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Abstract
RNA-seq was used to compare the transcriptomic response of hepatopancreas in juvenile

Litopenaeus vannamei fed three diets with different lipid sources, including beef tallow (BT),

fish oil (FO), and an equal combination of soybean oil + BT + linseed oil (SBL) for 8 weeks

at 3 practical salinity unit (psu). A total of 9622 isogenes were annotated in 316 KEGG path-

ways and 39, 42 and 32 pathways significantly changed in the paired comparisons of FO vs

SBL, BT vs SBL, or FO vs BT, respectively. The pathways of glycerolipid metabolism, lino-

leic acid metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, fatty

acid biosynthesis, fatty acid elongation, fatty acid degradation, and biosynthesis of unsatu-

rated fatty acid were significantly changed in all paired comparisons between dietary lipid

sources, and the pathways of glycerolipid metabolism, linoleic acid metabolism, arachidonic

acid metabolism and glycerophospholipid metabolism significantly changed in the FO vs

SBL and BT vs SBL comparisons. These pathways are associated with energy metabolism

and cell membrane structure. The results indicate that lipids sources affect the adaptation of

L. vannamei to low salinity by providing extra energy or specific fatty acids to change gill

membrane structure and control iron balance. The results of this study lay a foundation for

further understanding lipid or fatty acid metabolism in L. vannamei at low salinity.

Introduction
As a euryhaline penaeid species, the Pacific white shrimp Litopenaeus vannamei has become
an emerging species for crustacean farming in inland low salinity water [1]. Although relatively
high production of L. vannamei has been achieved, economic profit is hindered by slow growth
and low survival [2], low immune ability [3], and low stress resistance [2, 4] at low salinity.
Various studies have been conducted on L. vannamei growth and survival [5–7], immune
response [8, 9] and nutritional requirements at low salinity [10–15], but little is known on the
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mechanism of physiological adaptation to the change of dietary nutrients from the perspective
of metabolism pathways.

Among dietary nutrients, lipids are of the highest energy, and contain various essential fatty
acids for growth and development in aquatic animals. The content of arachidonic acid (20:4n-
6; AA) in gills is important for osmoregulation [16], and docosahexaenoic acid (22:6n-3; DHA)
and eicosapentaenoic acid (20:5n-3; EPA) can increase the gill area and enzymatic efficiency to
improve osmoregulation [17, 18]. Among lipid types, phospholipid and glycolipid are the
indispensable components for cell membrane structure, and lipid composition affects osmo-
regulation capacity [19]. Therefore, lipids are functionally important in response to ambient
salinity shock in aquatic animals, especially at low salinity [20]. Physiological functions of lip-
ids are closely related to the relative components of fatty acids, triacylglycerol, phospholipid,
cholesterol and phosphoglycerides in different tissues. The impact of lipid sources on L. vanna-
mei growth performance has been evaluated at different salinities based on weight gain, feed
conversion, survival and fatty acid composition [21, 22]. However, the optimal source of lipids
for L. vannamei and the physiological response to different lipids at the salinity less than 5 psu
are poorly known.

In contrast to freshwater species, marine species have a limited ability to synthesize long
chain (>20 carbons) polyunsaturated fatty acids (LC-PUFAs) [23], and EPA and DHA are
essential to marine animals [24]. Therefore, salinity may functionally important in regulating
the synthesis of long chain PUFAs [25]. In a marine teleost, Siganus canaliculatus can convert
C18 PUFA to LC-PUFA, and this activity is enhanced by decreasing salinity from 32 to 10 psu
[25]. The desaturase and elongase enzymes required for synthesizing DHA from C18 PUFA in
S. canaliculatus have been identified [26, 27], including Δ4 fatty acyl desaturase (Δ4 Fad) and a
bifunctional Δ6/Δ5 Fad [27]. In L. vannamei, both linolenic (C18:3n-3) in hepatopancreas and
EPA (C20:5n-3) in muscle at 3 psu were significantly higher than those at 30 psu [20]. How-
ever, the potential ability of L. vannamei to synthesize LC-PUFA (>20 carbons) from C18
PUFA has not been revealed and the impact of ambient salinity on carbon chain elongation in
shrimp is not clearly.

As a practical and efficient method to obtain the relatively complete genes and complex
molecular pathways involved in physiological function [28–30], RNA sequencing (RNA-seq)
has been applied in various aquatic animals [31–34], including L. vannamei [35], taura syn-
drome virus [36], and white spot syndrome virus [37]. In a previous study in our lab, the L.
vannamei fed a diet with an equal combination of soybean oil +BT+ linseed oil (SBL) as the
lipid source showed the highest weigh gain compared with other single lipid sources[38], but
the molecular mechanism remains unknown. This study was a continuation of the previous
study to understand the transcriptome response of hepatopancreas in L. vannamei to the
source of dietary lipids. This is the first attempt to use transcriptome analysis to reveal the key
pathways and genes sensitive to the change of dietary lipid sources in L. vannamei at low salin-
ity. The results would lay a useful foundation to further understand the lipid or fatty acid
metabolism in L. vannamei at low salinity.

Materials and Methods

Experimental animals, design and facilities
Juvenile white shrimp (1.86 ± 0.32 g) were obtained from the Shenzhen base of South China
Sea Fisheries Research Institute, Shenzhen, China, and were stocked in nine tanks at a density
of 40 shrimps per tank (500 L) at 17 psu salinity for one week. Then shrimp were acclimated to
3 psu by a daily change of 2 psu prior to the start of the 8-week experiment. During the accli-
mation period, shrimp were fed three times daily at 0800, 1600 and 2200 h with a commercial
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diet (10% moisture, 40% crude protein, 8% crude lipid, 12% ash, 30% carbohydrates, 16.7 kJ g-1

digestible energy), and when the experimental period started, shrimp were fed three times daily
at 0800, 1600 and 2200 h with three purified diets containing different fatty acid contents (S1
and S2 Tables). Based on the amount of uneaten feed on the previous day, the daily ration was
adjusted to a feeding level slight over satiation. The unfed feed was daily removed with a siphon
tube. The photoperiod was 12 h light and 12 h dark. Seawater was pumped from the Daya
Coast in Shenzhen and filtered through an activated carbon cartridge for at least 3 d before
entering the culture system. Tap water was aerated before it was added to the tank to adjust the
salinity level. During the experiment, water was exchanged once daily with 1/3 of the tank vol-
ume. Water quality parameters were monitored 2–3 times a week throughout the feeding trial,
and maintained at pH 7.5–7.9, temperature 26–28°C, dissolved oxygen 4.8–6.4 mg/L, and total
ammonia nitrogen<0.02 mg/L during the trial.

At the end of the experiment, shrimp were deprived of feed for 24 h before sampling. Five
shrimp at intermolt stage C in each tank were dissected to obtain the hepatopancreas for tran-
scriptome analysis. The hepatopancreas were carefully taken out from the shrimps by a steril-
ized tweezer and encased the hepatopancreas into a sterilized EP tube, then put the EP tube in
the liquid nitrogen and stored at -80°C for RNA extraction.

RNA extraction, library preparation and Illumina Hiseq2500 sequencing
Total RNA was extracted from the tissue of hepatopancreas by using the TRIzol1 reagent
according the manufacturer’s instructions (Invitrogen) and genomic DNA was removed using
DNase I (TaKara). Then RNA quality was determined by 2100 Bioanalyser (Agilent) and quan-
tified using the NanoDrop 2000 (ND-2000, Gene Company limited). Only the high-quality
RNA sample (OD260/280 = 1.8~2.2, OD260/230�2.0, RIN�6.5, 28S:18S�1.0,>10 μg) was
used to construct the sequencing library.

RNA-seq transcriptome library was prepared following the TruSeqTM RNA sample prepara-
tion instruction from Illumina (San Diego, CA) using 5 μg of total RNA. Shortly, messenger
RNA was isolated according to the polyA selection method by oligo (dT) beads and then firstly
segmented (100 to 400 bp) by a fragmentation buffer. Secondly double-stranded cDNA was
synthesized using a SuperScript double-stranded cDNA synthesis kit (Invitrogen, CA) with
random hexamer primers (Illumina). Then the synthesized cDNA was subject to end-repair,
phosphorylation and ‘A’ base addition according to Illumina’s library construction protocol.
Libraries were size-selected for cDNA target fragments of 200–300 bp on 2% low range ultra-
agarose followed by PCR amplification using Phusion DNA polymerase (NEB) for 15 PCR
cycles. After being quantified by TBS380, the paired-end RNA-seq library was sequenced with
the Illumina HiSeq 2500 (2 × 100 bp read length). Raw reads were archived at the National
Center for Biotechnology Information’s Sequence Read Archive under the accession No.
SRP048814.

De novo assembly and annotation
The raw paired end reads were trimmed and quality controlled by SeqPrep (https://github.
com/jstjohn/SeqPrep) and Sickle (https://github.com/najoshi/sickle) with default parameters.
Then clean data from the samples were used to do RNA de novo assembly with Trinity (http://
trinityrnaseq.sourceforge.net/) [39]. All the assembled transcripts were searched against the
NCBI protein nonredundant (NR), String and KEGG databases using BLASTX to identify the
proteins that had the highest sequence similarity with the given transcripts to retrieve their
function annotations. A typical cut-off E-value was set at<1.0×10−5. The BLAST2GO (http://
www.blast2go.com/b2ghome) [40] program was used to obtain GO annotations of unique
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assembled transcripts for describing biological processes, molecular functions and cellular
components. Metabolic pathway analysis was performed using the Kyoto encyclopedia of
genes and genomes (KEGG, http://www.genome.jp/kegg/) [41].

Differential expression analysis and functional enrichment
To identify differential expression genes (DEGs) between two samples, the expression level of
each transcript was calculated according to the fragments per kilobase of exon per million
mapped reads (FRKM) method. RSEM (http://deweylab.biostat.wisc.edu/rsem/) [42] was used
to quantify gene and isoform abundances. R statistical package software EdgeR (empirical anal-
ysis of digital gene expression in R, http://www.bioconductor.org/packages/2.12/bioc/html/
edgeR.html) [43] was used for differential expression analysis. In addition, functional-enrich-
ment analysis including GO and KEGG was performed to identify which DEGs were signifi-
cantly enriched in GO terms and metabolic pathways at Bonferroni-corrected P-value� 0.05
compared with the whole-transcriptome background. GO functional enrichment and KEGG
pathway analysis were carried out by Goatools (https://github.com/tanghaibao/Goatools) and
KOBAS (http://kobas.cbi.pku.edu.cn/home.do) [44].

Experimental validation of RNA-seq profiles by qPCR
Fifteen randomly selected genes with significant expression from the KEGG pathways were
used for validation by real-time qPCR. The gene-specific primers were designed by Primer Pre-
mier 6 (Table 1). Total RNA was extracted from the target hepatopancreas tissues using a TRI-
pure Reagent kit (Aidlab, RN01). Samples of polyadenylated RNA were reverse-transcribed
using a TaKaRa kit (Cat. No. RR036A). Reactions were carried out in a total volume of 20 μl,
and the volumes of the reaction components were as follows: 2 μl 5X PrimeScript RT Master
Mix (Perfect Real Time), 1 μg total RNA, and followed by adding RNase-free dH2O up to 20 μl.
The protocol for reverse transcription was 37°C for 15 min, 85°C for 5 s, and 4°C for the rest of
time. The qPCR was carried out in the CFX96TM Real-Time PCR system (Bio-Rad Laborato-
ries, Richmond, CA) using Ultra SYBR Mixture (WCBIO, CW0957). The amplifications were
performed in a 96-well plate in a 20 μl reaction volume containing 10 μl of UltraSYBR Mixture

Table 1. Primers used for qPCR analysis.

Gene name Sense Primer Anti-sense Primer Product size

CYP3A CTTGCTGTCCAGTGTGGTCCTA GTTGGTGGTTGCTGCCGTATAG 128

ACAD8 GCCAGGTTCAGGATCAGATGCT CACCACCTCCGCTTATGAATGC 104

FLT1 CCTCCTACAACCACCAGCAGAT GCCATCCTTGAACCACACGAAC 92

BHMT TTCGTGTTCGCCCTGGAGAA AGAAGGTGAACGCTTGCATGAC 145

MLL2 CGTGAAGATGTGGCTGGAGATG TAGACTAGGCTGGCGAGGACTT 138

XDH CTCAGCATTGACGAGTCCGAAG TGACCCACGCAGGTAACTTTCT 149

E1.14.11.1 TGACATCCACCGACGCCTATT GGCAGACTTCCTTGTTGCTGTT 123

SLC17A5 TGGCGTGAGGTGTTCCTGAT TTGTCATCGGCGTTGCTCTG 134

AP1G1 GGCATACTTGTTGGACGGTCTG AGGTGTTGTGAGCGTGTTGGA 97

SMPD1 AAGATTGAGACGCCCAGAGTGT TGCCACAGATGTCACCGATGA 130

CYP2J AGACCTACCTGGAGGAGAGCAT TGCGACCAACTGCCAGATGA 137

CYP3A ACTCCTTCCACGAGCCATTGTT CGTCCTTCTTGTTCGGCATGTT 120

DOT1L TGGCAAGCAGCACAGTGAGTA AGGCGAAGTTGTTGACGAAGAC 107

MLL3 ACGAAGAGGAGGACGAGGAGAA GGCTCAGGACCAGGCAATGTAT 148

CTSC AGCAACCACCAGAAGCCAGTT GTTCTCCAGCACAACACCAACA 135

doi:10.1371/journal.pone.0144889.t001
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(WCBIO, CW0957), 0.4 μl (each) gene-specific forward and reverse primers, 8.4 μl RNase-free
water and 0.8 μl cDNA. The thermal profile for UltraSYBR Mixture PCR was 95°C for 10 min
followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. The β-Actin gene was used as the ref-
erence gene and each gene had three replicated wells. Relative fold changes were calculated in
the Relative Expression Software Tool version 2009 based on the cycle threshold values gener-
ated by qPCR [45].

Results

Sequencing and de novo assembly and validation of RNA-seq results by
qPCR
A total of 140.18 million reads were obtained from the hepatopancreas of L. vannamei
(Table 2). After quality trimming and adapter clipping, a total of 135.51 million high quality
reads remained. In total, 26,034 genes and 38,237 isogenes with the average length of 1,610 bp
were obtained after splicing and removing redundancy (Table 3). The length distribution of
isogenes is shown in S1 Fig. The mapping data of the assembly isogenes were over 90% of the
total, showing that the transcriptome data set had commendable gene coverage.

Fifteen randomly selected genes were determined with same hepatopancreas RNA samples
by qPCR. All these genes were significantly associated with the RNA-seq results (R = 0.77, Fig
1). These results also further confirmed the reliability of RNA-seq and the accuracy in Trinity
assembly.

Annotation of isogenes
Among the annotated and predictable sequences, a total of 17,232 (76.83%), 6,298 (28.08%),
3,720 (16.58%) and 302 (1.35%) sequences were unambiguous alignments relative to the

Table 2. Summary of Illumina expressed short read production and filtering of transcriptomic responses to low salinity stress in Litopenaeus
vannamei.

Salinity Reads nucleotides Q20 (%) Q30 (%)

BT 47,256,862 4,772,943,062 96.57 91.34

FO 45,745,774 4,620,323,174 96.81 91.79

SBL 47,190,680 4,766,258,680 96.87 92.02

Trimmed

BT 45,620,924 4,501,250,936 99.09 94.57

FO 44,250,222 4,372,768,553 99.13 94.80

SBL 45,643,340 4,513,906,418 99.15 94.96

Note: Q20 means that every 100 bp sequencing reads will have an error and Q30 means that every 1000 bp sequencing reads will have an error.

doi:10.1371/journal.pone.0144889.t002

Table 3. Summary of de novo assembly results of transcriptomic responses to salinity stress in Lito-
penaeus vannamei.

Type Number

Total genes: 26034

Total isogenes: 38237

Total residues: 61573030 bp

Average length: 1610.3bp

Largest isogene: 24554bp

Smallest isogene: 351bp

doi:10.1371/journal.pone.0144889.t003
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reference after BLASTx against NR and string, KOG, COG and NOG databases, respectively
(Table 4). However, among unpredictable sequences, only 2,235 (14.14%), 746 (4.72%), 509
(3.22%), 313 (1.98%), 243 (1.54%), 128 (0.81%), 56 (0.35%) of the total 15,806 sequences were
matched against NR, GO, NT, string, KOG, COG and NOG databases, respectively (Table 4).

Analysis of COG annotation showed that three types of function were obtained including
information storage and processing, cellular processes and signaling, and metabolic pathways.
The hits from COG prediction were functionally classified into 25 categories, in which most
enriched terms were in general functions, followed by transcription and signal transduction
mechanisms (S2 Fig).

KEGG pathway annotation and functional enrichment analysis
There were 39, 42 and 32 pathways showing significant changes in paired-comparisons of FO
vs SBL, BT vs SBL and FO vs BT, respectively and the significant changes of pathways

Fig 1. Validation results of RNA-seq profiles by qPCR.

doi:10.1371/journal.pone.0144889.g001

Table 4. Summary of the annotations of Litopenaeus vannamei isogenes.

Predicted sequences Unpredictable sequences

Number Ratio (%) Number Ratio (%)

All genes 22431 100 15806 100

Annotated in NR 17232 76.82 2235 14.14

Annotated in NT None None 509 3.22

Annotated in GO None None 746 4.72

Annotated in string 6298 28.08 313 1.98

Annotated in COG 3720 16.58 128 0.81

Annotated in KOG 5408 24.11 243 1.54

Annotated in NOG 302 1.35 56 0.35

doi:10.1371/journal.pone.0144889.t004
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(P< 0.05) with the change of gene numbers were showed in S3, S4 and S5 Tables, respectively.
The pathways of glycerolipid metabolism (Fig 2), fatty acid biosynthesis (Fig 3), fatty acid elon-
gation (Fig 4), fatty acid degradation (Fig 5), biosynthesis of unsaturated fatty acid (Fig 6), gly-
cerophospholipid metabolism (Fig 7), linoleic acid metabolism (Fig 8) and arachidonic acid
metabolism (Fig 9) were changed in all three paired-comparisons, and the above pathways
were significantly changed in FO vs SBL and BT vs SBL, but in comparison of BT vs FO, only

Fig 2. Pathway of glycerolipid metabolism.

doi:10.1371/journal.pone.0144889.g002
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linoleic acid metabolism was changed significantly. The genes of triacylglycerol lipase, aldehyde
reductase, phosphatidate phosphatase, diacylglycerol kinase (ATP) and glycerol kinase were
significantly up or down-regulated in the glycerolipid metabolism pathway. In the glyceropho-
spholipid metabolism pathway, many genes were significantly regulated especially in secretory
phospholipase A2, phosphoethanolamine N-methyltransferase, lysophospholipase I, glycerol-
3-phosphate dehydrogenase (NAD+), lysophosphatidylcholine acyltransferase and ethanol-
amine kinase. The utilization of polyunsaturated fatty acids was enhanced at low salinity, espe-
cially in arachidonate and linoleate. All the significantly changed (P< 0.05) KEGG genes were
listed in Table 5.

Discussion
In this study, RNA-seq successfully revealed the dietary lipid sources significantly changed the
pathways of glycerolipid metabolism, linoleic acid metabolism, arachidonic acid metabolism,
glycerophospholipid metabolism, fatty acid biosynthesis, fatty acid elongation, fatty acid degra-
dation and biosynthesis of unsaturated fatty acid. These pathways can be generally categorized
into energy metabolism related pathways, cell membrane structure modulation related path-
ways and other pathways. Since the growth trial was conducted on L. vannamei at 3 psu, a low
salinity causing stress to this marine shrimp, the significant changes of pathways in this study
reflect the physiological response of L. vannamei to different dietary lipid sources in a stressful
condition.

Fig 3. Pathway of fatty acid biosynthesis.

doi:10.1371/journal.pone.0144889.g003
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Pathways of lipid metabolism involved into energy supply
Extra energy supply is required in osmoregulation for crustaceans to survive in a habitat with
high salinity fluctuation, especially in a low salinity environment [19, 46]. When L. vannamei
are under low salinity stress, the change of osmolality in hemolymph can lead to

Fig 4. Pathway of fatty acid elongation.

doi:10.1371/journal.pone.0144889.g004

Fig 5. Pathway of fatty acid degradation.

doi:10.1371/journal.pone.0144889.g005
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osmoregulation to counteract salinity shock [47, 48].To keep homeostasis under low salinity,
shrimp could obtain extra energy from the diet to maintain osmolality in hemolymph via active
ion transport [12, 19, 46], and diet lipid contents have proved of significant roles in this process
[20, 35, 49, 50]. In this study, some pathways including glycerolipid metabolism (Fig 2), fatty
acid biosynthesis (Fig 3), fatty acid elongation (Fig 4), fatty acid degradation (Fig 5) and PPAR
signaling pathways (Fig 10), were mainly involved in energetic adaptation to low salinity stress.
It has been proved that crustaceans prefer to use shorter-chain fatty acids to obtain energy
through β-oxidation [51] and saturated fatty acid would be primarily used in energy metabo-
lism. In this study, the BT diet contained highest saturated fatty acids with a proportion of
53.86%, and the FO diet (32.66%) had little higher fatty acids than the SBL diet (28.23%). The
results of glycerolipid metabolism showed that the gene expression of triacylglycerol lipase was

Fig 6. Pathway of biosynthesis of unsaturated fatty acid.

doi:10.1371/journal.pone.0144889.g006
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significantly enhanced in all paired comparison of FO vs BT, FO vs SBL and BT vs SBL, and
led to fatty acid hydrolyzation from triacylglycerol to fatty acid degradation (Fig 5). Interest-
ingly, the fatty acid synthase gene responsible for synthesis of 18C fatty acid was down-regu-
lated by diet FO compared with diet BT. We speculate that this phenomenon was due to the
inhibition effect on the mRNA of fatty acid synthase (FAS) by intake of excess dietary polyun-
saturated fatty acids such as DHA and EPA [52, 53], resulting in poorer growth performance
of shrimp fed FO than those fed SBL (S6 Table). Meanwhile, glycerol kinase, glycerol-3-phos-
phate O-acyltransferase, 1-acyl-sn-glycerol-3-phosphate acyltransferase and phosphatidate
phosphatase were up-regulated both in the comparisons of FO vs SBL and BT vs SBL, suggest-
ing that the synthesis of triacylglycerol from glycerol was enhanced. In the contrary, the syn-
thesis of triacylglycerol in shrimp fed FO was down-regulated compared to those fed BT. In
conclusion, shrimp fed BT had highest capability to synthesize triacylglycerol, followed by
those fed FO, and shrimp fed SBL were poorest.

In fatty acid degradation, β-oxidation is the principal pathway to oxidize fatty acid to gain
ATP in peroxisomes [54], and all the long-chain acyl-CoA synthetases were down-regulated
due to the utilization of fatty acids in β-oxidation. Meanwhile, the acyl-CoA oxidase and long-
chain-acyl-CoA dehydrogenase were significantly up-regulated in both FO and BT diet groups
compared with the SBL diet group, and the up-regulation in the BT diet group was more than

Fig 7. Pathway of glycerophospholipid metabolism.

doi:10.1371/journal.pone.0144889.g007
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in the FO diet group. Shrimp fed BT had the highest gene expression in saturated fatty acid
degradation due to possessing the highest proportion of saturated fatty acid. Fatty acid plays an
important role in energy supplementation in osmoregulation [19, 20]. In the fatty acid elonga-
tion pathway, the gene expression of palmitoyl-protein thioesterase in shrimp fed FO was up-
regulated the most, followed those fed BT and SBL. The palmitoyl-protein thioesterase can
remove palmitate groups from cysteine residues in lipid-modified proteins [55] and produce
palmitic acid for fatty acid degradation. On the other hand, the peroxisome proliferator-acti-
vated receptors (PPARs) are a group of nuclear receptor proteins that function as transcription
factors regulating the expression of genes to regulate carbohydrate, lipid, and protein metabo-
lism and especially in fatty acid catabolism [56, 57]. The of gene acyl-CoA oxidase (ACO)
higher expressed in shrimp fed FO or BT than those fed SBL, and the expression in the FO
group was significantly lower than in BT group (Fig 10). As shrimp in the BT diet group con-
tained the highest saturated fatty acid proportion, saturated fatty acid can be used in producing
acyl-CoA to supply energy through oxidation [54]. The high content of saturated fatty acid
would promote the production of fatty acid transporters for fatty acid transportation.

Shrimp fed BT possessed the highest saturated fatty acid which could be used as energy sup-
plementation for osmoregulation, but shrimp fed BT showed the poorest growth performance
in all three groups. It seems that sole energy intake is not sufficient to overcome the energy loss

Fig 8. Pathway of linoleic acid metabolism.

doi:10.1371/journal.pone.0144889.g008
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in osmoregulation. The modification of cell membrane could be another way of adaption for
osmoregulation at low salinity.

Pathways of lipid metabolism related to cell membrane permeability
The structure and permeability of the cell membrane on gills play an important role in osmo-
regulation for crustaceans to maintain hemolymph osmolality/ion and survive under salinity

Fig 9. Pathway of arachidonic acid metabolism.

doi:10.1371/journal.pone.0144889.g009

Table 5. Summary of the significantly changed gene relevant to lipid metabolism.

gene definition gene name gene EC number FO vs SBL BT vs SBL FO vs BT

triacylglycerol lipase E3.1.1.3 EC:3.1.1.3 +7.53 +6.70 +2.67

fatty acid synthase FASN EC:2.3.1.85 not detected not detected -1.42

glycerol kinase glpK, GK EC:2.7.1.30 +1.17 +1.71 -1.98

glycerol-3-phosphate O-acyltransferase 1/2 GPAT1_2 EC:2.3.1.15 +2.82 +1.14 +2.16

1-acyl-sn-glycerol-3-phosphate acyltransferase plsC EC:2.3.1.51 +1.37 +1.95 not detected

phosphatidate phosphatase PPAP2 EC:3.1.3.4 +6.68 +6.09 -6.19

long-chain acyl-CoA synthetase ACSL, fadD EC:6.2.1.3 -1.15 -1.28 -1.08

acyl-CoA oxidase E1.3.3.6, ACOX1, ACOX3 EC:1.3.3.6 +2.20 +1.21 -2.03

long-chain-acyl-CoA dehydrogenase ACADL EC:1.3.8.8 +3.35 +4.02 not detected

palmitoyl-protein thioesterase PPT EC:3.1.2.22 +2.44 +1.31 +1.13

acyl-CoA oxidase E1.3.3.6, ACOX1, ACOX3 EC:1.3.3.6 +1.61 +2.88 -2.03

acyl-coenzyme A thioesterase 1/2/4 ACOT1_2_4 EC:3.1.2.2 -1.40 -2.70 +1.30

glycerol-3-phosphate dehydrogenase (NAD+) GPD1 EC:1.1.1.8 +2.84 +1.59 +1.25

secretory phospholipase A2 PLA2G, SPLA2 EC:3.1.1.4 +2.61 +3.94 -1.33

doi:10.1371/journal.pone.0144889.t005
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stress [46, 58, 59]. Previous studies have shown that dietary PUFAs can improve growth and
osmoregulation capacity in aquatic animals under osmotic shock [17, 18, 20] because PUFAs
are closely associated with cell membrane to increase membrane permeability and enhance flu-
idity [60, 61]. The modification of fatty acid composition in gills with higher levels of LC-PUFA
(usually over 20 carbon atom, especially DHA and EPA) have the potential to increase the gill
area and enzymatic efficiency [17, 18] to improve osmoregulatory capacity [62]. Therefore,
LC-PUFAs can play a crucial role in osmoregulation, and supplementation of LC-PUFA in the
diet should satisfy the need of L. vannamei. However, we found that shrimp fed FO containing
highest LC-PUFAs did not show the best growth performance, but shrimp fed SBL displayed
the best growth. Considering the energy supplementation in diets, the BT diet possessed the
highest saturated fatty acids (SFAs) but lacked PUFAs. In contrast, the FO diet contained high-
est PUFAs but lowest SFAs. Shrimp fed either BT or FO diet did not show a satisfactory

Fig 10. Pathway of PPAR signaling pathway.

doi:10.1371/journal.pone.0144889.g010
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growth. Although the SBL diet had high SFA and α-linolenic acid (C18:3n-3) to satisfy energy
requirement, but this diet was short of LC-PUFA just like the BT diet. Thus, we speculate that
the reason why shrimp fed SBL exhibited best growth performance may due to the ability to
synthesize LC-PUFAs from α-linolenic acids in L. vannamei.

Most marine shrimp have a limited ability to synthesize LC-PUFAs [23], but our previously
study indicates that L. vannameimay possess the ability to synthesize DHA and EPA from α-
linolenic acids at low salinity [20]. We also found that relevant gene expressions (gene bank
accession number: KP271446 and KT305965) in the pathways of fatty acid elongation and
unsaturated fatty acids biosynthesis, which supports the above assumption. In the biosynthesis
pathway for unsaturated fatty acid pathway, acyl-CoA thioesterase is the crucial gene for syn-
thesizing long-chain unsaturated fatty acid especially DHA and EPA. It is clear that the gene
expression in the FO diet group was most down-regulated, followed by the BT diet group, and
the SBL diet group was lowest. It is deduced that the shrimp in the SBL diet group need extra
long-chain PUFAs and the SBL diet had the highest α-linolenic acids and led to highest gene
expression of acyl-CoA thioesterase. However, the FO diet group showed poorest gene expres-
sion of acyl-CoA thioesterase because of sufficient long-chain PUFAs in this diet. Therefore,
this evidence suggests that L. vannamei possess the ability to synthesize DHA and EPA fromα-
linolenic acids under low salinity stress.

On the other hand, glycerophospholipid is the main component of biological membrane
[63], and the glycerophospholipid metabolism pathway significantly changed in this study.
The gene expression of glycerol-3-phosphate dehydrogenase was up-regulated most in FO diet
group, followed by the BT diet group and the SBL diet group. Glycerone phosphate would
increase when the glycerol-3-phosphate dehydrogenase up-regulated, and the glycerone phos-
phate can be used in glycerolipid metabolism for lipid metabolism to resist osmotic shock [54,
64]. Furthermore, the lecithin was used in linoleic acid metabolism because the gene secretory
phospholipase A2 significantly up-regulated, resulting in high production of linoleate/linoleic
acid. The linoleate/linoleic acid can be used in arachidonic acid metabolism, and arachidonic
acid not only had a positive effect on aquatic animals but also can alleviate osmotic shock [65].
But, the specific mechanism of glycerophospholipid and arachidonic pathway still need further
study.

Other pathways in L. vannamei under low salinity stress
When shrimp are at low salinity stress, dietary lipids play an important role in osmoregulation
[20, 35]. Among three lipid sources in this study, the pathways of osmoregulation differed
between the types and contents of fatty acids in the diet. As osmoregulation is a complex pro-
cess, many pathways are directly or indirectly involved. However, no clear evidence on direct
involvement of the pathways were detected during the trial of salinity challenge. Thus, the
putative functions of some pathways are briefly discussed.

Amino acids are important osmotic effectors in crustacean [31, 66, 67]. In this study, the
pathways of many amino acids were involved such as lysine, valine, leucine and isoleucine.
Lysine is metabolized in eukaryotes to yield acetyl-CoA via lysine acetylation [68, 69]. Acetyl-
CoA participates in osmoregulation as an intermediate metabolite can indirectly influence ion
transfer or energy metabolism and promote “compensatory processes", by producing energy
from lipid and carbohydrate metabolism. On the other hand, ketone bodies also play an indis-
pensable role in energy metabolism during the period of low food intake or carbohydrate
restriction and energy has to be obtained from breaking down fatty acids in liver [70, 71].

Moreover, steroid hormones are involved in osmoregulation of cetaceans [72] to control
metabolism, immune functions and salt and water balance [73–75]. Phosphonates are effective
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chelating agents that remain stable under harsh conditions, and phosphonates are also regu-
larly used in reverse-osmosis systems [76]. On the other hand, the study of folate on osmoregu-
lation is sometimes seen in plants because plants often face salinity stress in saline soils, and
folate is involved in osmoregulation as a metabolite or metabolic intermediate [77, 78]. In this
study drug metabolism-cytochrome P450 pathways were found and cytochrome P450 may
indirectly influence osmoregulation by regulating arachidonic acid metabolism [79, 80], fatty
acid metabolism [81] or other physiological and biochemical processes. However, the interac-
tion or correlation between these pathways in osmoregulation is still not clear and requires fur-
ther study.

Conclusion
This study reported the response of L. vannamei at low salinity to different sources of dietary
lipid at the transcriptome level. The transcriptome analysis shows that when L. vannamei are
under osmotic shock, the osmoregulation in shrimp depends on the source and content of fatty
acid in the diet. The metabolism of SFA supplies sufficient energy for extra energy demand via
β-oxidation of fatty acids. On the other hand, long-chain unsaturated fatty acid will participate
in structural change of cell membrane to regulate the permeability and fluidity, and increase
the cell membrane area on gills. A series of lipid metabolism pathways have enhanced the capa-
bility of L. vannamei to cope with osmotic shock and have a positive effect on growth and sur-
vival. However, osmoregulation is a complex physiological process and involves many
pathways. The details of specific lipid metabolism for osmoregulation are still unclear and need
further study. Based on the findings in this transcriptomic study, future research should be
conducted to understand protein expression, and biochemical and physiological functions in
shrimp at low salinity.
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