells infected with C. burnetii after 30 and 60 min, respectively.
This result suggests that the bacterium sequentially activates different members of the Rho
GTPases family during infection. By the FRET technique, it has been shown that during IgG-
opsonized erythrocytes phagocytosis, Rac1 and Rac2 were activated shortly after Cdc42 activa-
tion [37]. More interestingly, during phagocytosis of complement-opsonized zymosan parti-
cles, RhoA activation was detected by western blotting after 20 min of internalization [39].
This activation time is similar to the one observed in our C. burnetii infection model. Unfortu-
nately, the antibody against Cdc42 used was unable to detect the protein even in the postnuc-
lear supernatant. Thus, the activation of Cdc42 during C. burnetii infection could not be ruled
out.

Interestingly, it has been reported that the activation level of Rho GTPases in cell lines, even
in cells strongly stimulated, is often very low, around 5% of the total GTPase pool, to be easily
detected by techniques such as western blot [85–88]. Moreover, the cycling of GTPases
between membrane and cytoplasm, and their interaction with RhoGDI affects the sensibility of
immunostaining experiments as well as GFP-Rho overexpression experiments because a very
low fraction of GTPase is activated in a spatio-temporal way in the cell [87,89]. The low recruit-
ment to the membrane and the fast cycling of the Rho proteins may explain the fact that we
could not detect the EGFP-mDia1 at the Coxiella entry sites by fluorescent microscopy. Biosen-
sors have been used to visualize, at high resolution, the activation of Rho GTPases in living
cells [86,87,90]. The application of these tools in future studies will greatly enhance the ability
to analyze and understand the role of GTPase activation during C. burnetii infection.

Fig 7. The factor mDia1 is recruited to membrane fraction obtained from cells infected withC. burnetii. (A) HeLa cells were infected with C. burnetii for
different lengths of time, lysed and centrifuged to obtain postnuclear supernatant, membrane and cytosolic fractions. (A) Postnuclear supernatant (T: total),
cytosol (C) and membrane (M) fractions were analyzed by SDS-PAGE and western blot using an antibody against mDia1. Anti-actin and anti-E cadherin
antibodies were used as loading controls. (B) Quantification of mDia1 recruitment to membrane fraction. The band intensity of mDia1, E cadherin and actin
was measured by the ImageJ software, and band intensity ratio between mDia1 and E cadherin in the membrane fractions was calculated. Results are
expressed as means ± SE from at least three independent experiments. Means were compared with the 0 min infection condition by Student’s t test for single
group mean (**p < 0.01, ***p < 0.001). ns: non-significant differences between groups (p > 0.05). (RU): Relative Units.

doi:10.1371/journal.pone.0145211.g007
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In the present study, we demonstrated the importance of the active state of Rho GTPases in
C. burnetii internalization by using HeLa cells overexpressing dominant negative mutants
which significantly decreased the bacterium entry into the cells. A similar experimental
approach has been used to evidence the internalization process of other pathogens. Chlamydia
caviae internalization is controlled by Cdc42 and Rac1 [80], whereas in the uptake of Chla-
mydia trachomatis, only Rac1 is involved [82]. These results suggest that the process is highly
dependent on bacterium species. However, in some cases, the relationship between uptake and
Rho proteins seems to be related to the type of host´s cells. For instance, Listeria entry is Rac-
dependent in Vero cells but requires both Rac1 and Cdc42 in Ref52 fibroblasts [91] or mainly
Cdc42 in HeLa cells [92]. The internalization of Neisseria meningitidis into COS epithelial cells
expressing specific Opa-receptors is mediated by Cdc42 and Rac1, but is independent of RhoA
activity [83]. Interestingly, we show herein that the three GTPases are involved in C. burnetii
internalization by HeLa cells, thus suggesting that these GTPases may act synergistically during
the entry of these bacteria. Burnham et al [93] have reported comparable results during inva-
sion of HeLa cells by Streptococcus. The role of Rho GTPases has also been tested by using spe-
cific siRNAs. Our results demonstrate that the level of C. burnetii uptake in cells depleted of
RhoA or Rac1 was similar to that observed in cells depleted of the two GTPases. The double-
knockdown results suggest that there exists no additive effect between RhoA and Rac1 and that
these GTPases participate in two parallel pathways. We believe that these hypotheses remain to
be tested, which is difficult to attain, considering the complex crosstalk between the GTPases of
the Rho family. It is known that the crosstalk between Rho-GTPase signals that involves forma-
tion of complexes between regulators of the same and different GTPases (GAP, GEF, mem-
brane receptors, downstream effectors) hinders the interpretation of physiological cell
processes [87,94].

It is noteworthy that the recruitment of mDia1, an effector of RhoA, to membrane fractions
of cells infected with C. burnetii suggests that mDia1 acquires an open conformation that expo-
ses the actin nucleation sites, which allows the actin polymerization needed for C. burnetii
internalization. This observation is consistent with the stimulation of C. burnetii uptake in cells
overexpressing the mDia1 positive mutant ΔN3, which contains the actin nucleation domain,
and also with the inhibition of the uptake in cells overexpressing the negative mutant N1 that
only contains the Rho binding domain. Other models have shown that this mutant stimulates
cell elongation and the formation of parallel thin actin cables, while the negative truncated
mutant inhibits actin-fiber formation by sequestering active Rho proteins [18,95]. Thus, it is
likely that a similar mechanism is working for Coxiella infection. The participation of mDia1
and related proteins has also been observed in the infection process of other bacterial patho-
gens. Shigella flexneri and Rickettsia rickettsii utilize mDia1 and Sca2 (formin mimic protein),
respectively, to induce actin polymerization and, therefore, intracellular motility and spreading
[96,97]. During infection with Vibrio cholerae, VopF, a TTSS effector with formin-like activity,

Fig 8. The overexpression of the dominant negative mutants of mDia1 inhibits internalization of C. burnetii. (A) HeLa cells were transfected with
pEGFP (panels a-e), pEGFP-mDia1WT (panels f-j), pEGFP-mDia1-N1 (dominant negative form) (panels k-o) or pEGFP-mDia1-ΔN3 (constitutively active
form) (panels p-t). Transfected cells were infected for 4 h at 37°C with C. burnetii. Cells were fixed and processed for immunofluorescence to determineC.
burnetii internalization as described in Materials and Methods. Cells were analyzed by confocal microscopy. Representative micrographs of cells are
presented. As indicated in Fig 1, extracellular and total bacteria were stained in white pseudo color (panels c, h, m, and r) and red pseudo color (panels b, g, l,
and q), respectively. In the merged images (panels d, i, n, and s) and the insets of merged images (panels e, j, o, and t), extracellular C. burnetii is shown in
white and red pseudo colors (arrows), while intracellular C. burnetii is shown in red pseudo color (yellow arrowheads). Scale bar: 5 μm. (B) Quantification of
C. burnetii internalized by transfected HeLa cells. (C) Quantification of totalC. burnetii associated to HeLa cells. Between 40 and 60 cells and between 400
and 600 bacteria were counted in each experiment. Results are expressed as means ± SE of three independent experiments. *p < 0.05, **p < 0.01
compared to the EGFP control (one-way ANOVA and Dunnett's post hoc test). ns: non-significant differences between groups (p > 0.05).

doi:10.1371/journal.pone.0145211.g008
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participates in vivo in intestinal colonization and, in vitro, in alterations of actin cytoskeleton
and cell morphology in a manner similar to formin [98]. Recently, the role of formin FHOD1
in S. typhimurium entry into HeLa cell has been demonstrated [99].

It has also been shown that mDia1 is recruited to endosomes in HeLa cells suggesting its
role in controlling endosomal trafficking [95,100]. Colucci-Guyon et al [21] observed that
mDia1, together with actin, was recruited early to the phagocytic cup during CR3-mediated
phagocytosis in RAW264.7 macrophages. Interestingly, C. burnetii interacts with CR3 and the
αVβ3 integrin of the host’s cells [54]. Therefore, it is tempting to hypothesize that mDia1 may
regulate C. burnetii internalization through CR3. Further studies should be conducted to assess
this hypothesis.

In this work we have provided evidence that the kinase ROCK is also a key player in C. bur-
netii internalization, since the process was hampered in cells treated with a ROCK inhibitor, or
by silencing the protein with a specific siRNA. These observations are in agreement with the
role of ROCK in CR3-mediated phagocytosis in J774.A1 and RAW264.7 macrophages and in
Cos-7 fibroblasts [21,28]. Likewise, the Salmonella invasion of non-phagocytic cells was signifi-
cantly decreased by the ROCK inhibitor Y27632 [101]. More recently, Truong et al [99] have
demonstrated the requirement of ROCK II, but not of ROCK I, in S. typhimurium uptake into
HeLa cells using specific siRNAs. In our model, employing a similar experimental approach,
we demonstrated the role of ROCK I, yet the participation of ROCK II cannot be ruled out if
the effect of the general ROCK inhibitor is considered. ROCK has also been involved in the
infection of other pathogens such as E. coli K1 [102] that invades brain microvascular endothe-
lial cells, and EHV-1 (equine herpes virus type 1) in a CHO-K1 cell line [103]. Thus, it is evi-
dent that ROCK participates in infection processes involving different types of microorganisms
comprising not only bacteria but also viruses.

In conclusion, our results indicate that the active forms of RhoA, Cdc42 and Rac1 play an
important role and work sequentially in the entry of C. burnetii into the host´s cells, regulating
the actin rearrangement needed for this process. It could be speculated that these GTPases may
work together in a cooperative manner, but this hypothesis needs to be further tested. More-
over, we report for the first time, that the RhoA effectors mDia1 and ROCK are involved in a
signal transduction mechanism that favors C. burnetii uptake, highlighting the importance of
these molecules in Coxiella entry into host´s cells.

Supporting Information
S1 Fig. RhoA, Rac1 and mDia1 are recruited to the membrane fraction obtained from
HeLa cells infected with heat-killed C. burnetii.HeLa cells were infected with heat-killed C.
burnetii for different lengths of time, lysed and centrifuged to obtain postnuclear supernatant,
membrane and cytosolic fractions as described in Materials and Methods. (A) Postnuclear
supernatant (T: total), cytosol (C) and membrane (M) fractions were analyzed by SDS-PAGE

Fig 9. The overexpression of the constitutively active form of mDia1 restored the entry ofC. burnetii into RhoA-knocked down HeLa cells. (A) HeLa
cells were cotransfected with pEGFP-mDia1WT (panels a-j) or pEGFP-mDia1-ΔN3 (constitutively active form) (panels k-t) and scramble siRNA (panels a-e)
or RhoA siRNA (panels p-t). Transfected cells were infected for 4 h at 37°C with C. burnetii. Cells were fixed and processed for immunofluorescence to
determineC. burnetii internalization as described in Materials and Methods. Cells were analyzed by confocal microscopy. Representative micrographs of
cells are presented. As indicated in Fig 1, extracellular and total bacteria were stained in white pseudo color (panels c, h, m, and r) and red pseudo color
(panels b, g, l, and q), respectively. In the merged images (panels d, i, n, and s) and the insets of merged images (panels e, j, o, and t), extracellular C. burnetii
is shown in white and red pseudo colors (arrows), while intracellular C. burnetii is shown in red pseudo color (yellow arrowheads). Scale bar: 5 μm. (B)
Quantification of C. burnetii internalized by cotransfected HeLa cells. (C) Quantification of totalC. burnetii associated to HeLa cells. Between 40 and 60 cells
and 400 and 600 bacteria were counted in each experiment. Results are expressed as means ± SE of three independent experiments. ***p < 0.001
compared to the EGFP control (one-way ANOVA and Dunnett's post hoc test). ns: non-significant differences between groups (p > 0.05). Scr: scramble
siRNA.

doi:10.1371/journal.pone.0145211.g009
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andWestern blot using antibodies against RhoA, Rac1 and mDia1. Anti-actin and anti-E cad-
herin antibodies were used as loading controls. (B) Quantification of RhoA, Rac1 and mDia1
recruitment to the membrane fraction. The band intensity of RhoA, Rac1, mDia1, E cadherin
and actin was measured by the ImageJ software, and band intensity ratio between RhoA and E
cadherin, Rac1 and E cadherin, and mDia1 and E cadherin in the membrane fractions was cal-
culated. Results are expressed as means ± SE from at least three independent experiments.
Means were compared with the 0 min infection condition by Student’s t test for single group
mean (�p< 0.05, ���p< 0.001). ns: indicates non-significant differences between groups
(p> 0.05). (RU): Relative Units.
(TIF)
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