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Abstract

Background

Fish fin is a widely used, non-lethal sample material in studies using stable isotopes to
assess the ecology of fishes. However, fish fin is composed of two distinct tissues (ray and
membrane) which may have different stable isotope values and are not homogeneously
distributed within a fin. As such, estimates of the stable isotope values of a fish may vary
according to the section of fin sampled.

Methods

To assess the magnitude of this variation, we analysed carbon (6'3C), nitrogen (5'°N), hydro-
gen (5°H) and oxygen (5'0) stable isotopes of caudal fin from juvenile, riverine stages of
Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Individual fins were sub-sec-
tioned into tip, mid and base, of which a further subset were divided into ray and membrane.

Findings

Isotope variation between fin sections, evident in all four elements, was primarily related to
differences between ray and membrane. Base sections were'3C depleted relative to tip (~ 1
%o) with equivalent variation evident between ray and membrane. A similar trend was evi-
dent in 5°H, though the degree of variation was far greater (~ 10 %.). Base and ray sections
were '80 enriched (~ 2 %.) relative to tip and membrane, respectively. Ray and membrane
sections displayed longitudinal variation in *N mirroring that of composite fin (~ 1 %), indi-
cating that variation in'®N values was likely related to ontogenetic variation.

Conclusions

To account for the effects of intra-fin variability in stable isotope analyses we suggest that
researchers sampling fish fin, in increasing priority, 1) also analyse muscle (or liver) tissue
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from a subsample of fish to calibrate their data, or 2) standardize sampling by selecting tis-
sue only from the extreme tip of a fin, or 3) homogenize fins prior to analysis.

Introduction

The application of stable isotope-based approaches to ecological research is growing at a near
exponential rate [1]. Stable isotopes are used to examine trophic relationships, physiology and
migration history across all levels of biological organisation [2-4]. The stable isotopes of car-
bon (**C) and nitrogen (**N) are the most commonly applied in ecological research [1]. As the
8"C and 6"°N values of a consumer are related to the same ratios in their prey, researchers can
use these markers to reconstruct the resource use of an organism, predator—prey interactions
or even the entire food-web structure [5,6]. In contrast, stable isotopes of hydrogen (deuterium,
hereafter ?H) can differentiate between allochthonous and autochthonous resource use in
freshwater consumers [7,8], and are particularly useful to re-create migration history or to
assign point of origin to material, for which they can be used in conjunction with stable iso-
topes of oxygen (*®0) [9]. Furthermore as different body tissues turnover at different rates,
analysis of the isotope ratios of different tissues can provide an outline of temporal variability
in the ecology of an organism [10,11].

One of the principal disadvantages of stable isotope based ecological research is that sam-
pling is often destructive. Muscle is the most commonly analysed animal tissue in these studies
and in the majority of cases obtaining a sufficient sample requires the animal to be sacrificed
[1,10]. This has obvious ethical implications for the field especially in relation to studies involv-
ing rare or threatened species [12,13]. In recent years, the number of studies employing non-
lethal sampling has increased. This is most evident in ornithological studies where destructive
samples have been replaced with non-lethal sampling of blood or non-invasive collection of
feathers. In studies examining fur bearing mammals, hair and vibrissae samples have begun to
replace muscle [14-16]. In fish biology, the focus of the current study, scales [17] and fin clips
[18,19] represent non-lethal alternatives to commonly sampled muscle and liver[20].

Fish scales are somewhat troublesome, due their heterogeneous structure which character-
ises the entire lifetime of the fish [21,22]. Fin clips, however, are routinely taken during fish
population surveys and their isotopic turnover rate is similar to that of muscle [11,23]. This has
led to fin clips being proposed as an alternative to muscle for stable isotope studies of fish [24—
27]. However, fish fin is not a homogeneous structure. Fins are composed of bone and cartilage
rays interspersed between a thin epithelial skin membrane [28]. These tissues will likely have a
different isotopic turnover time and may have different isotope ratios [11]. Furthermore, the
relative proportion of ray and membrane components of a fishes’ fin varies from predomi-
nantly ray at the base to predominantly membrane at the tip [29]. If such variation exists
within fins, it may be sufficient to confound estimates of resource use or movements based on
stable isotope analysis of fish fin. Due to the ethical benefits of using fish fin rather than muscle,
an understanding of such confounding effects would be of great utility to the field.

To address these issues we assessed the levels of intra-fin variability in four commonly used
stable isotopes (6"°C, §'°N, 6°H and 6'°0) in wild-caught, juvenile anadromous Atlantic
salmon (Salmo salar; hereafter salmon) and brown trout (Salmo trutta, hereafter trout) sam-
pled in the Tornionjoki river system in northern Finland. We formulated the study around
three principal hypotheses, which tested the sources of variation within fins: Firstly, as fish
fin is not homogenous in structure [29], we predicted (hypothesis 1; H,) that the isotopic
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composition within an individual fin would not be homogenous. The remaining two hypothe-
ses (H, and H;) explored the source of variation observed within fins. We predicted (H,) that
variation within fins was a reflection of the relative abundance of isotopically distinct ray and
membrane sections, and that longitudinal isotope variation from the tip to the base sections of
the fin would mirror the variation between ray and membrane. An alternate hypothesis (H;)
related to fin regeneration. Fish, particularly juvenile salmon and trout, reside in turbulent
environments. As a consequence their fins are constantly regenerating due to damage and
abrasion with the substrate [30]. If a fish changes its diet or location while fins are regenerating
this may be reflected as variation in the isotope ratio between base and regenerated tip sections.
If this regeneration hypothesis (H;) explained the heterogeneous patterns in fish fin we
expected that longitudinal isotope variation from tip to base of ray and membrane analysed in
isolation would be equivalent to that observed from tip to base sections of composite (ray

+ membrane) fin.

Method
Field sampling

The fin samples used in this study were collected as a part of a salmon and trout smolt moni-
toring program conducted in the River Tornionjoki by the Natural Resources Institute of Fin-
land. The Tornionjoki River system (drainage area 40,000 km?*) forms a 500-km long border
between Finland and Sweden and flows into the Baltic Sea with an annual mean discharge of
approximately 380 m’ s' (Fig 1). In the last two decades, the river has had a dramatic increase
in returns of adult salmon and is currently one of the most productive salmon rivers in the
world, with annual returns exceeding 100,000 adult salmon [31].

Juvenile salmon and trout were sub-sampled in 2006 from the smolt catch of a large fyke-
net (100m leader width, set at 2—5m depth in center of 800m wide channel) used when esti-
mating the total smolt run of the Tornionjoki River. The sampling location was approximately
5 km upstream from the river mouth (65°52'23" N; 24° 822" E; Fig 1). The total smolt run in
2006 was estimated at approximately 830,000 salmon and 13,000 trout [31]. Salmon (sampling
dates from 17 May to 3 July) and trout (sampling dates from 18 May to 13 June) were ran-
domly selected from the smolt catch. Fish were removed from the nets several times per day
during the peak smolt run and daily at all other times. Each fish was measured (mm), weighed
(0.1g) and a section of caudal fin was collected. Fin samples were frozen (-20°C) within 12
hours of sampling and later oven-dried (60°C; 24-h). Samples were shipped to the Stable Iso-
topes in Nature Laboratory (New Brunswick, Canada) for further preparation and analysis.

For stable isotope analysis, 108 salmon and 19 trout were selected from this sample. The
total length and weight of the analysed salmon ranged from 117 mm to 188 mm (avg. 142 + 13
mm SD) and from 10.2 g to 48 g (avg. 20.3 * 6.6 g SD), respectively, with a median age of 3
years. The total length and weight of the analysed trout ranged from 134 mm to 214 mm (avg.
182 + 19 mm SD) and from 17.6 g to 73.0 g (avg. 48.4 £ 14.5 g SD), respectively, with a median
age of 3 years.

Ethics statement

Permission for sampling was sought and granted under licence from the Lapland County
Administrative of the Ministry of Forestry and Agriculture as well as the Finnish-Swedish
Transboundary River Commission and informally from private water owners at the sampling
site. Salmon and trout are classified as protected fishes in Finland and are subject to a national
monitoring program. A portion of this monitoring program consists of lethal sampling of
smolts throughout the annual migration period to monitor the sex ratio of the migrating fish.
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Fig 1. Map of Study Region. The River Tornionjoki drainage forms the northern boundary between Finland
and Sweden. The main rivers and the smolt sampling location near the river mouth are highlighted.

doi:10.1371/journal.pone.0145154.g001

The fin samples for this study required an atypically large section of caudal fin to ensure each
sample included base, mid- and tip sections of the caudal fin. All the samples for this study
were opportunistically collected from fish that were sacrificed for the purposes of the sex deter-
mination as part of a regular national monitoring program and no fish were sacrificed solely
for the purposes of this study. The sampling procedure was approved by the Finnish Animal
Ethics Committee. Licences and documentation, in Finnish, are available from the authors on
request.

Laboratory analysis

The fins were sub-sectioned into three groups (Fig 2). The first group (n = 60; Tip-Mid-Base;
hereafter TMB) were cut into three equidistant sections representing the distal tip, mid and
base section of each fin. To account for the potential biasing effects of lipids within the fins
[32,33] we also analysed fins from which lipids had been chemically removed. We assumed
that if variation between fin sections was similar in lipid extracted and non-extracted samples
then this variation was related to differences in the isotopic composition of the fin rather than
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Fig 2. Subsections of fin analysed. Diagram of brown trout highlighting the relative locations of tip, mid and base sections sampled on each fin. Image
provided courtesy of P. Antti-Poika.

doi:10.1371/journal.pone.0145154.9002

a variation in the proportion of lipids within the fin. The lipid extracted group (TMB.LE) were
treated with repeated (n = 3) immersion (30 minutes) in a chloroform: methanol (2: 1) solution
to remove lipids. Following the final immersion, each fin was dried at 60°C for 24 hours. These
lipid-extracted fins (n = 60) were subsequently cut into three equidistant sections as outlined
above. The final group (hereafter TMB.RM) were cut into three equidistant sections and each
section was further dissected into ray and membrane components. The sample size of trout

(n =19) was too small to facilitate analysis of TMB.LE or TMB.RM groupings for this species.
Hence, trout fins were analysed solely as TMB. Sufficient tissue to facilitate all isotope analyses
was collected from a few individuals, but generally samples for different experimental groups
were obtained from separate fish.

For carbon and nitrogen stable isotope analysis, 1.0 + 0.1mg subsamples of each fin section
were placed in tin-foil cups. Samples were combusted and analyzed in a Delta Plus continuous-
flow, isotope-ratio mass spectrometer (Thermo Finnegan GmbH, Bremen, Germany) con-
nected to a Carlo Erba NC2500 elemental analyzer (ThermQuest S.p.A., Milan, Italy). Carbon
and nitrogen isotope ratios are reported relative to the international standards Vienna PeeDee
Belemnite carbonate (V-PDB) and atmospheric nitrogen (AIR), respectively. Analytical
error was calculated as 0.1 %o for both §'°C and §'°N based on repeat analyses of an in-house
standard.

For hydrogen and oxygen isotope analysis, 0.2 + 0.05 mg subsamples of each fin section
were placed in silver foil cups. Stable-hydrogen and oxygen isotope measurements for animal
tissues were normalized to the international standard VSMOW (Vienna Standard Mean Ocean
Water) using standards EC1 and EC2 (Environment Canada, Saskatoon, Canada). We deter-
mined the non-exchangeable 5°H of samples using the comparative equilibration approach
[34] with two secondary standards (EC1 and EC2). These standards were previously calibrated
to account for the hydrogen exchangeability between the hydrogen atoms of ambient water
vapor and tissues [34,35]. Samples and standards were allowed to exchange with local atmo-
spheric hydrogen for a minimum of 72 hours prior to analysis. Samples were combusted and
analysed using a High Temperature Conversion Elemental Analyser (Thermo Scientific
GmbH, Bremen, Germany) connected to a Delta Plus XP continuous flow isotope-ratio mass
spectrometer (Thermo Scientific GmbH, Bremen, Germany). Repeat analysis of an in house
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standard, keratin (Spectrum-Porcine #SJ1400), indicated that analytical precision was better
than 2 %o and 0.5 %o for 8°H and §'°0, respectively.

Data analysis

The stable isotope data associated with this work are provided in the Supporting Information
file with this paper (S1 File). The natal and home range of each fish sampled was not known,
and as the river basin covers > 40, 000 km* along > 500 km North-South gradient, they likely
forage in numerous habitats that encompassed different isotopic baselines. As such, a direct
comparison between fish would likely be affected by variation associated with the isotopic base-
line of each individual’s home range. To avoid this, we used paired analyses to assess the differ-
ences within individuals.

Paired Welch t-tests (a non-parametric equivalent of the paired Student’s t-test) were used
to examine the variation in §"°C, §"°N, §'°0, 6°H values between sections of each fin. Pairwise
comparisons were made between the tip, mid and base sections of each fin to test for heteroge-
neity in the isotope values within fins from both non-treated (TMB) and lipid-extracted (TMB.
LE) salmon and all trout (H;). To determine the effect of lipid extraction on intra-fin variabil-
ity, a Welch t-test was used to compare the difference between tip and base sections of non-
treated and lipid-extracted salmon (H;). To test H,, that the isotope ratios of ray and mem-
brane would differ, pairwise comparisons of the isotope ratios of ray and membrane were con-
ducted across tip, mid and base sections of all TMB.RM fins. Finally, to test H; and determine
whether isotopic variation within fins was due to isotopic shifts associated with fin regenera-
tion we used paired Welch t-tests to examine the variation between tip, mid and base sections
separately for ray and membrane tissues in TMB.RM group fish.

If the heterogeneity within fins was related to variation between the isotope ratios of ray and
membrane we expected that variation observed between ray and membrane would reflect that
observed between base and tip sections of composite (ray + membrane) fins. In contrast, if the
variation related to fin regeneration then we expected that variation between tip, mid and base
sections of ray and membrane independently would mirror that observed in composite fins. A
Chi-square test was used to test whether the variation between the isotope ratios of tip and
base sections was due to variation between membrane and ray or longitudinal variation within
each tissue. Variation between tip and base was classed as tip enriched whereby tip sections
were enriched in a specific isotope relative to base sections (option 1), or base enriched,
whereby base sections were enriched relative to tip (option 2). The count of options 1 and 2
was then compared with variation between membrane and ray (option 1: membrane enriched,
whereby membrane was enriched relative to ray; option 2: ray enriched, whereby ray was
enriched relative to membrane), tip and base of fin membrane (option 1: tip enriched; option
2: base enriched), and finally tip and base of fin ray (option 1: tip enriched; option 2: base
enriched) using Pearson’s Chi-square test of a 2 x 2 matrix. The test was conducted in R [36].

Results

Hypothesis 1 —Variation between tip, mid and base sections of
composite fin

Salmon. In the TMB group, tip sections were ">C enriched (1.0 + 0.6 %o SD) relative to
base sections (Fig 3a). This variation was equally distributed between the tip, mid and base
sections (Table 1). A similar trend was observed in the TMB.LE group; tip sections were
enriched (1.2 + 0.6 %o) relative to base sections with mid sections intermediate between both
extremes (Fig 4a; Table 1). Tip sections were >N depleted relative to base sections in both
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Fig 3. Variation of isotope ratios in salmon fin (TMB). Comparison of the (a) carbon (5'3C), (b) nitrogen (5'°N), (c) hydrogen (5°H) and (d) oxygen (5'%0)
stable isotope ratios of base and tip sections of non-treated Atlantic salmon fins. 1:1 lines are added to each plot for visualisation purposes.

doi:10.1371/journal.pone.0145154.9003

TMB (1.2 + 0.6 %o; Fig 3b) and TMB.LE (0.8 + 0.4 %o; Fig 4b) fins. This variation was equally
dispersed between the tip, mid and base sections (Table 1). Intra-individual variation in 8*H
exceeded that evident in the other three isotopes, in the most extreme cases differences of
greater than 30 %o were observed between tip, mid and base sections of a single fin. On average,
tip sections were *H enriched relative to base sections by 10 + 10 %o and 12 + 6 %o in TMB

(Fig 3c) and TMB.LE (Fig 4c) samples, respectively. Tip sections were 'O depleted relative

to tip sections by 1.9 + 0.7%o in TMB and by 1.8 + 0.8%o in TMB.LE groups (Figs 3d and 4d;
Table 1). Mid sections were intermediate between tip and base (Table 1).

The removal of lipids had no effect on the degree of variation between tip and base sections
in carbon (t = 1.52; d.f. = 60.842; P = 0.134), oxygen (t = 0.46; d.f = 28.58; P = 0.647) or hydro-
gen (t =1.01; d.f. = 56.11; P = 0.313) stable isotope ratios. Statistically significant variation was
evident in stable isotopes of nitrogen (t = 3.31, d.f. = 56.18; P = 0.001) but the actual variation
in isotope ratios (mean + SD; non treated: 1.2 + 0.6; treated: 0.8 + 0.4) was small and unlikely
to confer any biological significance.

Trout. The variation in tip-mid-base comparisons of trout mirrored that evident in
salmon. Tip sections were 13C enriched (0.8 + 0.9 %o) and '°N depleted (1.3 £ 0.5 %o) relative
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Table 1. Intra-fin variation in carbon (5'3C), nitrogen (5'°N), hydrogen (52H) and oxygen (5'20) stable isotope ratios.

Tip—Base Tip—Mid Mid—Base
Isotope n Mean (SD) t@, ny P Mean (SD) t@, n P Mean (SD) t @, n1y P
Salmon—non treated
5'3C 32 1.0 (0.6) 9.7 <0.001 0.4 (0.5) -4.9 < 0.001 0.5 (0.5) -5.5 <0.001
5"°N 32 -1.2 (0.6) 11.9 <0.001 -0.6 (0.5) 6.4 < 0.001 -0.6 (0.3) 11.8 <0.001
5°H 34 9.5 (10.3) -5.38 <0.001 4.9 (8.5) 3.4 < 0.001 4.5 (7.5) 35 < 0.001
5'%0 14 -1.9(0.7) 9.9 <0.001 -1.4 (0.8) 6.8 <0.001 -0.6 (0.7) 3.2 <0.001
Salmon—lipid extracted
5'3c 31 1.2 (0.6) -11.5 <0.001 0.7 (0.5) 9.2 <0.001 0.5 (0.5) -5.4 <0.001
5"°N 31 -0.8 (0.4) 10.7 <0.001 -0.3 (0.3) 5.2 <0.001 -0.5 (0.4) 6.4 <0.001
5°H 31 11.6 (6.4) -10.1 <0.001 7.4 (4.6) -9.1 <0.001 4.1 (4.9) -4.7 <0.001
5'%0 31 -1.8 (0.8) 12.1 <0.001 -1.1 (0.8) 7.9 <0.001 -0.7 (0.7) 5.7 <0.001
Trout
5'3c 9 0.8 (0.9) 27 0.033 0.8 (1.1) 2.1 0.072 0.1 (0.6) -0.1 0.998
5"°N 9 7.2 <0.001 -0.8 (0.5) 4.8 <0.001 -0.5 (0.4) 3.6 <0.001
5°H 10 7.7 < 0.001 11.2 (7.8) -4.5 < 0.001 6.4 (5.7) -3.6 < 0.001
6180 - . _ . _ _ _ -

Number of fins analysed (n) and mean (%.) difference between tip-base, tip-mid and mid-base comparisons of stable isotope ratios in non-treated (TMB)
and lipid extracted (TMB.LE) Atlantic salmon and non-treated anadromous brown trout. Standard deviation of difference is presented in parentheses.
Results of paired Welch t-test of the difference is also presented, degrees of freedom for each test are n— 1.

doi:10.1371/journal.pone.0145154.t1001

to base (Fig 5a-5b; Table 1). This variation was equally dispersed between tip, mid and base

sections (Table 1). Tip sections were H enriched relative to base sections (17.6 + 7.2 %o; Fig

5¢), with the variation equally split between tip, mid and base comparisons (Table 1). Due to
sample size limitations, oxygen isotope ratios of trout fins were not analysed.

Hypothesis 2 —Variation between ray and membrane

The 6"°C, §'°N 6°H and 6'®0 isotope ratios of ray and membrane differed in tip, mid and base
sections. Fin membrane was *C enriched relative to ray in tip (0.5 £ 0.5 %o), mid (0.8 + 0.4 %o)
and base (0.7 + 0.6 %o) sections (Fig 6a; Table 2). Variation in 8'°N values between membrane
and ray, though statistically significant (Table 2), was too small to be biologically meaningful
(Fig 6b); membrane was '°N enriched relative to ray in tip (0.1 + 0.3 %o), mid (0.2 0.3 %o)
and base sections (0.3 % 0.2 %o; Table 2). Fin membrane was *H enriched relative to ray in all
sections (Fig 6¢) though the difference was most pronounced in mid (21 + 11 %o) and base

(22 + 15 %o; Table 2) sections. Fin membrane was 20 depleted relative to ray (Fig 6d) and this
variation was evident in tip (0.9 £ 0.8 %o), mid (1.4 £ 0.8 %o) and base (1.7 £ 0.9 %o) sections
(Table 2).

Hypothesis 3 —Longitudinal variation in ray and membrane

When assessed independently, the variation between tip, mid and base sections of fin ray and
membrane was minimal, and only evident in certain stable isotope values (Fig 7; Table 3). Vari-
ation in 8'°C values between tip, mid and base sections of both ray and membrane was not sig-
nificant (Fig 7a, Table 3). Tip sections of membrane (0.7 £ 0.5 %o) and ray (0.9 * 0.3 %o) were
>N depleted relative to base sections (Fig 7b; Table 3). This variation was equally dispersed
between tip, mid and base sections of both tissues (Table 3). Variation in 8°H values was
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doi:10.1371/journal.pone.0145154.g004

evident between tip, mid and base sections of fin membrane (Fig 7c, Table 3), but not fin ray
(Fig 7¢). In contrast to the variation observed between tip, mid and base sections of composite
fin (TMB), tip sections of membrane were *H depleted (10.6 + 11.6 %o) relative to base sections
(Table 3). Variation in the 8'®0 values of membrane was not significant (Fig 7d, Table 3), but
tip sections of ray were 180 enriched relative to mid (0.8 + 0.9 %o) and base (0.8 + 1.2 %o).

Chi-square tests of carbon and oxygen isotope ratios indicated that variation between tip
and base sections was most similar to variation between membrane and ray (Table 4). Tip—
base variation in nitrogen in composite (membrane + ray) was significantly different from vari-
ation between membrane and ray, but similar to tip—base variation in membrane and ray
(Table 4). Tip-base variation in hydrogen differed from membrane ray and tip-base variation
of membrane but not from tip-base variation in fin ray. A slight modification of the test, char-
acterising the enriched / depleted cut off at +4 / -4 %o respectively rather than 0, which limited
the potential error associated with slightly enriched or depleted samples, indicated that tip—
base variation in hydrogen was similar to variation between membrane and ray (x> = 1.555,
P=0212).
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Discussion

We detailed significant differences in the §'°C, §'°N, 6°H and 6'®0 values of membrane and
ray components in the caudal fins of juvenile Atlantic salmon and anadromous brown trout.
These differences were sufficient to drive mean variation in excess of 1 %o in §"°C and §'°N, 2
%o in 6"*0 and 10 %o in 5°H between the base and tip section of fins. Our hypothesis, that
intra-fin variability would be evident in the caudal fins of salmon and trout, was roundly sup-
ported by the data. Furthermore, similar trends were observed in fins that contained lipids and
those which had undergone lipid extraction. Our results indicate that the variation was most
likely due to differences in the relative abundance of ray and membrane in each fin section.
However, fin growth and regeneration appears to be an important factor in relation to §'°N.
The variation in §"°C, §°H, "0 and to a lesser extent 5'°N between ray and membrane in
tip, mid and base sections echoed the variation between tip, mid and base sections of composite
(ray + membrane) fin. Chi-square tests of H isotopes gave contrasting results depending on
whether the cut off between enriched and depleted samples as set at 0 or at +4 / -4. We are
inclined to favour the second comparison, which takes into account the greater experimental
error (~ 2 %o) and greater range of stable isotope values (~ 100 %o) associated with stable iso-
tope ratios of hydrogen, and is commensurate with the similar range of variation evident
between both comparisons. Fish fin is a heterogeneous structure with a thin membrane layer
supported by a fan-like arrangement of rays [29 and references therin]. As a consequence, the
ratio of ray to membrane is likely higher in base sections than tip. Fin ray and base sections of
composite fins were °C and *H depleted, and '*O enriched relative to membrane and the tip
sections of composite fins. Furthermore, the degree of variation (1 %o in §"°C, 1-2 %o in §'°0
and 10 %o in 5°H values) was equivalent in both comparisons, indicating that the difference
between ray and membrane accounted for the differences between base and tip sections. In
contrast, variation in these isotope values between tip, mid and base sections of ray and mem-
brane analysed independently was minimal. Variation evident in the °H values of membrane,
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plot for visualisation purposes.
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whereby base sections were “H enriched relative to tip, ran counter to variation observed in

composite fins and therefore is not related to the overall trends. Some variation was also evi-
dent in "®0 values, though this variation was not evenly dispersed through the fin. Tip sec-
tions of fin ray were enriched in '®O relative to mid and base sections, indicating that it may

Table 2. Variation in carbon (5'3C), nitrogen (5'°N), hydrogen (52H) and oxygen (5'20) stable isotope ratios between fin ray and membrane.

Tip Mid Base
Isotope n Mean (SD) t@, n P Mean (SD) t@, n P Mean (SD) t@, n P
5'3c 12 0.5 (0.5) 3.4 <0.001 0.8 (0.4) -7.6 <0.001 0.7 (0.6) 3.9 <0.001
5'°N 12 -0.1(0.3) 0.6 < 0.001 -0.2 (0.3) 2.9 0.011 -0.3(0.2) 35 < 0.001
5°H 21 8.1 (5.3) -6.9 < 0.001 20.9 (10.9) -8.8 < 0.001 22.2 (14.8) 6.9 < 0.001
5'%0 21 -0.9 (0.8) 5.3 < 0.001 -1.4 (0.8) 7.9 < 0.001 -1.7 (0.9) 8.6 <0.001

Number of fins analysed (n) and the mean (%.) difference between the isotope ratios of membrane and ray tissues in tip, mid and base sections of Atlantic
salmon fins. Standard deviations are presented in parentheses. Results of a paired Welch t-test of the difference between ray and membrane in each
section are also provided. Degrees of freedom are n— 1 in all cases.

doi:10.1371/journal.pone.0145154.1002
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Table 3. Longitudinal variation of carbon (5'3C), nitrogen (5'°N), hydrogen (52H) and oxygen (5'20) stable isotope ratios in fin ray and membrane.

Tip—Base Tip—Mid Mid—Base
Isotope n Mean (SD) t,n P Mean (SD) t@, n P Mean (SD) t@, n P
Membrane
5'3c 12 0.1 (0.6) -0.4 0.74 -0.1 (0.5) 0 1.000 0.1 (0.3) -0.8 0.401
5'°N 12 -0.7 (0.5) 4.7 < 0.001 -0.3 (0.4) 3 0.001 -0.4 (0.3) 4.1 < 0.001
5%H 21 -10.6 (11.6) 4.2 < 0.001 -4.6 (9.5) 2.2 0.043 -5.9 (13.8) 1.9 0.059
5'%0 21 -0.1 (0.8) 0.4 0.698 -0.3(0.7) 2 0.062 0.3 (1.0) -1.2 0.300
Ray
5'3c 12 0.2 (0.9) -0.9 0.400 0.3 (0.6) -1.8 0.101 -0.1 (0.5) 0.7 0.501
5'°N 12 -0.9 (0.3) 9.9 < 0.001 -0.5(0.2) 7.3 < 0.001 -0.4 (0.2) 5.5 < 0.001
5°H 21 3.5 (12.5) -1.3 0.202 8.2 (7.8) -4.8 <0.001 -4.7 (12.1) 1.8 0.094
5'%0 21 -0.8 (1.2) 2.9 < 0.001 -0.8 (0.9) 3.8 < 0.001 0.1 (0.8) -0.2 0.903

Number of fins analysed (n) and the mean (%.) difference between the isotope ratios of tip, mid and base sections in ray and membrane tissues of Atlantic
salmon fins. Standard deviations are presented in parentheses. Results of a paired Welch t-test of the difference between ray and fin in each section are
also provided. Degrees of freedom are n— 1 in all cases.

doi:10.1371/journal.pone.0145154.t003
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Table 4. Chi-square tests comparing the variation between stable isotope ratio of tip and base section with membrane and ray and tip and base
sections of fin membrane and ray separately.

Membrane—Ray
xz

5'3c <0.001

5'°N 6.274

5%H 7.646

5'%0 0.005

doi:10.1371/journal.pone.0145154.1004

Tip—Base (membrane) Tip—Base (Ray)
P a P i P
1 5.749 0.016 8.481 0.003
0.013 0.266 0.606 0 1
0.006 17.722 <0.001 2.415 0.120
0.945 8.402 0.004 3.936 0.047

relate to a regeneration of fin tips following a seasonal change in the §'®0 values of the water in
the Tornionjoki river system. Previous studies have demonstrated that the oxygen isotopic
composition of river water vary between seasons [37], but further work within this region is
required to ascertain whether such seasonal variation in the Tornionjoki River could be a driver
of the variation in isotope ratios recorded here.

Variation in 6'°N values ran counter to the trend observed in §'*C, §°H and §'30. Variation
between ray and membrane was minimal, but tip sections of both ray and membrane were '°N
enriched relative to base section, mirroring the trend in composite fins. As such the variation
in 6"°N detailed in fish fins is likely related to growth or the regeneration of tissue rather than
variation between ray and membrane components of the fin. Salmon smolts in the Tornionjoki
River predominantly feed on Perlodidae larvae [38] which are predators of other benthic
macroinvertebrates [39]. An increased gape size, associated with smoltification, would enable
salmon smolts to forage on larger Perlodidae larvae than parr potentially resulting in the
observed increase in §'°N. In any case, the variation evident in §'°N and §'®0 values indicates
that variation between fin sections cannot solely be considered in terms of ray and membrane
and may also be affected by growth and regeneration.

The principal objective of this study was to examine the variation of isotope ratios within
fins. As such, we do not have sufficient information to conclusively determine the causes of the
variation in isotope ratios between fin ray and membrane. Further experimental studies in con-
trolled environments would be required to assess this. Our observations, however, provide an
opportunity to speculate about the mechanistic processes. Fin ray is composed of bone (cal-
cium phosphate) and collagen [29], and thus may be >C enriched due to the presence of car-
bonates [27,40]. However, ray was e depleted relative to membrane indicating that bias due
to carbonates is not an issue. Rather, we suggest that difference in turn-over rates between ray
and membrane may account for the variation evident in isotope ratios. Bone collagen has a
longer isotope turnover rate than most tissues [41,42]. Therefore, the isotope ratios of fin ray
likely reflect a longer period in the life history of a fish than membrane [10]. The fish analysed
in this study were collected during the early summer months. As such, their isotope ratios likely
reflected their diet and habits during the winter and spring. In northern Finland, this time
period is associated with a shift from 24-hour darkness, ice cover and low autochthonous pro-
ductivity to 24-hour sunlight and high productivity [43]. Associated with this is a large influx
of meltwater which may have altered the 8°H and 8'%0 values of the river [44,45]. Against this
backdrop of variation in the isotope ratios of prey and environment, differences in the turnover
rate of ray and membrane would likely result in significant differences in the isotope ratios of
each tissue. Further studies in this region incorporating a seasonal dimension are required to
determining the seasonal variation in isotope ratios of water and consumers[43].

The potential effect of lipids on our results warrants further attention. Lipids are depleted in
'3C and *H relative to protein and previous studies have indicated that failing to remove lipids
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prior to analysis can incorrect estimation of the isotope ratios of fish fin [27]. Estimations of
8”H values for tissues containing lipids are further complicated as the fraction of exchangeable
H with ambient vapour can differ between tissues, potentially biasing these measurements
[33]. Although we analysed treated and non-treated samples, we did not have sufficient mate-
rial to analyse the same samples before and after lipid treatment. Thus we cannot categorically
account for the effect of lipids in the TMB and TMB.RM groups. A preliminary study from the
same fish fin samples that were analyzed before and after lipid extraction (Soto et al., unpub-
lished data) indicated that lipid removal resulted in an enrichment of, on average, 25.8 %o (+
11.5 SD) in each sample and reduced the variation in §°H between tip and base sections by
approximately 50%; however, this study had a limited sample size (n = 6). As such, we recom-
mend that lipid removal be included in the standard sample preparation procedures for fish fin
[27] but contend that further, non-lipid related variation is also evident within fish fin.

The levels of intra-individual variation detailed here are sufficient to cause concern for
researchers whose work is entirely based on fin clips. For example, this study resulted from a
failed attempt to use stable isotopes to conduct a mixed stock analysis of origins of salmon and
trout smolts in the Tornionjoki River system. We intended to use stable isotope mixing models
to relate the isotope ratios of juvenile salmon and sea trout in potential natal streams to the iso-
tope ratios of sea-going smolts. Doing so would have revealed the relative contribution of dif-
ferent natal streams to the overall population of salmon and trout in the river. However, the
variation within individual fish exceeded the variation among juvenile fish in natal streams
throughout the catchment, rendering the initial investigation ineffective. The variation evident
in §"°C, 5"°N and 60 values exceeded 2 %o in many fish. While not sufficient to dramatically
alter inferences regarding a fishes’ trophic level or resource use, subtle differences in this range
have been associated with variation between individuals within a population or an individual’s
placement upon a scale of resource use [46,47]. Furthermore, if the variation between tip and
base sections relates to temporal variation in resource use then this temporal variation would
be masked when conducting an analysis of composite fin tissue. The variation evident in §*H
between fin sections far exceeded that of other isotopes. In the most extreme cases, &%H ratios
within individual fins varied by over 30 %o. Given that the entire range of 8°H values recorded
in the study was approximately 40 %o, this variation within a fin essentially covered the entire
range of 8°H values within the catchment. This finding raises some concerns regarding the
suitability of fish fin as a medium for 8*H analysis, especially for studies aimed at identifying
migration patterns or natal ranges. Further testing of intra-fin variability in other catchments
and with other species will be required to establish the suitability of 5°H values of fish fin as a
marker for migration in freshwater fishes. It is worth noting, however, that the typical variation
between fin sections was approximately 10 %o. When considered in relation to the analytical
precision of 8°H measurements compared to other isotopes studied here, this degree of varia-
tion is comparable to that reported for §"*C, §'°N and §'®O values.

The intra-individual variation evident in stable isotope ratios of fin may also be relevant to
studies using other tissues. Although the most common matrices for stable isotope analysis
(muscle, liver, hair, bone, vibrissae and keratin [1]) are homogenous materials in comparison
to fish fin, the potential for intra-individual variability in these tissues has rarely been studied.
One such study in Atlantic salmon, identified variation exceeding 1 %o in the §>C and 6"°N
values of muscle tissue from an individual fish [48]. The variation in §'>C was likely related to
lipid reserves but the variation in §'°N indicates that additional mechanisms may be responsi-
ble for determining the isotope ratios in specific tissues. In addition, as stable isotope turnover
rates are inextricably linked with growth [10,11] it is reasonable to hypothesise that active mus-
cle tissues undergoing growth or repair may have different stable isotope ratios than inactive
muscle tissues.
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Our results indicate that further studies into the variability within fins should be conducted
prior to the replacement of traditional tissues such as muscle by fish fin. Numerous controlled
studies have been conducted to determine the isotopic turnover rate of various tissues, includ-
ing fin [10,49]. However, to the best of our knowledge no study has explicitly tested the differ-
ence between fin membrane and ray. Until the variation between ray and membrane is well
quantified we propose three options to facilitate the continued use of non-lethal fin samples: 1)
researchers using fin clips should also sacrifice a small number of fish from which isotope ratios
of tissues with a known turnover time (e.g. liver and muscle) can be obtained. These values
may act as a correction factor for fin clips allowing researchers to relate the isotope ratio of fins
to homogenous tissues with an established turnover rate and identify any potential bias associ-
ated with the fin clips. 2) Fin clips should be restricted to the tip section, decreasing the varia-
tion in the amount of ray in the sample. 3) If options 1 or 2 above are not feasible, fin clips may
be homogenized to provide a uniform value representing the full fin. However, this option may
also be prone to bias as the composite value will be a reflection of the proportion of ray and
membrane in the sample.

In conclusion, we have identified consistent and ecologically significant variation in the
8"C, 6"N, 6°H and §'®0 values of the caudal fins of Atlantic salmon and anadromous brown
trout. This variation is predominantly related to the difference in isotope ratios of ray and
membrane components, but additional variation associated with fin regeneration and lipid
reserves are also evident. These variations should not dissuade researchers from using non-
lethal fin clips as an alternative to tissues that require lethal sampling, but they do demonstrate
a need for researchers to account for this variation when sampling, treating and preparing fins
for stable isotope analysis.

Supporting Information

S1 File. Stable isotope values. A data file containing all carbon (8'°C), nitrogen (8'°N), hydro-
gen (8°H) and oxygen (5'%0) stable isotope ratios generated during this study.
(XLSX)
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