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Abstract
Identifying influential spreaders in networks, which contributes to optimizing the use of avail-

able resources and efficient spreading of information, is of great theoretical significance and

practical value. A random-walk-based algorithm LeaderRank has been shown as an effec-

tive and efficient method in recognizing leaders in social network, which even outperforms

the well-known PageRank method. As LeaderRank is initially developed for binary directed

networks, further extensions should be studied in weighted networks. In this paper, a gener-

alized algorithm PhysarumSpreader is proposed by combining LeaderRank with a positive

feedback mechanism inspired from an amoeboid organism called Physarum Polycephalum.

By taking edge weights into consideration and adding the positive feedback mechanism,

PhysarumSpreader is applicable in both directed and undirected networks with weights. By

taking two real networks for examples, the effectiveness of the proposed method is demon-

strated by comparing with other standard centrality measures.

Introduction
Over the years, the study of graphs and networks have drawn increasing attention in a wide
variety of scientific disciplines, such as biology, computer science, economics, mathematics
and sociology. Meanwhile, network analysis, as a key tool to map and measure those network
entities and their connections, has been well studied to provide a visual and mathematical
view of networks. However, a major challenge it encounters is how to identify the most effi-
cient spreaders for optimizing the use of available resources and ensuring efficient spread of
information [1–5]. With different topology and relations, node centrality can be endowed
with various meanings, such as influence [6], importance [7, 8], popularity [9, 10], controlla-
bility [11, 12] and spreading efficiency [1]. Studies on the importance of a node for spreading
can be of great significance in controlling rumor, disease spreading and information flow in
networks [13–16].
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Ever since the idea of centrality was introduced, various centrality measures have been pro-
posed to identify nodes which are more central than others [17–19]. Recently, Landherr et al.
[20] conducted a critical review of five common centrality measures in social networks, includ-
ing degree centrality [17], closeness centrality [17], betweenness centrality [17], eigenvector
centrality [21] and Katz’s centrality [22]. Degree, the simplest centrality measure, is the number
of edges that a node is connected to, which was firstly proposed by Freeman. However, a node
with higher degree might not be in a position which can access resources quicker. In order to
make up this drawback, a more sophisticated centrality measure closeness is developed, which
was defined as the inverse total length from a node to all other nodes. Another important cen-
trality measure is betweenness, which is calculated as the fraction of the times that a node lies
on the shortest paths over the total number of the shortest paths. Besides, by introducing ran-
dom walks, a revised betweenness centrality is proposed in [23], which counts the frequency of
a node traversed by a random walk between two other nodes. And then, a random-walk-based
centrality called LeaderRank [9] has been proposed, which can identify leaders in social net-
works better than the well-known PageRank algorithm. After that, Chen et al. [6] developed a
semi-local centrality measure as a tradeoff between local degree centrality and other global but
time-consuming measures. Ranking influential nodes can be seen as a multi-attribute decision
making problem [24]. Due to the efficiency to combine different data [25–29], evidence theory
is also widely used for identifying influential spreaders in complex networks [30, 31].

However, those measures described above are only suitable in binary networks. In many
real networks, edges are with some form of attributes or weights, rather than simply either
present or absent in a pair of nodes. If only binary networks are considered, ignoring the intrin-
sical weights attached to edges, plenty of valuable information has been lost and the analysis
cannot be accurate and comprehensive. Thus, many researchers have turned their attention to
centrality for weighted networks [32–36].

In 1991, Freeman et al. [37] introduced a new measure of centrality based on the concept of
network flows, flow betweenness, which considered all the independent paths between all pairs
of nodes in the network. Based on the degree centrality, Barrat et al. [38] proposed a measure
for weighted networks, which is the sum of weights of edges that a node is connected to.
Beyond that, Newman [32] and Brandes [39] have generalized the closeness and betweenness
centrality for weighted networks by using Dijkstra’s algorithm [40] on computing the shortest
paths. By taking both edge weights and the number of edges into consideration, a new generali-
zation was proposed by Opsahl et al. [33], using a tuning parameter to balance the relative
importance between those two parts. Later, Qi et al. [34] developed a Laplacian centrality
method considering “intermediate” environmental information around a node.

In this paper, we proposed a generalized centrality metric, called PhysarumSpreader, to iden-
tify nodes with high spreading performance in networks. PhysarumSpreader is developed on the
basis of a random-walk-based algorithm LeaderRank and a positive feedback mechanism
inspired from an amoeboid organism, called Physarum Polycephalum. With the integration of
the algorithm and mechanism, our PhysarumSpreader is applicable in both directed and undi-
rected networks with weights. It overcomes the shortcomings of LeaderRank which is only
designed for binary network and does not work well for undirected networks. Furthermore, a
susceptible-infected-removed (SIR) model is employed to examine the spreading performance
of nodes identified by different centrality measures. With simulations on different networks and
comparison with other centrality measures, it reveals that PhysarumSpreader works well in
identifying influential nodes with high spreading performance and good tolerance.

The rest of the paper is organized as follows. Section 2 begins with a brief introduction to
LeaderRank algorithm and positive feedback mechanism of Physarum Polycephalum adopted
in our method. Then, procedure of the proposed PhysarumSpreader for identifying influential
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spreaders in networks is depicted in Section 3. And two applications in real networks are pre-
sented in section 4. What’s more, the spreading effectiveness and robustness are studied. Sec-
tion 5 concludes the paper.

1 Basic Theory

1.1 LeaderRank for Identifying Leaders [9]
Given a directed network of N nodes andM edges, a ground node is then added by establishing
bidirectional edges between it and all the other nodes, which assures the modified network as
strongly connected. And the modified network consists of N + 1 nodes andM + 2N directed
edges. Initially, each node in the network, except for the ground node, is assigned with one unit
resource, while the ground node is assigned with no resource. And then each node evenly dis-
tributes its resource to neighbors along the outgoing edges. Next is to update resource distribu-
tion as summing up the resource each node derives from its incoming edges. This process of
distribution and updating of resources continues until steady state is attained. The whole pro-
cess can be described mathematically as follows.

Assuming ri(t) denotes the resource of node i at time t, the initial state (t = 0) of resource
distribution can be represented as:

rg 0ð Þ ¼ 0; where g is ground node

ri 0ð Þ ¼ 1; where i 2 f1; 2; � � � ;N þ 1gn gf g
ð1Þ

And each node can update its resource according to the following equation:

ri t þ 1ð Þ ¼
XNþ1

j¼1

aji
koutj

rj tð Þ ð2Þ

where aij is the element of the corresponding (N + 1)-dimensional adjacency matrix, which
equals 1 if there is a directed link from j to i and 0 otherwise, and koutj is the out-degree of node j.

When the resource ri(t) at all nodes converges to a unique steady state at time tc, the
resource at the ground nodes is then evenly distributed to all other nodes, and the final
resource distribution on nodes i is:

Ri ¼ ri tcð Þ þ rg tcð Þ
N

; where i 2 f1; 2; � � � ;Ng ð3Þ

1.2 PhysarumModel for Path Finding
Physarum polycephalum, as a large, single-celled amoeboid organism, can form a dynamic
tubular network within the discovered food sources.

Recently, a large amoeboid organism, Physarum polycephalum, turned out to be capable of
solving many graph theoretical problems [41–45], including finding the shortest path [46–48].
Furthermore, it has been shown experimentally that the network it generates is of high intelli-
gence and performance in road-network [49] and great transport efficiency in vascular network
[50], even comparable to or better than the Tokyo rail network [51]. During the process of its
path finding and tube selection, Physarum will cut off those non-competing long tubes and
reinforce shorter tubes. And, with the positive feedback mechanism among the tube length, the
flux through tubes and the conductivity of tubes (tube width), shorter tubes result in larger
flux; tube with a large flux grow (tube width increases); wider tubes leads to a further increase
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of flux as the resistance to the flow decreases in wider tubes. According to Physarum’s tubular
network, each tube segment is regarded as an edge eij in graph and its two ends are denoted as
nodes i and j, which the edge connects. For each tube segment, there are two critical attributes:
one is the length of the tube Lij and the other is its thickness, which is always represented as
conductivity Dij. Based on the theory that thick, short tubes are typically the most effective for
transportation, the mathematical model of Physarum includes two parts: flux through tubes
and adaptation of conductivity according to its flux.

1.2.1 Flux through Tubes [52]. As circulation is based on streaming through network of
tubular channels, the flux of sol through the tubes Qij is approximately modeled as Poiseuille
flow:

Qij ¼
Dij

Lij

pi � pj
� �

ð4Þ

where pi is the pressure at node i.
By considering the balance of flux through each node, we have

X
i

Dij

Lij

pi � pj
� �

¼

�I0; for j ¼ s;

þI0; for j ¼ t;

0; otherwise:

ð5Þ

8>>><
>>>:

where s is the source node that the initial flux I0 flows out, while t is the sink node from which
the flux flows in.

1.2.2 Adaptation of Conductivity [52]. In order to model the positive feedback mecha-
nism that tube widens with increasing flux and degenerates with decreasing flux, the conduc-
tivity Dij is assumed to change over time according to the flux Qij:

d
dt

Dij ¼ f jQijj
� �

� gDij
ð6Þ

where γ is a decay rate of the tube. f (Q) is an increasing function with f (0) = 0. More detailed
description of f (Q) can be found in [53].

2 PhysarumSpreader
LeaderRank is an efficient method for identifying influential leaders in opinion spreading and
outperforms PageRank algorithm, the basis of the Google search engine, in ranking effective-
ness and robustness against manipulations and noisy data. However, it is initially designed for
binary networks, which is not suitable for weighted networks.

Consider that the resource distribution from each node to its neighbors in LeaderRank, is
similar to the flowing of flux through tubes in Physarummodel of path finding. Nevertheless,
Physarummodel is designed for finding the shortest paths in both binary and weighted net-
works, which is capable of handling edge weights. Thus, it is natural to consider that adoption
of the positive feedback mechanism between conductivity and flux in Physarummodel may be
of great help in overcoming the weakness of LeaderRank in weighted networks.

The main mechanism behind the presented method is combining the positive feedback
mechanism in Physarummodel and resources distribution mechanism in LeaderRank. Specifi-
cally, each node proportionally distributes resources to its outlinks based on their weights and
conductivities. Then, a positive feedback mechanism is employed to accelerate convergence of
the algorithm. Here, the positive feedback mechanism is an interaction between conductivities
and resources along each link. A link with few resources leads to a weak conductivities. The

Identifying Influential Spreaders Based on Amoeba Algorithm

PLOSONE | DOI:10.1371/journal.pone.0145028 December 18, 2015 4 / 21



weak conductivities produce a further decrease of resources along the link. Similarly, a link
with more resources cases stronger conductivities and further contributes itself to obtain more
resources. Finally, the resources of a node are the sum of its inlinks’ resources. This process will
continue until each nodes’ resources are steady.

Therefore, in this paper, based on the primary LeaderRank, an extended algorithm, called Phy-
sarumSpreader, is proposed for capturing the spreading ability of nodes in weighted networks.

2.1 General Flow of PhysarumSpreader
The general flow of our proposed PhysarumSpreader is described as follows, along with graphi-
cal demonstration of a random directed example network Net as shown in Fig 1.

Step 1 Add a ground node into the network by connecting every node through bidirectional
links (Fig 2). The weight wig of the inlink which direction is form node i(i 2 N) to ground
node is determined by the following equation:

wig ¼

Plouti
j¼1 wij

louti

; if louti > 0

1; if louti ¼ 0

ð7Þ

8>><
>>:

Fig 1. An example networkNet.

doi:10.1371/journal.pone.0145028.g001
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where louti denotes the total number of outlinks from node i without considering weight

and node j represents the neighbour of node i. If the network is directed, this step guarantees
the network to be strongly connected.

Step 2 Initialize all nodes (other than the ground node) with unit of resource and the ground
node with a score of 0 (Fig 3).

Ig 0ð Þ ¼ 0; where g is ground node

Ii 0ð Þ ¼ 1; where i 2 f1; 2; � � � ;N þ 1gn gf g
ð8Þ

Step 3 Distribute each node’s flux to its neighbors through the out-going edges according to
their edge weights.

QijðtÞ ¼
wijDijðtÞXNþ1

j¼1

wijDijðtÞ
ð9Þ

Fig 2. Ground node insertion in a given example networkNet.

doi:10.1371/journal.pone.0145028.g002
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where Dij is the conductivity of each edge with initial value as 1. It is notable that the value of
wij varies under different circumstances. If the given network is binary, wij = 1 for all edges in
the network. If the network is weighted and the weight refers to the cost of traversing the
edge, wij will be the reciprocal of the edge weight. But if the weight stands for the strength of
edge relation, such as the number of social proximities, wij will be assigned as the weight.
The initial flux distribution on each out-going edge of nodes at time t = 0 is calculated,
shown in matrixQð0Þ:

Qð0Þ ¼

0 0:5 0 0 0:5

0 0 0:5 0 0:5

0:5 0 0 0 0:5

0:33 0:33 0 0 0:33

0:25 0:25 0:25 0:25 0

2
66666666664

3
77777777775

Fig 3. Initialization of flux for nodes in Net.

doi:10.1371/journal.pone.0145028.g003
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Step 4 Adapt the conductivity according the flux through each edge using the following equa-
tion:

Dij t þ 1ð Þ ¼ Qij tð Þ þ Dij tð Þ
h i

=2; where i; j 6¼ g ð10Þ

The edge conductivity at time t = 1 can be calculated by Eq 10, according to the flux distri-
bution of time t = 0. The result is shown in matrixDð1Þ:

Dð1Þ ¼

0 0:75 0 0 1

0 0 0:75 0 1

0:75 0 0 0 1

0:67 0:67 0 0 1

1 1 1 1 1

2
66666666664

3
77777777775

Step 5 Update the resources of each node for the next iteration, according to the flux flowing
into the node and its current score.

Ii t þ 1ð Þ ¼
XNþ1

j¼1

Qji tð ÞIj tð Þ ð11Þ

Step 6 Determine whether the steady state of nodes’ score is attained. If it converges to a steady
state, the flux of the ground node is evenly distributed to all other nodes. And the final score
Si for each node’s spreading performance is attainted as:

Si ¼ Ii tcð Þ þ Ig tcð Þ
N

; where i 2 f1; 2; � � � ;Ng ð12Þ

If the state is not steady yet, the process continues to Step 3.

The final resources for each node in Net is: S1(1.0100)> S2(1.0097)> S3(1.0002)>
S4(0.9801).

3 Comparisons and Tests
In this section, the proposed method is compared with another four approaches (degree,
betweenness, k-shell, weighted PageRank) to demonstrate its effectiveness. The four methods
will be defined in section 3.1. What’s more, all methods are tested on noisy data to evaluate
their stability. Two real networks are employed. One of them is a directed and weighted net-
work. It is the network of the 500 busiest commercial airports in the United States. A tie exists
between two airports if a flight was scheduled between them in 2002. The weights correspond
to the number of seats available on the scheduled flights [54]. You can obtain the data through
the hyperlink listed in S1 Text. The other one is an undirected and weighted network reorga-
nized by Newman [55–57]. It is a collaboration network of scientists posting preprints on the
high-energy theory archive at www.arxiv.org. These papers appeared in a 5-year window, from
1995 to 1999 inclusive. The data can also be downloaded through the S1 Text. More attributes
about the two networks are listed in Table 1.
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3.1 Definitions of the compared centrality measures
In the context of social science, the topology of a social network is represented by an adjacency
matrix A = {wij}N×N, where the element wij > 0 if there exists a link from j to i and wij = 0 other-
wise. For an undirected network, A is a symmetric matrix with wij = wji. If the network is
weighted, the element wij represents the weight of the link from j to i. Actually, the adjacency
matrix A fully describes the topological structure of the social network. Here, the adopted cen-
trality measures to make comparisons are calculated by the following equations:

(1)Degree ki for a node i can be computed as follows:

ki ¼
XN
j¼1

wij þ
XN
j¼1

wji ð13Þ

(2)Betweenness CB(i) is defined as

CBðiÞ ¼
X
s6¼i6¼t

sstðiÞ
sst

ð14Þ

where σst is the number of the shortest paths between nodes s and t, and σst(i) is the number of
the shortest paths between s and t which pass through node i.

(3)K-shell [58]: The k-shell index of a node is obtained by a procedure called k-shell decom-
position, where we successively prune nodes in the network layer by layer. Concretely, the
decomposition starts by removing nodes with degree k = 1. After that, some nodes may have
only one link left. So we continue pruning the network iteratively until there are no nodes with
k = 1. The removed nodes fall into a k-shell with index kS = 1. With the similar method, we iter-
atively remove the next k shell kS = 2 and higher k shells until all nodes are pruned. In the
decomposition procedure, each node is assigned with a k-shell index. The periphery of the net-
work corresponds to small kS and the nodes with high kS define the core of the network.

(4)Weighted PageRank [59] can be calculated from:

PRiðtÞ ¼ a
XN
j¼1

wijPRjðtÞ
koutj

þ 1� a
N

ð15Þ

where koutj ¼ PN
i¼1 wji and α is the jumping probability. PRi(t) is the probability that node i is

visited by the random walker at time t. As time t increases, the probability PRi(t) will converge
to a stationary probability PRi. This value is defined as the PageRank which are used to deter-
mine its ranking relative to other nodes. In the calculation, the conventional choice of α is 0.85.
In this paper, α is set as 0.85 for all experiments.

3.2 Effectiveness
Amodified susceptible-infected-removed (SIR) model is employed to estimate the spreading
influence of the top-ranked nodes in weighted networks. In this model, individuals can be in
three discrete states: susceptible, infected or removed. Each individual in the model can be

Table 1. Basic statistics of the two real networks.

Networks Nodes Edges Diameter Average Clustering Coefficient Average Degeree

US airports network 1572 28235 9 0.469 17.961

collaborations network 8361 15751 19 7.025 0.636 3.768

doi:10.1371/journal.pone.0145028.t001
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represented by a node of the network and can only spread infection to its neighbors along the
outgoing edges in the network. At each step, each infected node i randomly chooses one of its
susceptible neighbors, j, and infects it with probability λij, and then be removed (dead or recov-
ered with immunity) with probability β. The probability λij is determined by the following
equation [60]:

lij ¼
wij

wmax

� �a

; a > 0

where α is a positive constant and wmax is the largest value of wij in the network. Since
wij

wmax
< 1,

the smaller the α is, the more quickly the infection spreads. The process stops when no infected
node is present. Here we use the cumulative number of infected nodes (which includes infected
and recover nodes), denoted by N, as a function time. Without the loss of generality, α and β
are assigned as 0.2 and 1.

We first compare the spreading processed activated by top-ranked [61] nodes from Physar-
umSpreader and another four centrality measures (degree, betweenness, k-shell, weighted
PageRank). Taking weighted PageRank as an example. If among two top-L lists by Physarum-
Spreader and weighted PageRank, there are n different nodes, we compare the spreading pro-
cessed activated by these n different nodes, respectively. For example, if L = 5, the top-ranked
lists are {97, 1016, 754, 333, 335} and {754, 1222, 97, 841, 1016} for weighted PageRank and
PhysarumSpreader, then n = 3 and the spreading processes are compared with initially infected
nodes {333, 335} for weighted PageRank and {1222, 841} for PhysarumSpreader.

Tables 2 and 3 list the top 50 nodes obtained by different centrality methods in US airports
network and collaborations network.

In US airports network, Fig 4a, 4b, 4c and 4d show the spreading results compared with
degree centrality, betweenness, k-shell and weighted PageRank corresponding to n = 11, 17, 16
and 10, respectively, when L equals to 20. As can be seen, the proposed method slightly outper-
forms the other four centrality measures. In order to verify the efficacy of the proposed
method, we check its efficiency among more nodes. Since it is impossible to check all nodes, we
selected the 50 most important nodes to conduct the experiment. Fig 5a, 5b, 5c and 5d display
the spreading results corresponding to n = 24, 35, 27 and 18 under L = 50. Here we can see, the
proposed algorithm exhibits a good efficiency in L = 50 as well as in L = 20.

We also applied our algorithm in the other network with bigger size: collaborations net-
work. Fig 6a, 6b, 6c and 6d show the spreading results compared with another four centrality
measures corresponding to n = 11, 16, 20 and 10, respectively, under L = 20. The figures show
that the cumulative number of the infected nodes obtained by our method is a bit bigger than
the results calculated by the others except k-shell. However, when L equals to 50 in Fig 7, our
method is a little bit worse than other centrality measures but has a quicker spread velocity
than k-shell while n = 29, 43, 47 and 27.

With L increasing, more and more important nodes overlap, those overlapped nodes will be
removed from the top-ranked lists. It means that the rest different nodes may have less spread-
ing influence than those removed. Thus, the cumulative numbers of infected nodes have little
changes in spite of n and L increasing.

3.3 Robustness
To scientifically test the performance of the PhysarumSpreader algorithm, we measure the
change in rankings when links are randomly removed with probability form 0.1 to 0.5. The
rankings obtained from the modified network are compared to those from the original

Identifying Influential Spreaders Based on Amoeba Algorithm
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Table 2. Top 50 nodes ranked by different centrality methods for US airports network.

Rank Degree Betweenness K-shell Weighted PageRank PhysarumSpreader

1 97 76 27 97 754

2 1016 584 65 1016 1222

3 604 1331 97 754 97

4 654 1433 106 333 841

5 754 207 126 335 1016

6 422 591 148 654 774

7 333 604 176 1219 1219

8 907 428 181 76 76

9 606 892 184 606 333

10 335 1520 206 1222 654

11 866 126 207 866 1544

12 368 1542 212 752 790

13 1062 1129 261 1064 33

14 752 654 267 907 325

15 184 343 271 267 582

16 841 1557 306 422 599

17 445 1006 325 841 985

18 1222 427 328 368 207

19 267 686 333 1062 1457

20 1219 136 335 184 866

21 207 431 368 604 132

22 261 60 405 1250 241

23 212 754 422 445 427

24 176 1238 445 573 335

25 850 166 497 774 907

26 1557 206 582 212 606

27 1064 866 604 427 573

28 1072 722 606 1190 1250

29 1250 1051 624 1050 136

30 998 93 649 328 264

31 584 1287 654 132 1006

32 870 1032 752 846 267

33 1148 1566 754 1369 1064

34 838 1263 774 790 60

35 328 573 787 1287 422

36 774 107 838 779 368

37 624 394 841 850 1029

38 1287 365 846 1557 1426

39 271 1125 850 1457 78

40 106 466 863 1244 492

41 910 1294 866 985 184

42 846 422 870 968 661

43 1212 907 907 584 39

44 614 498 910 838 604

45 1192 184 985 870 968

46 148 670 998 261 445

47 76 752 1005 1258 1062

(Continued)
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Table 2. (Continued)

Rank Degree Betweenness K-shell Weighted PageRank PhysarumSpreader

48 306 710 1008 1239 752

49 1369 503 1016 1263 212

50 126 36 1017 1148 342

doi:10.1371/journal.pone.0145028.t002

Table 3. Top 50 nodes ranked by different centrality methods for collaborations network.

Rank Degree Betweenness K-shell Weighted PageRank PhysarumSpreader

1 87 1571 6790 24 24

2 480 1832 6791 87 1794

3 168 24 6792 763 547

4 24 975 6793 997 546

5 997 3473 6794 546 473

6 481 500 6795 530 415

7 656 1603 6796 547 763

8 926 1368 6797 480 474

9 1571 926 6798 168 106

10 546 87 6799 469 926

11 975 1617 6800 433 123

12 473 276 6801 1424 2855

13 530 1337 6802 1201 87

14 547 481 6803 1794 480

15 884 193 6804 675 1340

16 930 930 6805 816 469

17 1603 2544 6806 975 39

18 39 480 6807 926 124

19 123 6487 6808 2117 1452

20 956 387 6809 106 479

21 106 168 6810 415 3940

22 675 752 6811 164 1087

23 1171 165 6812 2254 197

24 1201 307 6813 2855 38

25 1516 4201 310 177 420

26 2117 1190 5687 1941 3402

27 38 5248 5688 1698 1548

28 310 502 5689 884 431

29 763 1738 5690 1754 1754

30 1393 2286 5691 896 195

31 2070 5908 5692 1528 1641

32 1286 4490 5693 1479 37

33 185 1275 5694 473 1511

34 193 1515 5695 474 1870

35 431 6505 5696 1444 1512

36 433 3140 5697 336 178

37 469 997 5698 38 517

38 4201 185 5699 41 1571

(Continued)
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network, by measuring the impact IR on ranking, as given by [9]

IR ¼
XN
i¼1

jR0
i � Rij ð16Þ

Table 3. (Continued)

Rank Degree Betweenness K-shell Weighted PageRank PhysarumSpreader

39 221 890 5700 1736 1642

40 449 166 5701 1452 518

41 1126 1393 5702 39 530

42 1255 1479 5703 23 322

43 1479 3770 5704 1854 2116

44 1570 404 53 85 2217

45 1698 501 530 956 3717

46 1754 948 546 616 321

47 35 1058 547 631 1640

48 41 956 1831 592 433

49 371 103 4836 1241 956

50 474 1247 5248 420 168

doi:10.1371/journal.pone.0145028.t003

Fig 4. Comparison of epidemic spreading efficiency among different measures when L = 20, in US airports network. Each resultN is obtained by
averaging over 100 implementations with α = 0.2 and β = 1. (a):PhysarumSpreader vs Degree, n = 11. (b):PhysarumSpreader vs Betweenness, n = 17. (c):
PhysarumSpreader vs K-shell, n = 16. (d):PhysarumSpreader vs Weighted PageRank, n = 10.

doi:10.1371/journal.pone.0145028.g004
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3 and R
0
i correspond to the rankings obtained respectively from the original and modified

graph. We measure IR for PhysarumSpreader, weighted PageRank, degree, betweenness and k-
shell subject to the same modifications.

As shown in Figs 8 and 9, IR increase with the number of links removed. In Fig 8, we can
observe that our method is obviously more tolerant than weighted PageRank, betweenness and
k-shell but worse than degree.

Here we can see, robustness of the presented approach is also better than weighted PageR-
ank, in Fig 9. However, when p> 0.2, the tolerance of our method underperform degree and is
a little worse than k-shell while p> 0.3. Notably, it seems that betweenness becomes the most
tolerant method, but it’s not true. Due to the topology of the original network, there are 4568
nodes whose value of betweenness equal to 0. It means that the rankings of these nodes remain
unchanged when the network is modified. Hence, the tolerance of betweenness is evaluated
invalidly, when it is tested in collaborations network by this measure.

In practical application, a valuable ranking algorithm should not be effective only, but also
be robust. To further demonstrate the proposed method’s advantages in terms of robustness,
we demonstrate PhysarumSpreader algorithm in a representative example called sybil attack
[62]. Consider a situation that spammers deliberately gain disproportionately high rank by cre-
ating huge fake entities. To simulate this attack, each time node i creates v(v = 10, 50, 100) fake
entities which only direct to node i with weight equaling to 1. The rank of node i is denoted by

Fig 5. Comparison of epidemic spreading efficiency among different measures when L = 50, in US airports network. Each resultN is obtained by
averaging over 100 implementations with α = 0.2 and β = 1. (a):PhysarumSpreader vs Degree, n = 24. (b):PhysarumSpreader vs Betweenness, n = 35. (c):
PhysarumSpreader vs K-shell, n = 27. (d):PhysarumSpreader vs Weighted PageRank, n = 18.

doi:10.1371/journal.pone.0145028.g005
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ri first and then it is represented by r
0
i after manipulations. Obviously, r

0
i is less than or equal to

ri and if there are smaller differences between them, the approach will be more robust. Only
the top-100 users (i = 1, 2, 3, . . ., 100) are studied under this attack.

As shown in Figs 10 and 11, the vertical axis displays the manipulated rank of a user after
creation of v fake fans and the horizontal axis shows its original rank. As we can see, in both
networks of US airports network and collaborations network, PhysarumSpreader is the most
robust algorithm among others against manipulations as its smaller change of rank.

4 Conclusions
In this paper, focus is placed on identifying influential spreaders in weighted networks and an
extended algorithm called PhysarumSpreader has been proposed based on LeaderRank and a
positive feedback mechanism inspired from Physarum Polycephalum. In order to investigate
the performance of the proposed method, two weighted real networks that one is directed and
the other is undirected, have been used as test network data sets. Furthermore, comparison
with four well-known centrality measures are also studied with the help of an epidemic spread-
ing model. Experimental results indicate that PhysarumSpreader is effective in identifying
influential spreaders. In addition, the proposed method has a good robustness compared with
other measures.

Fig 6. Comparison of epidemic spreading efficiency among different measures when L = 20, in collaborations network. Each resultN is obtained by
averaging over 100 implementations with α = 0.2 and β = 1. (a):PhysarumSpreader vs Degree, n = 11. (b):PhysarumSpreader vs Betweenness, n = 16. (c):
PhysarumSpreader vs K-shell, n = 20. (d):PhysarumSpreader vs Weighted PageRank, n = 10.

doi:10.1371/journal.pone.0145028.g006
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Fig 7. Comparison of epidemic spreading efficiency among different measures when L = 50, in collaborations network network. Each resultN is
obtained by averaging over 100 implementations with α = 0.2 and β = 1. (a):PhysarumSpreader vs Degree, n = 29. (b):PhysarumSpreader vs Betweenness,
n = 43. (c):PhysarumSpreader vs K-shell, n = 47. (d):PhysarumSpreader vs Weighted PageRank, n = 27.

doi:10.1371/journal.pone.0145028.g007

Fig 8. The impact ranking as a function of number of links randomly removed for US airports network. All data points are average values over 100
independent runs with error bars showing the standard deviations.

doi:10.1371/journal.pone.0145028.g008
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Fig 9. The impact ranking as a function of number of links randomly removed for collaborations network. All data points are average values over 100
independent runs with error bars showing the standard deviations.

doi:10.1371/journal.pone.0145028.g009

Fig 10. The impact ranking as a function of number of links randomly removed for US airports network. All data points are average values over 100
independent runs with error bars showing the standard deviations.

doi:10.1371/journal.pone.0145028.g010
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