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Abstract

Background

CpG islands have been demonstrated to influence local chromatin structures and simplify

the regulation of gene activity. However, the accurate and rapid determination of CpG

islands for whole DNA sequences remains experimentally and computationally

challenging.

Methodology/Principal Findings

A novel procedure is proposed to detect CpG islands by combining clustering technology

with the sliding-window method (PSO-based). Clustering technology is used to detect the

locations of all possible CpG islands and process the data, thus effectively obviating the

need for the extensive and unnecessary processing of DNA fragments, and thus improv-

ing the efficiency of sliding-window based particle swarm optimization (PSO) search. This

proposed approach, named ClusterPSO, provides versatile and highly-sensitive detection

of CpG islands in the human genome. In addition, the detection efficiency of ClusterPSO

is compared with eight CpG island detection methods in the human genome. Comparison

of the detection efficiency for the CpG islands in human genome, including sensitivity,

specificity, accuracy, performance coefficient (PC), and correlation coefficient (CC), Clus-
terPSO revealed superior detection ability among all of the test methods. Moreover, the

combination of clustering technology and PSO method can successfully overcome their

respective drawbacks while maintaining their advantages. Thus, clustering technology

could be hybridized with the optimization algorithm method to optimize CpG island

detection.

Conclusion/Significance

The prediction accuracy of ClusterPSO was quite high, indicating the combination of

CpGcluster and PSO has several advantages over CpGcluster and PSO alone. In addition,

ClusterPSO significantly reduced implementation time.
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Introduction
CpG islands are short sequences in a genome, with high concentrations of Cytosine (C) and
Guanine (G) nucleotides where CpG islands include CpG dinucleotides (CpGs). Gardiner-Gar-
den and Frommer [1] defined CpG islands as having the following properties: (i) the length of
the island region exceeds 200 bps, (ii) GC content is higher than 50%, and (iii) CpG frequency
(observed/expected, O/E) surpasses 0.6. In 2002, Takai and Jones proposed a rigorous CpG
island definition [2], including a minimum length of 500 bps, GC content of 55% and an O/E
ratio of 0.65. The 500 bp length is proposed to avoid Alu sequences in CpG islands. An Alu
sequence indicates a highly repetitive short interspersed element with an approximate consen-
sus sequence of about 280 bps, and the sequence exhibits high GC content levels and O/E ratio.

DNA methylation is a chemical modification of DNA which has been reported to poten-
tially affect gene transcription and may regulate long-term memory storage in humans [3].
About 80% of all CpGs have been found to be methylated in human and mouse genomes, and
some methylated CpGs are located in CpG islands [4]. Approximately 60% of all genes have a
CpG island in their promoter region, and these promoter-associated CpG islands may undergo
methylation to change their gene expression (the promoter regions contain about 70% of CpG
islands in human genes). For example, abnormal cancer cells can cause hypermethylation in
promoter CpG islands and thereby contribute to the development of cell lesions and drug resis-
tance [5–7]. Thus, development of an accurate method for CpG island detection could be use-
ful in research for drug, cancer, and genomic markers.

Current CpG island detection methods are mainly based on the Gardiner-Garden and
Frommer (GGF) definition [1], e.g., CpGProD [8], CpGIS [2], CpGplot [9], and particle swarm
optimization (PSO)-based methods [10]. These methods use a broad range of CpG island
properties, including GC content, O/E ratio and length thresholds, and employ the sliding win-
dow approach to scan DNA sequences for CpG island detection. The CpGProD and CpGplot
methods are similar to CpGIS in which the extraction process is divided into four steps. Firstly,
a 200 bp window is set in the beginning of the sequence, and then checked to determine
whether the window meets the CpG island criteria. If the window does not meet the criteria,
the window is moved 1 bp toward the 3' until the window meets the CpG island criteria. If the
window does meet the criteria, the window is shifted 200 bps and evaluated again. This step is
repeated until the window does not meet the criteria. Thirdly, the last window is moved 1 bp
toward the 5' until it meets the criteria. Finally, the total GC content and O/E ratio is calculated
to determine whether the large CpG island meets the criteria. If the CpG island does not meet
the criteria, then 1 bp is trimmed from the beginning and ending of the sequence until it meets
the criteria. Moreover, if two individual CpG islands are separated by a distance of less than
100 bps, then these two islands are combined and the GC content and O/E ratio are recalcu-
lated such that they adhere to the criteria. In addition, Chuang et al. proposed a new PSO-
based method, in which an input sequence is divided into multiple 2,500 bp windows due to
the length of the chromosome sequences. Each window is subjected to PSO for CpG island pre-
diction. This method provides simple and accurate CpG island detection with fast convergence
and fewer parameters. However, PSO using the sliding window approach to scan DNA
sequences is time-consuming. The CpGcluster method is a CpG island detection technique
[11] that directly uses statistical properties to detect CpG dinucleotide clusters without consid-
ering CpG island definitions. The use of integer arithmetic allows for the quick detection of sta-
tistically-significant CpG dinucleotide clusters in which CpG islands have a higher degree of
overlap with promoter regions and highly-conserved elements [12]. However, the sensitivity of
the CpGcluster is low because of its short length, high O/E ratio and high GC content [13].
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This study combines clustering technology (CpGcluster) and PSO to develop a simple and
accurate method (ClusterPSO) for detecting CpG islands. CpGcluster is first introduced in the
pre-treatment strategies for detecting all CpG island candidates; these CpG islands are evalu-
ated according to the distances between CpGs and their p-values (P� 0.01). PSO is then used
to predict CpG islands from all CpG island candidates obtained from the CpGcluster results.
The GGF criteria are used as a basis to compare results with other methods based on five evalu-
ation criteria including sensitivity, specificity, accuracy, performance coefficient (PC), and cor-
relation coefficient (CC). Results showed that ClusterPSO provides high efficiency for CpG
island detection with improved sensitivity, accuracy, and correlation coefficient, while reducing
search time in the human genome.

Methods

CpGcluster
CpGcluster was first proposed by Hackenberg et al. [11]. The basic theory of CpGcluster is
based on the physical distance between neighboring CpGs to directly detect CpG clusters with-
out considering subjective CpG criteria. The CpGcluster procedure has two parts: (i) a dis-
tance-based algorithm searches for CpG clusters in the genome, and (ii) the p-value criteria
selects the statistically significant CpG clusters. The detailed procedure is explained in the Clus-
terPSO description below.

Particle swarm optimization
In PSO, each particle represents a practicable solution xi = {xi1, xi2, . . ., xid} in the d-dimen-
sional problem space, and it has a memory function to accumulate its own experience defined
as the pbesti = {pbesti1, pbesti2, . . ., pbestid} [14]. All particles share a common memory used to
identify the current best experience gbest = {gbest1, gbest2, . . ., gbestd}. Based on these two expe-
riences, a particle moves to find a better solution. Since each particle adopts a directional trajec-
tory in the search process, it can effectively find a better solution by continually updating its
location. The PSO procedure includes five steps: (i) initialization, (ii) fitness evaluation, (iii)
updating the pbesti and gbest, (iv) updating the positions and velocities of particles, and (v)
confirmation that the stop criterion is met. All steps are explained in detail in the ClusterPSO
section.

ClusterPSO
The proposed CpGcluster is used to detect all possible CpG island locations (CpG island candi-
dates) and optimize data processing, thus increasing PSO effectiveness by removing huge
amounts of unnecessary DNA fragments from the calculations. Since the known CpG island
minimum length detected by CpGcluster is 8 bps [11], all CpG island candidates are extended
both forward and backward by 200 bps to conform with the GGF criteria, where 200 bps is the
known minimum CpG island length in the GGF criteria. This region of CpG island candidates
allows the PSO to predict optimal CpG islands using the GGF criteria.

Fig 1 shows the ClusterPSO flowchart divided into two stages: 1. CpGcluster detects CpG
island candidates in the DNA sequence. This stage has two sub-steps: (i) Clustering technology
and statistical search methods are used to identify CpG island candidates in the chromosome
sequence. The distance threshold is used to combine adjacent and sufficiently close CpG dinu-
cleotides as clusters. (ii) The p-value is used to verify CpG island candidates. 2. PSO predicts
CpG islands among the CpG island candidates based on the GGF relaxed CpG island criteria.

A Hybrid Approach for CpG Island Detection in the Human Genome

PLOSONE | DOI:10.1371/journal.pone.0144748 January 4, 2016 3 / 16



Fig 1. ClusterPSO Flowchart.

doi:10.1371/journal.pone.0144748.g001
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Here we provide an example to illustrate how the ClusterPSO works, with details provided in
the Additional file.

Stage 1. Clustering detects CpG candidates in DNA sequence. CpG clustering within the
CpG island region is determined by a distance threshold, with closely adjacent CpGs belonging
to the same cluster, and longer distances differentiating different clusters. Thus, the intensive
CpGs are set into a cluster to select CpG island candidates. All steps are described in detail as
follows:

Step 1. All CpG positions are scanned from 5' to 3' in a DNA sequence, and the CpG positions
are collected into a set C = {c1, c2, . . ., cn}, where n is the total number of CpGs.

Step 2. The distances of all adjacent CpGs are calculated, in which a physical distance between
two adjacent CpGs is computed by di = Xi +1 –Xi− 1. The shortest distance of adjacent CpGs
is 1, i.e., CGCG.

Step 3. A threshold value (dt) is defined according to the distribution of distances of all adjacent
CpGs in a DNA sequence, and used to determine whether the adjacent CpGs belong to a
same cluster or not. The set C is sorted according to the distance between adjacent CpGs,
and the threshold dt is defined at the 65 percentile in the set C.

Step 4. CpGcluster uses a threshold value to start extending downstream (! 3') from the first
CpG of set C. When the adjacent distance between CpGs is smaller than the threshold
value, the two adjacent CpGs are classified into a single cluster; otherwise, the position of
the upstream G nucleotide of the adjacent CpGs is defined as the closing cluster position.
Thus, step 4 continues to search for new clusters until it meets the last CpG.

p-value criteria selects the statistically significant CpG clusters. Since all CpG island
clusters are determined by distance, the p-value of a cluster is then computed to calculate the
probability of a CpG cluster appearing in a random sequence. The negative binomial distribu-
tion estimates the probability to reduce the requirements of the CpG clusters. The distribution
fails if the number of successes is fixed in advance. Thus, the successes represent the CpGs and
the failures represent non-CpGs. The above-mentioned probability is calculated by the cumu-
lative density function at point nf of the CpG cluster, and is taken as the p-value:

Pcum
N;p ðx<= nf Þ ¼

Xnf
x¼0

x � ðN þ 1Þ � 1

ðN � 1Þ � 1

 !
� pN�1 � ð1� pÞx ð1Þ

nf ¼ L� 2� N ð2Þ

p ¼ Ns

Nis

ð3Þ

where N is the number of CpGs in the cluster, nf is the number of independent non-CpGs in
the cluster, L is the number of nucleotides in the cluster, and p is the probability of success find-
ing a CpG. Ns and Nis are the number of CpGs and the number of independent dinucleotides
in the DNA sequence, respectively. This step searches statistically significant CpG clusters and
assumes that all CpG islands are included in these CpG clusters. When the p-value of a cluster
is smaller than the threshold value (set as 10−2 in this study), the clusters are discarded; other-
wise, the cluster is retained.
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Stage 2. PSO predicts CpG islands from CpG candidates. Since the CpGcluster step col-
lects CpG island candidates without the CpG island criteria, the CpG island candidates may be
shorter than 200 bp. The lengths of these CpG island candidates must be extended for the
application of PSO prediction. All CpG island candidates are extended forward and backward
by 200 bps, and a separate PSO procedure is used for each specific CpG island candidate,
which can be divided into the following five steps:

Step 1. Initialization defines the particle as (population size = 300) a possible CpG island
region, and the particle coordinates constitute a two-dimensional problem space, i.e., d = 2.
Eq 4 is the particle encoding formula.

Pi ¼ ðFsi þ FliÞ ð4Þ

where Pi is the i
th particle. Fsi and Fli are respectively the start position and length of a pre-

dicted CpG island in a CpG island candidate. At initialization, each particle Pi is randomly
generated the parameters Fsi and Fli.

Step 2. Define the particle fitness by GGF criteria. The fitness function for evaluating the parti-
cles is based on the length, GC content, and O/E ratio of CpG island properties. A higher fit-
ness value represents a better CpG island prediction result. In addition, the recorded
particle positions must conform to the GGF definition for CpG island properties, such as
the range of particle length� 200 bps, GC content� 50%, and O/E ratio� 0.6. Then follow
an overlap process to predict all CpG island locations. Eq 5 is the normalization function to
calculate the CpG length. Eqs 6 and 7 respectively calculate the GC content and O/E ratio.
Eq 8 is the fitness function.

CpGlenðPiÞ ¼
#Aþ#T þ#C þ#G

pmax � pmin

ð5Þ

GCðPiÞ ¼
#C þ#G

#Aþ#T þ#C þ#G
ð6Þ

ObsCpG=ExpCpG ðPiÞ ¼

#CpG
CpGlength

#C
CpGlength

� #G
CpGlength

ð7Þ

FitnessðPiÞ ¼ GCðPiÞ þ ObsCpG=ExpCpGðPiÞ þ CpGlenðPiÞ ð8Þ

where #A, #T, #C, and #G are respectively the numbers of nucleotide adenine (A), thymine
(T), cytosine (C), and guanine (G) in the predicted CpG island region at Pi. pmin is the start-
ing position of the cluster minus 200, and pmax is the starting position of the cluster plus
200. #CpG represents the number of CpG in the predicted CpG island region at Pi.

Step 3. Update the pbesti and gbest for all particles. Each particle finds its personal best position
(pbest) and the global best position (gbest) when moving. If the fitness value of a particle Pi
in the current generation is higher than the fitness value of pbest, the fitness value and posi-
tion of pbest is replaced by Pi. If the fitness value of particle Pi in the current generation is
higher than gbest, the fitness value and position of gbest is replaced by Pi.

Step 4. Update the positions and velocities of particles in each generation. The position and
velocity of the Pi is updated by the pbesti and gbest. Eqs 9 and 10 respectively calculate the
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velocity and position of the updating formulas at particlei.

vnewi;j ¼ w� voldi;j þ c1 � r1 � ðpbesti;j � xoldi;j Þ þ c2 � r2 � ðgbestj � xoldi;j Þ ð9Þ

xnewi;j ¼ xoidi;j þ vnewi;j ð10Þ

where r1 and r2 are random variables between zero and one, and both c1 and c2 are con-
stants. c1 and r1 account for the subjective experience of particlei in the search process, while

c2 and r2 account for the population experience. The particlei velocities, vnewid and voldid are

respectively the new and old velocities. Positions xnewid and xoldid are respectively the updated

and current positions.
The inertia weight w is used to improve the particle search path. Using Eq 11, the inertia
weight can be linearly decreased from 0.9 to 0.4 according to the generation number. Poli
et al. [15] demonstrated how the inertia weight improved the balance between local search
and global search to facilitate particle search.

w ¼ ðwmax � wminÞ �
movemax �movei

movemax

þ wmin ð11Þ

where wmax and wmin are respectively set at 0.9 and 0.4, andmovemax,movei are respectively
the maximum and current generations. Thus, each particle can adjust its direction based on
a better pbest and gbest in the next generation.

Step 5. Confirm whether the stop criterion (maximum generation = 100) is met or not. Steps 2 to
5 are repeated until the maximum generation is reached. When all CpG island candidates are
predicted by PSO, all the identified CpG islands represent the CpG island detection results.

Performance measurement. The measurement of association between binary variables,
2 × 2 contingency, is used to evaluate the accuracy of CpG island detection [16]. As shown in
the contingency table, true positivity (TP) represents that the number of bases detected in the
CpG island region are true CpG islands. True negative (TN) represents that the number of
bases detected in the non-CpG island region is correct. False negative (FN) represents that the
number of bases detected in the true CpG island region is incorrect, and false positive (FP) rep-
resents that some of the bases detected in the CpG island region are non-CpG islands. Five
common criteria are used to evaluate the results, including accuracy, sensitivity, specificity, the
performance coefficient (PC), and the correlation coefficient (CC). Eq 12 is used to evaluate
prediction accuracy by comparing the detection results with the true CpG islands. Sensitivity is
calculated by Eq 13 to compute the rate of correct CpG island detection. Eq 14 is used to evalu-
ate the specificity for computing the proportion of correct non-CpG island detection. Eq 15
summarizes sensitivity and specificity as a measure of global accuracy. Eq 16 shows the correla-
tion coefficient, which is a single scalar value for correct non-CpG island detection.

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

ð12Þ

SN ¼ TP
TP þ FN

ð13Þ
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SP ¼ TN
TN þ FP

ð14Þ

PC ¼ TP
TP þ FP þ FN

ð15Þ

CC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FNÞ � ðTP þ FPÞ � ðTN þ FNÞ � ðTN þ FPÞp ð16Þ

Parameter settings. In the CpGcluster step, the p-value and distance threshold (percen-
tile) parameters are respectively set as 0.01 and 65th. In the PSO step, the parameters of popula-
tion size, maximum generation, and both c1 and c2 are respectively set as 300 [17], 100, and 2
[15]. GGF [1] is used to define CpG islands to allow for comparisons with other GGF-based
methods.

Results

Data set
In previous study [10], six regular contig sequences, including NT_113953.1, NT_113954.1,
NT_113955.2, NT_113958.2 and NT_113952.1 in chromosome 21, and NT_028395.3 in chro-
mosome 22, are selected to evaluate the performance of ClusterPSO and other methods. All
contig sequences and CpG islands were verified based on sequence analysis and bisulphite
sequencing (BS-seq) and were obtained from NCBI (http://www.ncbi.nlm.nih.gov), along with
the entire human genome (NCBI.36). Eight CpG island detection methods, including CpGPlot,
CpGcluster, CpGProD, CpGIS, and PSO-based methods, were selected for comparison with
the proposed ClusterPSO method. All data sets and ClusterPSO source code were published on
github (url: https://github.com/jackmel030/ClusterPSO).

CpG island detection of contig sequences
Table 1 shows the results of six contig sequences detected by the nine test methods. Both Clus-
terPSO and CPSORL show a higher sensitivity, PC, and CC values in the six contig sequences.
CpGPlot shows excellent SP results in all the contig sequences. CPSORL performs better than
the methods of CpGPlot, CpGcluster, CpGProD, CpGIS, PSO, PSORL, and CPSO, but Clus-
terPSO outperforms CPSORL for sensitivity, accuracy, PC, and CC values in the six contig
sequences. A non-parameter statistical hypothesis test, Wilcoxon Signed-Rank test, is used on
pairs of result groups to gauge their validity. The p-value of the Wilcoxon Signed-Rank test can
determine whether the difference between the two methods is significant or not. A p-
value< 0.001 indicates the ClusterPSO is statistically significant and exhibits improved CpG
island detection. All p-values for ClusterPSO vs. the other eight methods on the six contig
sequence results result in p< 0.0001. Although some methods use different CpG island defini-
tions, the 2 × 2 contingency seems to provide a higher accuracy for CpG island detection based
on the known positions of CpG islands in the NCBI. The results of the nine methods are taken
from the relevant literature.

Fig 2 provides a visual illustration of the performance of the six PSO-based methods in con-
tig NT_113952.1. The true CpG island indicates the known CpG island in the NCBI. The true
positive indicates the CpG length detected by other PSO-based methods that equal the true
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CpG island, the false positive indicates the CpG length detected by other PSO-based methods
that does not equal the to the true CpG island length. In addition, the false negative indicates
the CpG length is not detected by other PSO-based methods but is covered by the true CpG
island length, and the true negative indicates the CpG length is not recognized by other PSO-
based methods or the true CpG island. According to the experimental results (Fig 2), clus-
terPSO showed a higher degree of sensitivity and specificity compared to other methods. (clus-
terPSO: sensitivity (SN) = 93.53, specificity (SP) = 99.63; CpGcluster: SN = 44.45, SP = 70.76;
CPSORL: SN = 90.29, SP:99.42; CPSO: SN = 91.43, SP:99.47; PSO: SN = 91.00, SP = 99.47;
PSORL: SN = 89.86, SP = 99.43).

Table 1. Comparison of different CpG island detectionmethods.

Methods

Contig CpGPlot CpGcluster CpGProD CpGIS PSO PSORL CPSO CPSORL ClusterPSO

NT_113952.1 SN 56.43 50.46 58.07 83.98 69.22 75.58 77.43 84.88 95.98

SP 100.0 99.95 99.50 99.05 99.61 99.02 99.58 99.05 99.47

ACC 98.09 97.78 97.69 98.39 98.28 97.99 98.61 98.43 99.32

PC 56.42 49.92 52.36 69.59 63.77 62.27 70.91 70.34 86.16

CC 74.38 69.41 68.83 81.25 77.66 75.71 82.49 81.8 92.28

NT_113955.2 SN 47.19 67.15 68.51 85.12 54.47 59.63 77.8 87.38 94.67

SP 100.0 99.72 99.63 99.30 99.96 99.88 99.5 99.61 99.51

ACC 98.08 98.54 98.50 98.79 98.31 98.42 98.71 99.16 99.33

PC 47.14 62.47 62.35 71.78 53.87 57.74 68.67 79.08 83.81

CC 67.94 77.03 76.65 82.96 72.41 74.51 80.85 87.89 90.92

NT_113958.2 SN 51.29 27.16 46.41 82.13 79.27 81.65 81.08 84.11 88.56

SP 99.99 99.94 98.93 98.26 98.13 97.90 98.17 98.34 99.10

ACC 96.90 95.32 95.60 97.24 96.93 96.87 97.08 97.43 98.43

PC 51.24 26.92 40.10 65.36 62.10 62.33 63.8 67.51 78.20

CC 70.38 49.96 56.80 77.63 75.03 75.28 76.41 79.31 86.93

NT_113953.1 SN 22.80 57.32 29.79 74.05 60.20 64.80 70.53 75.65 82.74

SP 100.0 99.74 99.56 98.83 99.27 99.23 99.22 99.13 99.47

ACC 97.76 98.51 97.53 98.11 98.13 98.23 98.38 98.45 98.99

PC 22.80 52.74 25.96 53.23 48.39 51.59 55.91 58.57 70.39

CC 47.21 69.89 43.61 68.64 64.50 67.25 70.9 73.1 82.09

NT_113954.1 SN 31.24 29.86 52.01 76.31 56.92 63.58 70.54 77.68 78.02

SP 100.0 99.46 98.72 97.62 98.40 98.13 98.34 98.23 98.23

ACC 97.47 96.90 97.00 96.83 96.87 96.86 97.32 97.48 97.48

PC 31.24 26.19 38.94 47.05 40.12 42.74 49.22 53.15 53.34

CC 55.17 43.81 54.68 63.29 55.65 58.36 64.72 68.53 68.72

NT_028395.3 SN 27.11 44.89 54.18 76.68 68.97 72.79 72.52 77.02 81.52

SP 100.0 99.47 99.45 98.93 99.27 98.99 99.18 98.9 99.24

ACC 97.98 97.53 98.19 98.14 98.19 98.06 98.24 98.12 98.60

PC 27.10 39.26 45.36 59.36 57.49 57.17 59.36 59.25 67.53

CC 51.51 57.21 62.26 73.57 72.21 71.75 73.61 73.48 79.90

The bold type indicates the best value in all methods.

SN = Sensitivity, SP = Specificity, ACC = Accuracy, PC = Performance coefficient, CC = Correlation coefficient

doi:10.1371/journal.pone.0144748.t001

A Hybrid Approach for CpG Island Detection in the Human Genome

PLOSONE | DOI:10.1371/journal.pone.0144748 January 4, 2016 9 / 16



Table A in S1 File shows the detailed results of CpG island detection in the six contig
sequences by CPSORL and ClusterPSO. The columns GC% (average) and CpG island length
show that both CPSORL and ClusterPSO can accurately detect CpG islands as defined by
GGF. This table indicates that the ClusterPSO outperforms CPSORL in terms of detecting true
CpG islands.

CpG island detection of human chromosomes 21 and 22
Table 2 shows the CpG island detection results for the whole chromosome sequences using
CpGPlot, CpGcluster, CpGProD, CpGIS, PSO, PSORL, CPSO, CPSORL, and ClusterPSO. In
chromosome 21, the total length of CpG islands is 1,719,555 bps and the known CpG island
coverage is 3.66% in NCBI. ClusterPSO finds the CpG island length is 1,728,357 bps, and the
coverage of these CpG islands is 3.68%. In chromosome 22, the total length of CpG islands is
3,114,716 bps and the known CpG island coverage is 6.27% in NCBI. ClusterPSO finds a CpG
island length of 3,090,231 bps and coverage of 6.22%. The overall CpG island length and cover-
age values with known values in NCBI indicate that ClusterPSO outperforms the other meth-
ods in terms of detection accuracy. Table 2 provides detailed detection results, including the
average length, the minimum length, the maximum length, the GC content, and the O/E ratio
for the detected CpG islands. All methods can be applied to detect the GGF-defined CpG
islands, but the detection results obtained by CpGcluster for chromosomes 21 and 22 showed a
minimum length of 8 bps.

CpG island detection of entire human genome
Table 3 summarizes the CpG island detection results using CpGcluster, CpGIS, CPSORL, and
ClusterPSO in the entire human genome, and shows the statistical values for their detection
abilities. ClusterPSO detects 254,783 CpG islands, which is 1.28 times that detected by
CpGcluster (198,702), 6.75 times CpGIS (37,729), and 1.22 times CpGIS (208,536). Using Clus-
terPSO, the average island length is longer than that of CpGcluster (494 bps vs. 273 bps). The
length distribution of the results of the CpG islands is shown in Figure A in S1 File. The mini-
mum lengths of the various methods are as follows: CpGcluster (8 bps), CpGIS (500 bps),
CPSORL (100 bps), and ClusterPSO (200 bps). ClusterPSO determined the greatest CpG island
length in a range of 200~749 bps. Figure B in S1 File shows the distributions of the results of
GC content and O/E ratios for the CpG islands in 24 chromosomes using ClusterPSO. Most
CpG islands have a GC content between 0.5 and 0.7 and an O/E ratio between 0.6 and 1.0, indi-
cating the CpG islands detected using ClusterPSO conform to the GGF criteria. We examined
the promoter and transcription start site (TSS) overlap in the CpG island region. A promoter
region is defined as −1,500 to +500 bps around the TSS. The TSS number of CPSORL is higher

Fig 2. Results of the position of the true CpG island and the positions of the detected CpG islands
using the PSO-basedmethods and ClusterPSO. The search regions for PSO-based methods are also
shown to illustrate the difficulty in finding the optimal CpG island. True positive, false positive, false negative
and true negative outcomes are clearly shown for comparison between the six methods.

doi:10.1371/journal.pone.0144748.g002
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(below 9.33%) than that of CpGcluster and ClusterPSO; the promoter region numbers are also
higher (below 11.73%). The TSS numbers and promoter region numbers of CpGcluster are
similar to those of ClusterPSO.

Table B in S1 File compares the performance of CPSORL and ClusterPSO in 24 chromo-
somes of the human genome. ClusterPSO is found to outperform CPSORL in terms of the
average values for sensitivity, SP, accuracy, PC, and CC, which clearly indicates that ClusterPSO
provides significantly improved accuracy in CpG island detection. For the Wilcoxon Signed-
Rank test, the p-values of sensitivity, specificity, accuracy, PC, and CC are 1.82E-05, 0.807,
1.81E-05, 1.82E-05, and 1.82E-05 in 24 chromosomes, respectively. The statistical analysis
indicates that specificity values are similarly high for both CPSORL and ClusterPSO (98.97 vs.

Table 2. Comparison of the number of CpG islands identified in the human genomewith different methods (NCBI.36).

Chromosome 21

Chromosome Length (bp): 46,944,329 Total length of CpG islands(bp): 1,719,555* CpG island coverage (%): 3.66*

Methods CpGPlot CpGcluster CpGProD CpGIS PSO PSORL CPSO CPSORL ClusterPSO

Total length of CpG islands 347,334 639,161 1,072,192 1,280,505 1,440,953 1,564,596 1,527,114 1,607,472 1,728,357

Number of islands detected 973 2,703 1,091 3,704 2,648 2,648 2,813 2,813 3,864

Island coverage (%) 0.73 1.36 2.28 2.73 3.07 3.3 3.36 3.4 3.68

Island length (bp)

Average 357 237 983 346 542 591 561 571 447

Minimum 101 8 500 200 202 202 202 202 201

Maximum 3,047 3,028 6,732 1,948 4,009 4,020 4,032 4,035 5,785

GC-content ± SD (%) 62.17±0.07 65.49±0.07 54.49±0.06 57.98±0.04 54.63±0.05 53.73±0.05 54.12±0.05 53.72±0.05 53.81±0.07

CpG island O/E ratio ± SD 0.84±0.1 0.87±0.3 0.63±0.1 0.68±0.1 0.71±0.14 0.64±0.08 0.68±0.11 0.65±0.08 0.68±0.05

Chromosome 22

Chromosome Length (bp): 49,691,432 Total length of CpG islands(bp): 3,114,716* CpG island coverage (%): 6.27*

Methods CpGPlot CpGcluster CpGProD CpGIS PSO PSORL CPSO CPSORL ClusterPSO

Total length of CpG islands 679,803 522,748 2,067,653 2,842,255 2,772,787 2,802,675 2,873,255 2,907,983 3,090,231

Number of islands detected 1,642 2,186 1,903 6,875 4,571 4,571 4,882 4,882 6,624

Island coverage (%) 1.36 1.05 4.16 5.71 5.34 5.64 5.60 5.85 6.22

Island length (bp)

Average 414 239 1,087 413 581 613 570 596 467

Minimum 200 8 500 200 201 198 201 202 201

Maximum 7,902 7,774 8,363 3,339 4,064 4,076 4,064 4,076 5,785

GC-content ± SD (%) 63.70±0.08 70.23±0.08 55.84±0.07 55.12±0.06 54.91±0.05 54.50±0.07 55.16±0.05 54.46±0.07 54.91±0.07

CpG island O/E ratio ± SD 0.84±0.1 0.95±0.3 0.62±0.1 0.68±0.1 0.66±0.08 0.63±0.05 0.66±0.10 0.63±0.05 0.66±0.05

*The values related to CpG island are obtained from NCBI.

doi:10.1371/journal.pone.0144748.t002

Table 3. Comparison of four methods for CpG island detection in the entire human genome.

Methods CpGcluster CpGIS CPSORL ClusterPSO

Genome length 2.86 × 109

Number of predicted island 198,702 37,729 208,536 254,783

Coverage (%) 1.90 1.44 4.1 4.27

Island length

Average 273 ± 246 1,090±717 572±469 494±572

GC content ± SD 63.78±7.50 60.64±5.06 53.90±5.25 53.76±4.80

O/E ratio ± SD 0.855±0.265 0.717±0.082 0.649±0.087 0.678±0.102

TSSs 21,741 15,106 25,477 23,757

Promoter regions 29,156 13,196 54,356 29,880

doi:10.1371/journal.pone.0144748.t003
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98.99). However, the other p-values indicate the strong superiority of ClusterPSO over
CPSORL for CpG island detection in the human genome.

Detection time comparison for the PSO-based methods and ClusterPSO
Fig 3 shows the computation times of four PSO-based methods and ClusterPSO in six contig
sequences. The PSO, PSORL, CPSO, and CPSORL show similar implementation times, but
the ClusterPSO shows excellent results in terms of reducing implementation times. The
arrow in Fig 3C shows the algorithm implementation stops near a value of 4.9, but other
methods stop near 5.1. The arrow in Fig 3E shows that the rate of detection for ClusterPSO
increases from location 4.8 to location 5.1 in the detection sequence. The region in
NT_113954.1 does not detect any CpG islands from the CpGcluster step, and the known
solution according to NCBI also indicates the regions include very few CpG islands. Thus,
ClusterPSO can effectively reduce the implementation time by eliminating unnecessary
regions in the sequence. Fig 3B and 3F show that CpGcluster can handle long sequences
quickly, where time spent is indicated by the arrow in the figures. Although sequence scan-
ning may proceed more slowly at first than in other methods, it provides a strong time
advantage for complete genome searches.

Discussion

ClusterPSOmethod
We propose a procedure (ClusterPSO) for CpG island detection to overcome the drawbacks of
CpGcluster and reduce the search difficulty of PSO. Although gene analysis targets a whole

Fig 3. Comparison of CPU time and search efficiency amongst six methods for the six contig
sequences. The CPU times for PSO, CPSO, PSORL, CPSORL and ClusterPSO are shown to assess
relative search efficiency in the six contig sequences. The horizontal axis represents the implementation
time, and the vertical axis represents the log10 value for the presently-detected position in the sequence.
Arrows a and c show that the CpGcluster step handles long sequences, hence sequence scanning may
proceed more slowly at first than in other methods. Arrows a, b and c show that the CpGcluster step detects
very few CpG island candidates in the region.

doi:10.1371/journal.pone.0144748.g003
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mammalian genome, CpG island lengths are typically 300–3,000 bps in genomes, and PSO
methods proceed piece-by-piece. Fig 2 illustrates the advantages of ClusterPSO over other
methods by comparing the search results of six methods in contig NT_113952.1. A true CpG
island is located in region of 163,354 to 163,701 bps (length: 347 bps). Of the six methods,
CpGcluster detects the shortest CpG island (region: 163,393–163,690, length: 297 bps). In this
case, CpGcluster produces the fewest false positives, but has the lowest sensitivity (85.59%,
297/347) due to its short length. Fig 2 shows the search region for all PSO-based methods.
Chuang et al. proposed several improved PSO methods for detecting CpG islands by dividing
the whole sequence into many small sequences, with regions defined as being 2,500 bps in
length [10]. The possible search space is 2,500 bps, and the resulting huge number of possible
solutions makes it difficult for PSO-based methods to accurately detect the optimal CpG island
position. Although reinforcement learning (RL) can improve PSO search ability in terms of
true positives, it might also result in increased false positives due to the extension of the
sequence. Based on the own-relax criteria of CpGcluster, ClusterPSO extends the search region
to predict optimal CpG islands. The extended search region successfully reduces the number of
pairwise intersections to 797, and the true CpG island is included in the search region. Fig 2
shows that ClusterPSO provides the highest true positive detection and the lowest rate of false
positives. The analysis below explains how combining CpGcluster and PSO can mitigate the
individual disadvantages of each method.

In the Hackenberg et al. study, three thresholds (25th, 50th and 75th) are used to test CpGclus-
ter for CpG island detections. Hackenberg et al. suggested using the region between 50th and 75th

to detect CpG islands. Raising the distance threshold to the 75th percentile obtains longer islands,
and can thus increase the sensitivity by more than 20% while only minimally improving overall
accuracy [11]. Lowering the p-value threshold beyond 10−5 slightly increased SP but also clearly
decreased SN, thus lowering overall global accuracy. In this study, ClusterPSO selected the 65th to
balance the SN and SP. The PSO step can filter CpG islands again, indicating the number of non-
CpG island regions can be reduced. When the p-value is small, the computational time of Clus-
terPSO can be increased due to the large number of detected CpG island candidates. Therefore,
we suggest the ClusterPSO use the 65th to detect CpG islands, and the region of p-value thresh-
olds is suggested between the 50th and 75th to detect CpG islands.

Comparison of the true positive and false positive rates for CpGcluster,
PSO-based methods, and ClusterPSO
Our previous study proposed PSO-based methods to detect the CpG islands with high true
positive rates (TPR) and low false positive rates (FPR) [10]. These PSO-based methods reveal
slightly higher FPR than CpGcluster, but also show substantially higher TPR than CpGcluster
and other methods. Overall, ClusterPSO is obviously superior to all other PSO-based methods.
Figure C in S1 File shows the XY charts for comparing the TPR and FPR of CpGcluster, PSO-
based methods, and ClusterPSO. The upper-left location of the chart indicates the better CpG
island detection results, and the figure indicates that ClusterPSO outperforms the other five
methods in terms of TPR, but has a slight disadvantage in terms of FPR. In addition, this figure
indicates that the disadvantages of both CpGcluster and PSO can be greatly improved by com-
bining the two methods, making our approach highly effective for CpG island detection.

Search stability comparison for all of the PSO-based methods
Search stability is an important performance criterion for PSO-based methods. Different ran-
dom seeds have an impact on CpG island detection. Figure D in S1 File shows a box plot which
compares the relative stabilities of sensitivity, specificity, accuracy, PC, and CC for PSO-based,
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and ClusterPSO through 1,000 test iterations. Given an identical random seed, all PSO-based
methods have the same random value in each generation, and some seed values may result in
search failure, thus reducing the accuracy in CpG island detection. However, the ClusterPSO
still detects CpG islands with a high degree of accuracy, even with unfavourable seed values
(the error bars near the left boxes indicate 10th percentiles). In the box plot, a small
box indicates better stability in each performance measurement. In terms of stability, Clus-
terPSO outperforms the other PSO-based methods.

ClusterPSO performance for the entire human genome
In entire human genome analysis, ClusterPSO performs better than CPSORL in terms of sensi-
tivity, specificity, accuracy, PC, and CC values (Table B in S1 File), and CpG island prediction
accuracy and coverage rate. Table C in S1 File shows that ClusterPSO outperforms PSO-based
methods and CpGcluster in terms of detecting overlapping CpG islands, indicating that Clus-
terPSO can correctly detect CpG islands.

The short lengths of CpG islands may result in high O/E ratio and high GC content levels,
but also results in low sensitivity [13]. However, ClusterPSO is based on CpGcluster and uses
the CpG criteria to detect CpG islands, thus the O/E ratio and GC content of ClusterPSO are
smaller than those of CpGcluster, but with substantially improved sensitivity. Figure E in S1
File shows the box plot of the O/E ratio for each interval length in 24 chromosomes. The fig-
ures show the O/E ratios for all boxes remain between 0.6 and 0.7 in each interval length, and
the box width indicates which box corresponds to the O/E value for CpG islands in the 25th

and 75th percentiles of a given CpG island class. This indicates that CpG islands detected by
ClusterPSO can follow CpG island criteria without being impacted by CpG island length.

Hackenberg et al. compared CpGcluster against the sliding window method. They found
that CpGcluster co-localized more specifically to TSSs, and many of the small CpG islands
detected by CpGcluster may be functional, given the overlap with conserved elements or pro-
moter regions [12]. The results for TSSs and the promoter regions (Table 3) show that Clus-
terPSO inherits these advantages from CpGcluster because ClusterPSO is based on CpGcluster
detection.

The Hackenberg et al. study found that small CpG clusters (length< 200bps) may have
important biological implications [11]. In our study, ClusterPSO used the GGF to define the
CpG islands (length> 200 bps, GC content> 50%, and O/E> 0.6), in which the minimum
length defined in the particle (see Stage 2) may limit the predictive potential of ClusterPSO.
This minimum length limitation can be eliminated for the detection of additional CpG islands
with important biological meanings but the prediction results may reduce the prediction sensi-
tivity due to the great number of small CpG islands.

This study combines CpGcluster and PSO methods to design a simple and accurate Clus-
terPSO method to detect CpG islands in human DNA sequences. This combination has several
advantages over CpGcluster and PSO alone: (1) the implementation time and search stability
of PSO can be significantly improved by pre-treatment with CpGcluster; (2) the short CpG
island length of CpGcluster may not meet CpG island criteria, but it can be improved by an
accurate PSO prediction; (3) ClusterPSO only requires six parameters which is easy to imple-
ment; and (4) future improvements to CpGcluster and PSO will greatly enhance the accuracy
of ClusterPSO detection.

Supporting Information
S1 File. Additional results and imputation commands. The supplementary file includes the
computational details of ClusterPSO and supplementary Figures and Tables. Length
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distribution of the results of CpGIS, CpGCluster, CPSORL, and ClusterPSO in the human
genome (Figure A). Distribution of the results of CpG islands in the human genome
(Figure B). XY charts comparing the true positive and false positive rates amongst the six
methods for six contig sequences (Figure C). Box plot comparing the stability of five methods
in six contig sequences (Figure D). Box plot of the O/E ratio for each interval length in the
human genome (Figure E). Number of CpG islands located in gene regions identified with
CPSORL and ClusterPSO (Table A). Performance measurement of ClusterPSO and CPSORL
for all chromosomes in the human genome (Table B). Number of detection CpG islands over-
lapping on true CpG islands for CpGcluster, CPSORL and ClusterPSO for all chromosomes in
the human genome (Table C).
(DOC)
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