@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Lu J, Chang C, Zhang H-P, Wang S-X, Sun
G, Xiao S-H, et al. (2015) Identification of a Novel
Allele of TaCKX6a02 Associated with Grain Size,
Filling Rate and Weight of Common Wheat. PLoS
ONE 10(12): €0144765. doi:10.1371/journal.
pone.0144765

Editor: Aimin Zhang, Institute of Genetics and
Developmental Biology, CHINA

Received: October 20, 2015
Accepted: November 23, 2015
Published: December 14, 2015

Copyright: © 2015 Lu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by grants from
the National Natural Science Foundation of China
(31000705), the China Agriculture Research System
(CARS-03), the Scientific Research Special Program
of Agricultural Commonwealth (201203033-04),
Anhui province natural science foundation of China
(1508085MC57), the Agriculture Research System of
Anhui Province (AHCYTX-02) and the introduced
leading talent research team for Universities in Anhui
Province. The funders had no role in study design,

RESEARCH ARTICLE

Identification of a Novel Allele of TaCKX6a02
Associated with Grain Size, Filling Rate and
Weight of Common Wheat

Jie Lu'®, Cheng Chang'®, Hai-Ping Zhang', Sheng-Xing Wang', Genlou Sun'*, Shi-
He Xiao?, Chuan-Xi Ma' *

1 College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic
Improvement on Southern Yellow & Huai River Valley, the Ministry of Agriculture, Hefei, 230036, China,

2 Institute of Crop Sciences, National Wheat Improvement Centre/The National Key Facility for Crop Gene
Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081,
China, 3 Department of Biology, Saint Mary’s University, Halifax, NS, B3H3C3, Canada

@ These authors contributed equally to this work.
* genlou.sun @smu.ca(GS); machuanxi@ahau.edu.cn(CXM)

Abstract

Cytokinin oxidase (CKX) plays a crucial role in plant growth and development by reversibly
inactivating cytokinin (CTK). Twenty-four primer pairs, designed from ESTs of the TaCKX
genes family of common wheat, were used to identify their allelic variations associated with
grain size, weight, and filling rate in 169 recombinant inbred lines (RIL) derived from Jing
411 x Hongmangchun 21. TaCKX6a02, a member of TaCKX gene family, amplified by
primer pair T37-32, showed a close association with grain traits in this RIL population. Sta-
tistical analysis indicated that allelic variation of TaCKX6a02 had significant correlation with
grain size, weight, and filling rate (GFR; P < 0.001) under varied environments. The
TaCKX6a02-D1a allele from Jing411 significantly increased grain size, weight and grain fill-
ing rate, compared with TaCKX6a02-D1b from Hongmangchun 21. TaCKX6a02 was
located on chromosome 3DS in the interval of Xbarc1119 and Xbarc1162, with a genetic dis-
tance of 1.4 cM. The location was further confirmed using Chinese Spring nulli-tetrasomic
lines. A major QTL (quantitative trait locus) tightly linked to TaCKX6a02 was detected in the
RIL population, explaining 17.1~38.2% of phenotype variations for grain size, weight,
GFRmax and GFRmean in different environments. In addition, significant effects of varia-
tions of TaCKX6a02 on grain weight and GFR were further validated by association analysis
among 102 wheat varieties in two cropping seasons. 12.8~35.1% of phenotypic variations
were estimated for these genotypes. A novel 29-bp InDel behind the stop codon was
detected by DNA sequence analysis between the two alleles of TaCKX6a02-D1. The gene-
specific marker, TKX3D, was designed according to the novel variation, and can be used in
marker-assisted selection (MAS) for grain size, weight, and GFR in common wheat.
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Introduction

As one of the key phytohormones synthesized in the root, cytokinin (CTK) regulates many
important plant processes by controlling cell division and tissue differentiation [1-9]. Many
researches indicate that CTK plays an important regulatory role in crop yield and related traits.
Firstly, cytokinin is one key hormone in controlling grain size and weight by regulating endo-
sperm cell numbers of crops [10-14]. Secondly, CTK also can enhance grain weight by regulat-
ing grain filling patterns of crops [15-18]. The endogenous CTK (Z+ZR) content of grain at
the early grain filling stage has a close relationship with thousand-grain-weight (TGW) via reg-
ulation of starch synthase (SSase) and starch branching enzyme (Q-enzyme) activities in rice
[19]. CTK also can maintain chloroplast stability of flag leaf after anthesis, significantly
improving grain filling and weight [20, 21]. For other yield-related traits, such as effective tiller
emergence, spikelet and floret aspects, and fertile floret and kernel numbers, CTK is generally
regarded as a positive regulator [22-25].

The phytohormone, CTK, is under strict control mainly regulated by cytokinin oxidase
(CKX). The CKX is considered to be only known phytohormone enzyme that can inactivate
CTK irreversibly by cleaving its N®-side chain in a single enzymatic step [26]. Hence, cytoki-
nin oxidase (CKX) genes have been proven to have a close relationship with crop yield
through regulation of endogenous CTK. Ashikari et al. isolated the rice CKX gene (OsCKX2)
and confirmed that reduced expression caused CTK accumulation in inflorescence meristems
and increased the number of reproductive organs, resulting in enhanced grain yield [27]. As
graminaceous crops, wheat, rice, barley (Hordeum vulgare L.), maize (Zea mays), and Sor-
ghum spp. show large similarity and co-linearity between their genomes; therefore, wheat
CKX genes are also involved in the regulation of grain yield. Zalewski et al. confirmed that
seed numbers per plant and seed weight are improved by silencing the HvCKX1 gene in barley
and the TaCKX1 gene in wheat [28]. Two putative CKX genes of wheat (TaCKX2.1 and
TaCKX2.2) have been cloned and are presumed to relate to grain number per spike [29].
TaCKX6 is confirmed to have a significant association with the grain weight of common
wheat [30]. Based on sequences analysis of EST's available from the NCBI (www.ncbi.nlm.nih.
gov), wheat CKX genes are proved to belong to a large gene-family containing at least 13
members [31]. So far, seven wheat CKX genes have been isolated: TaCKX1 on chromosome
3A [32], TaCKX2 on 7A or 7B [33], and TaCKX2.1, TaCKX2.2 [29], TaCKX3 [34], TaCKX5
[35], and TaCKX6 [30] on 3DS. However, little research was carried out to investigate the
effects of allelic variations of TaCKX genes on grain filling, size, and grain weight of wheat
simultaneously. The objectives of this study are to: (1) identify allelic variations of CKX genes
for grain filling, grain size, and grain weight based on all TaCKX ESTs, mRNA, and DNA
sequences available in the NCBI; and (2) develop a gene-specific marker for TaCKX6a02 and
validate its association with grain traits.

Materials and Methods
Plant Materials

One hundred and sixty-nine recombinant inbred lines (RILs) were developed from a cross
between Jing 411 and Hongmangchun 21 by single-seed descent (F,.g generation). Jing 411 is a
high-yield winter wheat variety with a larger grain size; its TGW averaged 47.6 g over five crop-
ping seasons (2006~2007, 2007~2008, 2008~2009, 2009~2010 and 2010~2011). Hongmang-
chun 21 is a Chinese low-yield landrace, with an average TGW of 19.7 g across the five
cropping seasons (Table 1). The two parents show large differences in yield-related traits,
including grain size, grain weight, and grain filling (Table 1). One hundred and two wheat
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Table 1. Grain traits of the two parents, RIL and natural population.

Traits Parents RIL population (n = 169) Natural population (n = 102)

Jing411 Hongmangchun21 Mean C.V.% Mean C.V.%
GL (mm) 6.9 5.11 6.30(4.97-7.12) 14.15 6.33(5.01-7.11) 14.26
GW (mm) 3.82 2.4 3.05(2.33-3.94) 12.86 3.32(2.64-3.83) 10.26
GT (mm) 3.81 2.41 2.97(2.39-3.88) 11.13 3.17(2.56-3.78) 10.01
TGW(g) 47.6 19.7 36.15(18.6-53.2) 28.12 44.2(19.7-61.2) 26.38
GFRmax 3.45 1.88 2.49(1.01-3.56) 31.04 3.08(2.13-3.51) 15.79
GFRmean 2.21 1.04 1.72(0.97-2.37) 22.11 2.03(1.12-2.33) 20.85

The means performance of grain traits were measured in five cropping seasons (RIL population), and two cropping seasons (natural population),
respectively. The data in parentheses mean the range of grain traits values. GL, grain length; GW, grain width; GT, grain thickness; TGW, 1000-grain-
weight; GFRax and GFRean, maximum and mean grain filling rate, respectively; RIL, recombinant inbred line.

doi:10.1371/journal.pone.0144765.t001

varieties from different wheat production regions of China showing large variation in grain fill-
ing, size, and weight were used for validation of the gene marker (Table 1).

Field trials

The RILs and their parents were grown in randomized complete blocks, with two replicates at
the Changping Experimental Station of Chinese Academy of Agricultural Sciences (Beijing: 39°
54'N, 116°28'E) in the 2006~2007 and 2007~2008 cropping seasons, and the Experimental Sta-
tion of Anhui Agricultural University (Hefei; 31°58'N, 117°24'E) during the 2008~2009,
2009~2010 and 2010~2011 cropping seasons. The 102 wheat varieties were also grown in ran-
domized complete blocks with two replicates during the 2011~2012 and 2012~2013 cropping
seasons at the Experimental Station of Anhui Agricultural University.

Each plot contained three 2.0-m rows spaced 25 cm apart, with 40 plants in each row. Field
management followed common practices for wheat production, and the flowering time was
recorded for each line.

Recording of data for grain size, weight, and grain filling rate

Grain size and weight were determined in all seasons and locations. TGW was evaluated by
weighing two samples of 1000 kernels from each genotype. Grain size, including length and
width, was recorded after harvesting using the method described by Sun et al. [36], with minor
modifications. Two sets of 50 grains, from each variety or RIL, were lined up length-wise along
a ruler with a precision of 0.1 mm, and the average length of the samples defined as grain
length (GL). The average width of the two sets of grains laid breadth-wise was defined as grain
width (GW). The thickness (GT) of two sets of 20 grains was measured using vernier calipers
(Kraftwelle, China) with a precision of 0.01 mm, using the method described by Dholakia et al.
[37].

GFRpax and GFR e, Were determined for the RILs during the 2009~2010 and 2010~2011
cropping seasons, and 102 wheat varieties during the 2011~2012 and 2012~2013 cropping sea-
sons at the Experimental Station of Anhui Agricultural University respectively, following the
method described by Wang et al. (2008) [38]. Seven tagged spikes from each line were sampled
at 5-day intervals from anthesis to maturity. The grains were then separated from the glumes,
kept at 105°C for 10 min, and then at 70°C until reaching a constant weight. At this stage, the
total number of grains was counted, and the weight recorded. Grain filling rates were calculated
as described by Wang et al. [38].
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Genomic DNA extraction and PCR amplification

Genomic DNA was extracted from two kernels per line in accordance with Kang et al. [39].
PCR reactions were conducted using a TC412 Thermocycler (Barloworld Scientific, UK).
Twenty-four primer pairs (S1 Table) were designed to characterize allelic variations of TaCKX
genes in wheat using DNAMAN (Version 6.0) software (Lynnon Biosoft, San Ramon, CA,
USA) based on EST and mRNA sequences available from the NCBI.

The PCR profile was as follows: denaturation at 94°C for 5 min; followed by 40 cycles of
denaturation at 95°C for 1 min, annealing at 50~60°C for 1 min 20 s, and extension at 72°C for
2 min; with a final extension for 8 min at 72°C. The annealing temperature was modulated
based on the primer pair. Each 15-pl PCR reaction contained 40 ng of genomic DNA, 10 pmol
of each primer, 200 mM dNTPs, 1xPCR buffer, and 1 U Taq DNA polymerase (Shanghai San-
gon Biological Engineering Technology & Services, Shanghai, China). PCR products were sepa-
rated by 7% PAGE containing 4 M Urea.

Sequencing of PCR fragments and statistical analysis

Purification and sequencing of PCR products, from two independent samples per wheat geno-
type was performed by Shanghai Sangon Biological Engineering Technology & Services. Pfu
Taq DNA polymerase (Shanghai Sangon Biological Engineering Technology & Services,
Shanghai, China) with high fidelity was used to avoid false priming; all TaCKX alleles were
sequenced from both strands. Sequence alignment and characterization were completed using
DNAMAN software. Data analysis of grain traits was conducted using SPSS software version
13.0 (IBM Software Group, Armonk, NY, USA).

Chromosomes assignment of TaCKX gene

A set of Chinese Spring nulli-tetrasomic lines was used to determine the location of TaCKX
gene. PCR amplification and separation of products was as described above.

SSR marker screening and QTL analysis for grain weight and grain filling

Simple sequence repeat (SSR) markers, including the BARC, GWM, WMC, CFA, and CFD
series were used to screen the two parents, and two bulks containing five high-grain-weight
lines and five low-grain-weight lines, respectively [40]. Candidate polymorphic markers
between the bulks were analyzed further in a subset of 40 RILs, including 20 lines with high-
grain-weight and 20 with low-grain-weight, to confirm the polymorphism. The polymorphic
markers were then used for genotyping the entire RIL population. The linkage map was con-
structed using Map Manager QTXb20 Version 3.0 [41]. Recombination fractions were con-
verted into centimorgans (cM) using the Kosambi function [42]. Composite interval mapping
(CIM) was performed for QTL analysis using Windows Cartographer 2.5 software (http://
statgen.ncsu.edu/qtlcart/ WQTLCart.htm) in accordance with the methods described by Zeng
[43]. A QTL was declared when the LOD score was > 2.5 in at least two cropping seasons, and
calculated from 2,000 permutations at a probability of 0.01.

Analysis of correlation between TaCKX alleles and grain traits

When analyzing the correlation between TaCKX alleles and grain traits in the RILs population
and wheat varieties, the Jing 411 allele was scored as “1” and the Hongmangchun 21 allele as
“0”. Spearman rank correlation analysis and t-test were performed to test the association signif-
icance between allelic variation and grain traits, as described in previous studies [44-46]. The
effect of TaCKX variation on the variability of grain traits was estimated by R” based on the
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General Linear Model [44-46]. The significance of the effect was evaluated using the GLM at
0.05, 0.01, and 0.001 levels of probability. Grain trait data analyses were conducted using SPSS
software version 13.0.

Results
Correlation analysis between different grain traits

In this study, the grain traits of RILs such as GL, GW, GT, TGW, GFR;,¢an, and GFR,,,.x showed
wide variations (Table 1). Grain size (GL, GW, and GT) had a significant correlation with grain
weight (P < 0.001); and grain filling also showed a significant correlation with grain weight

(P < 0.001; S2 Table). These results suggested that grain weight is not only determined by grain
size but also by GFR. Grain weight showed closer relationship with grain size than grain filling.

Identification of allelic variations in TaCKX associated with grain traits

Of the 24 primer pairs developed from wheat CKX genes (Galuszka et al. 2004)[31], six pairs
including T3-4 (TaCKX1), T5-6 (TaCKX2a), T13-14 (TaCKX3), T19-20 (TaCKX4), T25-26
(TaCKX5b), and T31-32 (TaCKX6a02) showed good polymorphism between the two parents.
To identify TaCKX genes associated with grain traits, spearman rank correlation analysis and
t-test were performed based on the mean performance of grain traits of RILs in the five envi-
ronments. The results indicated that the allelic variation of TaCKX6a02 had a significant corre-
lation with grain size, grain weight, and GFR in the RIL population (P < 0.001; Table 2). The
alleles of the A- and B-type patterns shown in Fig 1 were named TaCKX6a02-D1a and TaCK-
X6a02-D1b, respectively. The marker used for identifying the allelic variation of TaCK-
X6a02-D1 was designated as CKX3D. RILs carrying TaCKX6a02-D1a had significantly higher
values for grain size, weight and grain filling than TaCKX6a02-D1b (Table 2), indicating that
the TaCKX6a02-D1a allele could improve grain traits.

Chromosome location of TaCKX6a02

Previous studies indicated that wheat CKX genes belong to a large gene-family, distributed on
several chromosomes, including 3A, 3B, 3D, 7A, and 7B; hence, it was necessary to locate

Table 2. Analysis of grain traits between two alleles of TaCKX6a02, and Spearman correlations and t-test between the allelic variation of
TaCKX6a02 and grain traits in the RILs and natural population.

Population Alleles/Traits

RIL Tackx6a02-D1a
Tackx6a02-D1b
t-test®
Correlation®

Natural Tackx6a02-D1a
Tackx6a02-D1b
t-test®
Correlation®
Effect®

GL/mm GW/mm GT/mm TGW/g GFRmax GFRmean
6.89 3.34 3.20 41.91 2.94 2.04
5.59 2.70 2.69 29.26 1.96 1.33

11.403*** 9.668%** 8.15%** 14.45%** 8.696%** 7.863*%**
0.585%** 0.517*** 0.414%** 0.609%** 0.471%** 0.413***
6.55 3.22 3.23 41.6 3.27 2.19
5.45 2.78 2.61 27.3 2.16 1.77

12.052*** 8.464%** 6.999%** 8.304%** 9.423*** 6.712%**
0.608%** 0.512%** 0.383** 0.556% ** 0.489%** 0.380**

35.1% 26.2% 13.1% 31.6% 22.7% 12.8%

3t-test of the averages of grain traits between the two alleles of Tackx6a02.
PCorrelation between allelic variation of TaCKX6a02 and grain traits among 61 wheat varieties.

°Effect of allelic variation on the variability of grain traits, as estimated by R? based on the General Linear Model.
** indicates significant differences at P < 0.01.
*** indicates significant differences at P < 0.001.

doi:10.1371/journal.pone.0144765.t002
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Fig 1. Allelic variation of TaCKX6a02 in the RIL population of Jing 411/Hongmangchun 21. Lane Nos. (1) Jing 411; (2) JH1; (3) Hongmangchun 21; (4)
JH19; (5) JH31; (6) JH38; (7) JH2; (8) JHS; (9) JH4; (10) JH5; (11) JH73; (12) JH9; (13) JH10; (14) JH12; (15) JH75; (16) JH79; (17) JH81; (18) JH103; (19)
JH105; (20) JH13; (21) JH107; (22) JH113; (23) JH15; (24) JH118; (25) JH120; (26) JH125; (27) JH129; and (28) JH130. In the figure, JH1, JH19, JH31,
JH38, etc., represent individual names of the RIL population. Two types of alleles, TaCKX6a02-D1a (Jing 411) and TaCKX6a02-D1b (Hongmangchun 21)
are marked with the letters “A” and “B”, respectively.

doi:10.1371/journal.pone.0144765.9001

TaCKX6a02 before performing genetic linkage analysis in the RIL population. In this study,
the chromosome location of TaCKX6a02 was identified using Chinese Spring nulli-tetraso-
mics. The PCR products were amplified in N3AT3B, N3AT3D, N3BT3A, and N3BT3D, but
were not present in N3DT3A or N3DT3B (S1 Fig), indicating that the TaCKX6a02 gene is
located on chromosome 3D.

Linkage analysis of the TaCKX6a02 gene and functional marker
development

Seventy-seven SSR markers on chromosome 3D were selected based on their chromosomal
location. To analyze the genetic linkage of TaCKX6a02 on 3D, and to further evaluate its effect
on the phenotypic variation of grain traits, the SSR markers were screened using their two
parents and two bulks. Fourteen SSR markers and the gene-marker CKX3D showed good poly-
morphism in the mapping population. Genetic map analysis indicated that the 14 SSR markers
were assigned in the same linkage group as the CKX3D region, spanning a genetic distance of
26 cM (Fig 2).

Through the analysis of CIM, a QTL controlling grain traits was identified in the marker
interval of Xbarc1119 and Xbarc1162 on chromosome 3DS, with a genetic distance of 1.4 cM
(Fig 2). The QTL co-segregated with TaCKX6a02, with LOD values ranging from 9.1 to 21.1
over five environments. The six grain traits, GL, GW, GT, TGW, GFRjax, and GFR yean Were
all associated with the same QTL closely linked to TaCKX6a02, Xbarc1119, and Xbarc1162.

The QTL mapped at CKX3D locus was detected across all five cropping seasons, and could
explain 17.4~38.2% of phenotypic variations for grain size and grain weight (Table 3). Regard-
ing grain filling traits, the locus also accounted for 17.1% and 22.2% of phenotypic variations of
GFRpax and GFReqp, respectively, in the two environments (2009~2010 and 2010~2011 crop-
ping seasons). Therefore, TaCKX6a02 could be considered as a candidate gene for grain filling,
grain size, and grain weight in this population.

Validating effects of TaCKX6a02 variations on grain traits among 102
wheat varieties

To further confirm effects of TaCKX6a02 on grain traits, association analysis of allelic varia-
tions with grain traits were conducted among 102 wheat genotypes. In this natural population,
68.5% of varieties had the TaCKX6a02-D1Ia allele, while the remainder had TaCKX6a02-D1b
(S3 table).
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Fig 2. Linkage map of TaCKX6a02 on chromosome 3DS of wheat. The six shaded boxes represent the six traits of TGW, GW, GL, GT, GFRmax, and
GFRmean, respectively.

doi:10.1371/journal.pone.0144765.g002

A wide variation of grain traits was observed among these wheat varieties (Table 1). The
mean values of the six grain traits all showed significant differences (P < 0.001) between TaCK-
X6a02-D1a and TaCKX6a02-D1b (Table 2). The varieties with TaCKX6a02-D1a allele had sig-
nificantly higher value of grain traits than those with TaCKX6a02-D1b allele. The association
analysis showed that the allelic variation of TaCKX6a02 had a significant correlation with

Table 3. Summary of QTLs for grain traits in the RILs from the Jing 411/Hongmangchun 21 cross, across different environments.

Trait® QTL Marker interval LOD R? (%) Add.(%) Environments observed/total
GL QGL.ahau-3D T31-32~Xbarc1162 20.4 34.2 —0.6 5/5
GW QGW.ahau-3D T31-32~Xbarc1162 17.6 26.7 —0.76 5/5
GT QGT.ahau-3D T31-32~Xbarc1162 9.8 17.4 -11.2 5/5
TGW QTGW.ahau-3D T31-32~Xbarc1162 21.1 38.2 -1.18 5/5
GFRmax QGma.ahau-3D T31-32~Xbarc1162 11.9 22.2 -0.49 2/2
GFRmean QGme.ahau-3D T31-32~Xbarc1162 9.1 171 -0.27 2/2

@All values are calculated from the overall mean dataset

doi:10.1371/journal.pone.0144765.t003
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grain traits in natural population of wheat (P < 0.01 or 0.001; Table 2; S2 Fig). Phenotypic vari-
ations of grain traits explained by TaCKX6a02 ranged from 12.8~35.1% across the two crop-
ping seasons (2011~2012, 2012~2013). Through analysis in different genetic background, RILs
and natural population, TaCKX6a02 could be validated to have a significant effect on grain
traits in common wheat.

Sequence analysis of TaCKX6a02

A 29-bp insertion in the 3'-untranslation region (3'-UTR) behind the TGA stop codon was
detected in the Jing 411 allele of TaCKX6a02-D1a, compared with the Hongmangchun 21 allele
TaCKX6a02-D1b (Fig 3). The sequence of TaCKX6a02-D1a was the same as the EST
BQ235927 deposited at the NCBI (Galuszka et al. 2004) [31]. Other CKX genes on chromo-
some 3D, including TaCKX2.1 (FJ648070.1), TaCKX2.2 (GU084177.1), TaCKX2.3.1
(JF293079), TaCKX2.3.2 (JN128584), and TaCKX6-D1b (JQ797673) were also obtained by per-
forming a BLAST search on the NCBI GenBank. Sequences between TaCKX6a02 and the
above TaCKX genes were analyzed using DNAMAN software. The results revealed
TaCKX6a02 shared a high identity with them in the open reading frame region (ORF), as
shown in Fig 3. Through alignment analysis among them, TaCKX6a02 had higher homology
with EST BQ235927 (99%), TaCKX2.3.1 (99%) and TaCKX2.3.2 (99%), than with TaCKX2.1
(92%), TaCKX2.2 (92%) and TaCKX6-D1b (92%) (S3 Fig). The TaCKXs on chromosome 3D
could thus be divided into two groups according to their homology.

Discussion
Homology ananlysis of CKX genes on chromosome 3D of wheat

Six CKX genes on chromosome 3D of wheat were identified following a BLAST search in
NCBI using the TaCKX6a02 sequence, including an EST BQ235927, TaCKX2.1, TaCKX2.2,
TaCKX2.3.1, TaCKX2.3.2, and TaCKX6-D1b. Alignment analysis revealed that TaCKX6a02,
TaCKX2.3.1 and TaCKX2.3.2 are possibly the same CKX gene because of very high identity in
sequence between them. However, the function of TaCKX2.3.1 and TaCKX2.3.2 had remained
unknown until now. TaCKX2.1, TaCKX2.2 and TaCKX6-D1b also shared higher sequence
homology among them, but had a lower identity with TaCKX6a02. For example, TaCKX6a02
had a large difference in sequence at the 3’-UTR, compared with TaCKX2.1 and TaCKX2.2.
The main variation in TaCKX6a02, 29-bp InDel in the 3'-UTR, was also different from
TaCKX6-D1b containing 18-bp InDel in intron 2 and 20-bp InDel in the third exon [30].
According to these analyses, these TaCKX genes were clearly divided into two groups.

Multiple CKX genes have been observed on chromosome 3DS of wheat; however, their
functions varied. TaCKX2.1 and TaCKX2.2 are involved in the regulation of grain number per
spike in wheat [29], similar to OsCKX2 in rice [27]. On the other hand, TaCKX6 [30] and
TaCKX6a02 are associated with grain weight. Interestingly, these CKX genes have a relatively
high sequence identity and all located on chromosome 3DS. Furthermore, TaCKX6 and
TaCKX6a02 share a similar linkage interval on the genetic map. Based on sequence identity
and linkage analysis, TaCKX6 and TaCKX6a02 may be different alleles of the CKX gene.
Therefore, further study is to clone full length of TaCKX6a02 and compare its sequence with
TaCKXe.

Allelic variation of TaCKX6a02

Gene mutations occurring in coding regions often affect function as a result of amino acid
changes. However, the 5'-UTR [47, 48], 3'-UTR [49-52], and intron [30, 53] also have important
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Reverse primer

A4

BQ235927.3eq e, CAGGTGGGA p: 52
TaCKX6a02-Dla.seq Ry 42
TaCKX6a02-D1b.seq Py 42
TaCkX2.3.1.seq 20 1387
TaCXX2.3.2.seq CGCCATGGGGCCCGTCCICGICTACCCC 2 1390
TaCkX6-D1b.seq CGCCAAGGGACCCATCCTCGTCTACCCCA 3 1363
TaCkX2.1.seq CGCCATGGGACCCGTCCTCGTCTACCCCA! SCTGGCAQEG ", 3 1425
TaCkX2.2.seq CGCCATGGGACCCGICCICGTCTACCCCATCAACCEE? 3GTGGGAEG 2 Pl 1425
Consensus
BQ235927.seq GC 3CAGAACGHY 132
TaCKX6a02-Dla.seq GC eAGCAGRACCHY 122
TaCKX6a02-Dlb. seq GC GAACGHY 122
TaCKX2.3.1.38eq GC plo¥eelc 1467
TaCKX2.3.2.seq GC AGAACCHET Y]
TaCKX6-D1b.seq GC ¥ eiC 1443
TaCKX2.1.seq ( ; e iC 1505
TaCKX2.2.3eq G GEEAT sle Tlolelels Cley ey {oioler: Tlele T{er: Top e Clelole Tiowaele HolordeiC 1505
Consensus a gag tgtt tacacggt gg atcct cgg cggc gtgtccga gg ga cttg gcg ctgg g agcagaacga
BQ235927.seq o 212
TaCKX6a02-Dla.seq {eCC GGGA| 202
TaCKX6a02-D1b.seq eCC GGGTGGEGA 202
TaCKX2.3.1.seq CC 1547
TaCKX2.3.2.seq (! 1550
TaCkX6-D1b.seq 1523
TaCRX2.1.seq 1 { 1585
TaCKX2.2.seq GRGATCTTACHETT] 3G GEATAAE TCCHOGOAGTA STACTHeeCCAICCHEGCCEGETCCCR N
Consensus
BQ235927.seq SAHEAAGCACTTTGGTCCGGCCAAGIC GTICG (CGGAAGAG: G 3 3 292
TaCKX6a02-Dla.seq [8 ACTTTGGTCCGGC ( GTTCGTGGHECGGAAE ! 3 282
TaCKX6a02-Dlb.seq  [e¥( CBAGTIG LGGTTCG SAAGAFIBAGTATGATCCCAAGE 3 282
TaCKX2.3.1.seq ¥ CGGCCRAGIG GGAAGAGIAAGTATGATCCCRAGE CIG 1627
TaCKX2.3.2.seq £ 2 TTIGGTCCGGCCARGTGE T SGAAGAGBAGTATGATCCCAAGE CCTGICE 1630
TaCKX6-D1b.seq GBHER TTTGGTCCGGCCARETCEECCAGETICCTGGHECGGALGAFERAGTATGATCCCAAGE 3 1603
TaCKX2.1.seq CCGGCCAAGTGRICCEGETTICE CGGAAGAREAAGTATGATCCCAAGE 1665
TaCKX2.2.seq GRMEARGCACTTTGGTCCGECCARGTAL TGGHECGGAAGAFEAACTATCATCCCAAGE 1665
Consensus gaa aagcactttggtccggccaagtgg ccaggttcgtgga cggaagag aagtatgatcccaagge atcctgtece

Stop codon v nDel
BQ235927.3seq GTGGCCACGACGRATITIO! 33IC$CG:TGGCIIG:—§ ycf: I;'.;I'GACGCCCAA TGGACAGGEI;TEA ; 372
TaCKX6a02-Dla.seq ereecc.:.e;s;umma-ﬁrc $CGCTGECTTCH! TIGACGCCCAA( IGGACAGGQI‘EA‘ IG2 362
TaCKX6a02-Dlb.seq [cpieicieeriericr ¥ Supwy ::grc 8 CGCTGGCTTCRgNcryu-Youy.% v. 5 (or: I A 333
TaCKX2.3.1.seq GTGGCCAGA :ﬁTC:ﬁCGC GECITGA I'QGACGccmAgIGGACAGEIEA GG 1707
TaCKX2.3.2.seq GTGGCCAGAGSAIITI&JTC 8CGCTGECTTGRgNer: A TIGACGCCCAACTGGACAG! T§A i 1710
TaCKX6-D1b.seq GTGGCC;GQG;AITII§ -TC%CGCIGGCTTGZ ............................................ 1638
TaCKX2.1.seq GTGGCCAGAGAATTTTO,QeTIC

NTMEECGCTGGCTTGAE

GTGGCCAGAGARTTITITO;QeTCCeCGCTGGCTTCAY

CGGAG Iccxgceerccceh STCCCGATCEACETARC 1745
TaCKX2.2.seq g CGGAGCIGATCCATGCATGGETC GGACICC@ TAGC 1745
Consensus gtggccagagaattttc € TCC cgetggettga

Forward primer

BQ235927.seq TGEAC TATTICITG GcagggcgegccmmcncsmCAIACMACMM 452
TaCXX6a02-Dla.seq TGCAC TATTICTTGCITGCA! Ci GG& ........................... 415
TaCKX6202-D1b.seq TGCAC TATIICTIGCITG ggcgsg ........................... 386
TaCXX2.3.1.seq ATGCAC TATTICTIGCITGCATGETCCCGECCAGAGCATCGATACATACATACATAT 1787
TaCXX2.3.2.3eq CATGEAC G ATATTI TTTGCITGCATGETCCCGECCAGAGCATCGATACATACATACATAT 1790
o-Terco CHIvsh o 1 (SRR R R SSR E CCa T SR S e e 1638
TaCKX2.1.seq clccreTiciTATCATCARCARATGECTAGCERGCGTCCATGCATRGGEECB TCAGAGGGACCGGTAGATACATATCEA 1825
TaCKX2.2.3eq clc TegqucncmnGAZGGACCGGAIAEG.er;rgAGIIIACIGCAGenGGIAIAc ........... 1813
Consensus

Fig 3. Sequence alignment between TaCKX6a02 and TaCKX2.1, TaCKX2.2, TaCKX2.3.1, TaCKX2.3.2, and TaCKX6-D1b. Two alleles sequences of
Tackx6a02, TaCKX6a02-D1a) and TaCKX6a02-D1b were obtained from the reverse-complement sequences of PCR fragments of Jing 411 and
Hongmangchun 21. The primer pair and stop codon are marked with arrows in the figure. The InDel sequence is boxed.

doi:10.1371/journal.pone.0144765.9g003
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influences on gene function through regulating mRNA structure, stability, and accumulation
during translation. Previous research has confirmed that an 18-bp InDel in the second intron of
TaCKX6-D1b had a significant influence on the gene expression at eight days after pollination in
common wheat [30]. In this study, a novel 29-bp InDel was found in the 3'-UTR of TaCKX6a02.
Whether variation of TaCKX6a02 leads to enhancement of grain weight by directly increasing
endogenous cytokinin levels, and what is the synergistic relationship between the two markers
(C19L3/C19L4 and TKX3D) and grain weight are worthy of further study.

TaCKX6a02 locus for grain traits

As a complex trait, grain weight is controlled by multiple genes or loci widely distributing on
the most of wheat chromosomes. On chromosome 3D, several QTLs for grain weight and
related traits have been detected using varied populations, explaining 6~23% of phenotype var-
iations in different environments [38, 54-58]. In this study, the TaCKX64a02 locus for grain
traits was closely linked to Xgwm341, Xwmc533, Xbarc1119, Xbarc1162, and Xcfd62 on chro-
mosome 3DS; the linkage intervals were similar to the previous reports [55, 56]. However,
these loci explained relatively less phenotypic variation of grain traits, compared with the
TaCKX6a02 locus (17.1~38.2%). Zhang et al. [30] also reported that TaCKX6 was located on
chromosome 3DS and linked to Xcfd70 and Xwmc533. This is very similar to TaCKX6a02.
These results revealed that varied QTLs or loci for grain weight occurred on chromosome 3D
of wheat.

Identification of genes for grain traits in wheat is receiving increased attention of research-
ers. At present, some genes for grain size and weight are known, including TaGW2 [59-61],
TaCKX6 [30], TaGS-D1 [62], 6-SFT-A2 [63]. In our study, TaCKX6a02 is also confirmed to
tightly relate to grain size and weight by QTL and association analysis. Interestingly, the gene
also has significant effect on grain filling rate of wheat simultaneously. The result suggests that
TaCKX6a02 is likely involved both in regulating grain formation and the filling process of
wheat. The influence of TaCKX6a02 on grain weight was probably due to its regulation on
both grain size and filling. Therefore, findings of variations in TaCKX6a02 will help further
understanding of complex mechanisms of grain weight. In addition, the TaCKX6402-Dla is a
predominant allele among modern varieties, and TaCKX6a02-D1b allele mainly distributes in
local varieties or landraces of China in our study. These results show a strong selection of
TaCKX6a02-D1a in breeding programs. Furthermore, the locus co-segregating with
TaCKX6a02 shows good stability and reliability in varied environments and genetic back-
grounds, and thus will help improve the accuracy and effectiveness of marker assisted selection
for grain traits in wheat breeding.

Conclusions

TaCKXs belong to a big gene family, including at least 13 members in common wheat. Several
TaCKX genes have been validated to relate to grain yield. In this research, TaCKX6a02 on
chromosome 3DS was also identified to closely associate with grain size, filling and weight in a
RIL population and natural population respectively. By sequence analysis, a novel allelic varia-
tion of TaCKX6a02 was observed, which contained a 29-bp InDel behind the stop codon. A
gene-specific marker, TKX3D, was developed based on the InDel variation. The TKX3D locus
could explain 12.8-38.2% of phenotypic variations in different environments.
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