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Abstract
In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and

inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this

study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for com-

plement effectors and analyzed with clinical measurements. The pro-inflammatory peptide

C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF

sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A pep-

tide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentra-

tion from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated

inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which

has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P =

0.02). These results suggest that complement effectors may significantly impact inflamma-

tion in CF lung fluid.

Introduction
Cystic fibrosis (CF) afflicts 30,000 individuals in the United States with respiratory failure caus-
ing the majority of deaths. Progressive destruction of lung parenchyma is mediated by a cycle
of obstruction, infection with bacterial pathogens, and inflammation [1]. As the cycle repeats,
lung damage progresses to lung scarring and finally pulmonary failure.

The most destructive inflammatory cascade in the human body is the complement system,
which contributes to host tissue damage in numerous inflammatory disease processes [2].
Recent evidence shows complement proteins are major constituents of lung fluid in CF, where
C3 and C4 account for two of the four most prevalent proteins [3]. Thus, complement may
play a larger role in CF lung inflammation than previously suspected. Antibody binding to bac-
teria can activate the classical complement pathway via the initiating component C1 (Fig 1).
Another serum protein, mannose-binding lectin (MBL), can directly bind foreign sugars on
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the surface of pathogenic bacteria activating the lectin complement pathway. The classical and
lectin pathways proceed via C4 leading to downstream activation of C3 [4]. C3 activation gen-
erates the complement effector C3a and covalently binds cells with the opsonins C3b and iC3b.
C3b initiates activation of C5, generating the extremely potent anaphylatoxin C5a. C5a is
among the most powerful stimulants for neutrophil migration and activation, leading to oxida-
tive burst and degranulation [4,5]. Neutrophil death following degranulation is a major source
of the viscous DNA contributing to airway obstruction [6,7]. Neutrophil granules release neu-
trophil elastase, a major contributor to lung damage [8–10]. Additional properties of C5a that
may also contribute to CF lung disease are stimulation of histamine release, enhancement of
vascular permeability, and smooth muscle contraction [4]. The known inflammatory proper-
ties of C5a are consistent with the increasing evidence of the role of C5a in inflammatory lung
diseases [11,12], including acute lung injury [12]. Thus, multiple lines of reasoning suggest that
complement modulation of inflammation may be a major contributor to lung damage in CF.

Significant investigation has focused on the interactions of leading CF pathogens P. aerugi-
nosa and S. aureus with the complement system. The work of several investigators has been
summarized in a meta-analysis suggesting that MBL insufficiency is associated with earlier
acquisition of P. aeruginosa, reduced pulmonary function, and earlier death or lung transplan-
tation [13]. High levels of specific IgG3 plasma antibodies against P. aeruginosa are associated
with higher complement-activation capacity and poor lung function as assessed by vital capac-
ity [14]. Antibodies against neutral polysaccharides on P. aeruginosa can increase C3 opsoniza-
tion for certain strains [15], but do not protect against infection likely secondary to O side-
chains and alginate interfering with opsonic killing [16]. CFTR has been demonstrated on
blood monocytes and is associated with reduced complement-dependent opsonization of P.
aeruginosa [17]. Although a great deal of investigation has focused on S. aureus control of com-
plement activation and evasion of complement effectors [18,19], very little has been done in
the context of cystic fibrosis. In summary, many studies have focused on the many mechanisms
these pathogens utilize to evade complement-mediated immune mechanisms with a few stud-
ies hinting at the potential role of complement in CF lung damage.

A modicum of investigation into the potentially important role of C5a in the CF lung was
performed nearly 30 years ago. In 1986, Fick et al [20] described the presence of increased
amounts of C5a, measured by radioimmunoassay, in the bronchoalveolar lavage (BAL) of 9 CF
patients with stable lung disease compared with BAL from healthy controls. The CF BAL fluids
were chemotactic for neutrophils, correlating with C5a concentrations. Two (2) CF patients
with the lowest C5a measurements were noted to have normal FEV1 and FVC measurements,
suggesting a potential association with lung damage. To our knowledge no further studies have
been performed to test whether C5a concentrations in CF lung fluid correlate with lung disease
in CF. The experiments described here evaluate complement activation and effectors in CF
sputum and provide preliminary data correlating complement effectors with clinical measures
of disease.

Fig 1. Bacteria initiating classical (C1) or lectin (MBL) pathway complement activation with C5a-
mediated neutrophil recruitment and activation.

doi:10.1371/journal.pone.0144723.g001
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Results

Complement anaphylatoxins in CF lung fluid
In order to evaluate whether complement anaphylatoxins were elevated in CF lung fluid we
assayed CF sols from the sputum of CF patients for each complement anaphylatoxin and com-
pared these results with sputum sols from healthy human controls. The most inflammatory
complement anaphylatoxin is C5a, which we assayed by ELISA andWestern blot. Mean C5a
concentration in CF sols was 4.8-fold higher (p = 0.04) compared with the mean for healthy
controls (Fig 2A). Qualitative analysis by Western blot probing for C5a confirmed that large
amounts of C5a are present in CF sols compared with controls (Fig 2B). C3a is a complement
effector that is generated during activation of the central complement component C3. Mean
C3a concentrations in CF sols was 4-fold higher (p = 0.03) compared with controls (Fig 2C).
C4a is the least potent of complement anaphylatoxins and is generated during classical or
lectin pathway complement activation. Mean C4a concentration was 2-fold higher in CF sols
(p = 0.05) compared with controls (Fig 2D). Together these data show that the concentration
of complement anaphylatoxins in CF lung fluid is significantly elevated, suggesting significant

Fig 2. Complement anaphylatoxins in CF and control lung fluid. (A) C5a concentrations in sol fractions from sputum of CF patients (n = 15) and controls
(n = 3). Box shows quartiles, whiskers are 90th and 10th percentile, and dashed line is the mean. P = 0.04. (B) C5aWestern blot for sputum sols for 2 healthy
controls (A and B) and 2 CF subjects (X and Y). (C) C3a concentrations in sol fractions from sputum of CF patients (n = 14) and controls (n = 4). Box shows
quartiles, whiskers are 90th and 10th percentile, and dashed line is the mean. P = 0.03. (D) C4a concentrations in sol fractions from sputum of CF patients
(n = 15) and controls (n = 5). Box shows quartiles, whiskers are 90th and 10th percentile, and dashed line is the mean. P = 0.05.

doi:10.1371/journal.pone.0144723.g002
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complement activation in CF lung fluid. The potent ability of C5a to recruit neutrophils and
stimulate degranulation [4,21,22], suggests that C5a could contribute to the high concentra-
tions of neutrophil elastase in CF lung fluid, which is associated with parenchymal destruction.
Additionally, the elevated levels of C4a in CF lung fluid, suggests that much of the complement
activation occurring in CF lung fluid may be occurring via the classical or lectin complement
pathways.

Complement opsonization of S. aureus in CF lung fluid
In order to evaluate whether complement in CF lung fluid could adequately opsonize a patho-
genic bacteria, we evaluated CF sol opsonization of S. aureus. Given the large amounts of com-
plement activation that had already occurred in the CF lung fluids, it was important to
determine whether there was residual complement-mediated host defense. S. aureus were incu-
bated with CF or control sols, washed and stripped of bound C3-fragments and bound C4-frag-
ments. S. aureus was robustly opsonized in CF sol yielding a nearly identical mean level of
bound C3-fragments compared with normal controls (Fig 3A). S. aureus was also robustly
bound by C4-fragments (p = 0.13) with a non-significant trend towards increased mean
C4-fragment binding by CF sols compared with normal controls (Fig 3B). These results sug-
gest that CF lung fluid retains a normal capacity to opsonize bacteria, suggesting that this facet
of host defenses is not compromised. These results also show that despite significant comple-
ment activation having occurred, as evident by very high anaphylatoxin levels, significant acti-
vable complement remains in CF lung fluid. This suggests a cycle of complement activation
and repletion consistent with persistent inflammation. The robust opsonization with C4-frag-
ments suggests that the classical or lectin complement pathway is active in CF lung fluid and
may be the predominant pathway of complement activation.

C5a generation in CF lung fluid by P. aeruginosa and S. aureus
In order to evaluate whether CF lung fluid challenged with pathogenic bacteria commonly
present in CF lungs would generate new C5a, the most inflammatory anaphylatoxin, we incu-
bated CF sols with live and dead P. aeruginosa and S. aureus. We tested live and dead versions
of each bacterium because both forms are likely to be present in an infected CF lung. Addition-
ally, we wanted to determine if secreted factors or adaptive changes that could be produced by
live bacteria would alter C5a generation. C5a concentrations were measured in CF and control
sols prior to incubation with bacteria and then afterwards to determine new C5a generation.
Incubation of CF sols with live or dead P. aeruginosa lead to an average increase in C5a genera-
tion of 2.3-fold (p = 0.02) and similarly incubation with live or dead S. aureus led to an average
increase in C5a generation of 2.4-fold (p = 0.02) (Fig 4A). The increases in C5a generation for
the control sols was statistically significant, but much less than was found for the CF sols in
terms of absolute amounts of C5a generated. These data also showed a difference in C5a gener-
ation between live or dead P. aeruginosa (p = 0.05), but not between live or dead S. aureus. This
relationship between live or dead P. aeruginosa challenge appeared consistent for the different
CF sol samples (Fig 4B), but there was no consistent relationship between live or dead S.
aureus challenge (Fig 4C). These data show that P. aeruginosa and S. aureus both provoke
robust generation of the highly inflammatory C5a anaphylatoxin in CF lung fluid, suggesting
that the presence of these bacteria in the CF lung may be enhancing inflammation and subse-
quent host tissue damage via this mechanism. These data also suggest that live P. aeruginosa
may have some ability to moderate C5a generation in CF lung fluid compared to dead P.
aeruginosa.
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The experiments above show that in CF lung fluid complement activation is occurring to
generate complement effectors, yet more complement activation is possible suggesting that
complement components are also being repleted. In order to evaluate the likely complement
pathways by which P. aeruginosa was activating C5a generation, we tested an inhibitor of clas-
sical and lectin complement pathway activation. Peptide inhibitor of complement C1 (PIC1) is
a small peptide inhibitor of the classical and lectin pathways of complement activation which
binds C1q or MBL to prevent cognate serine proteases from cleaving C4 [23–26]. CF sols were
incubated in buffer alone, with dead P. aeruginosa, or with PIC1 and dead P. aeruginosa (Fig
4D). Dead P. aeruginosa increased C5a concentration by 1.6-fold compared to incubation of
the CF sol in buffer alone. Addition of PIC1 to the CF sol decreased C5a generation by P. aeru-
ginosa (p = 0.001) to a level not significantly different from CF sol alone (p = 0.22). Thus, addi-
tion of a classical/lectin pathway inhibitor blocked C5a generation by P. aeruginosa, suggesting

Fig 3. Complement opsonization of S. aureus. (A) S. aureus-bound C3-fragments after incubation in sol
fractions from sputum of CF patients (n = 5) and controls (n = 3). Box shows quartiles, whiskers are 90th

percentile, and dashed line is the mean. P = 0.42. (B) S. aureus-bound C4-fragments after incubation in sol
fractions from sputum of CF patients (n = 5) and controls (n = 3). Box shows quartiles, whiskers are 90th and
10th percentile, and dashed line is the mean. P = 0.13.

doi:10.1371/journal.pone.0144723.g003
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that P. aeruginosa activates complement and C5a generation via the classical or lectin comple-
ment pathways. This finding is congruent with elevated C4a levels and robust C4-fragment
opsonization and together they support a major role for classical/lectin pathway activation in
CF lung fluid.

Complement anaphylatoxin correlation with clinical characteristics
Because this is a pilot study to demonstrate proof of concept, the numbers of CF sputum sam-
ples was small, n = 15. Clinical data was collected with each sputum sample and we evaluated
whether, despite the small sample size, any trends with clinical measures were identifiable. The
clinical characteristics for these 15 subjects are shown in S1 Table. The subjects span a wide
range of ages from 2–65 years old with a median age of 19. Median FEV1% predicted was 59;
for children (n = 7) median BMI was 48% and for adults (n = 4) median BMI was 23.87 mg/
kg2. Clinical data collected at the time of sputum sampling was obtained for a wide range of
measures including FEV1% predicted, BMI percentage (children), bronchiectasis, CFRD status,

Fig 4. C5a generated by bacteria in CF sols. (A) C5a concentrations in sol fractions from sputum of CF patients (n = 3) or controls (n = 3) before and after
incubation with live or dead P. aeruginosa or S. aureus. Data are means ± SE. C5a was generated in CF sol in the presence of P. aeruginosa (P = 0.03) or S.
aureus (P = 0.03). (B) C5a concentrations in sol fractions from sputum of CF patients (subjects A, B, and C) before (Initial) and after incubation with live or
dead P. aeruginosa. (C) C5a concentrations in sol fractions from sputum of CF patients (subjects A, B, and C) before (Initial) and after incubation with live or
dead S. aureus. (D) C5a concentrations in CF sols that were incubated alone in buffer (CF sol only), incubated with dead P. aeruginosa (CF sol + P. aerug), or
incubated with a classical/lectin complement pathway inhibitor and dead P. aeruginosa (CF sol + PIC1 + P. aerug).

doi:10.1371/journal.pone.0144723.g004
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pathogenic microorganisms cultured from the sputum and medications (i.e. corticosteroids,
azithromycin, and antibiotics). Statistical correlations were assessed between the anaphylatox-
ins, C5a and C3a, and the clinical measures, see S2 Table. Increased concentration of the highly
inflammatory C5a positively correlated with increased age (r = 0.53, p = 0.04), as shown in Fig
5A. Increased C5a concentration correlated inversely with BMI percentile in children (r =
-0.77, p = 0.04) as shown in Fig 5B. Increased C3a levels positively correlated with increased
FEV1% predicted (rs = 0.63, p = 0.02), as shown in Fig 5C. Microorganisms (i.e. P. aeruginosa,
B. cepacia, S. aureus, or yeast) recovered from the sputum, corticosteroids inhaled or systemic,
azithromycin, or antibiotics inhaled or systemic, did not show correlation with C5a or C3a
level. Despite the small numbers of samples, these results show that increasing C5a concentra-
tion correlated with decreased BMI percentile in children suggesting that increased comple-
ment inflammatory C5a in lung fluid may be associated with poorer overall health in children
with CF. C3a level positively correlated with FEV1% predicted, suggesting a potentially protec-
tive effect from C3a on CF lung function.

Discussion
These data confirm the findings of Fick et al [20] that CF lung fluid contains increased levels of
anaphylatoxin C5a. Our data expand upon these findings by showing that sputum samples can
be used to measure C5a and other complement effectors in CF lung fluid. The ability to use
sputum samples allows for much larger longitudinal studies to be done in the future to further
elucidate the role of complement effectors in the CF lung.

Our data show that despite high levels of activated anaphylatoxins present in CF sputum,
considerable quantities of activable complement are available to opsonize bacteria. We further
show that large amounts of new C5a are generated by CF sols when they are incubated with P.
aeruginosa or S. aureus. These results suggest that there is a continuous cycle of complement
activation and repletion in CF lung fluid consistent with the cycle of infection and inflamma-
tion, which is felt to play a major role in CF lung damage. Additionally, we show that the gener-
ation of C5a by P. aeruginosa can be blocked with a classical/lectin pathway inhibitor.

Given the small numbers of CF sputum samples tested, no strong conclusions about associa-
tions with clinical measures can be made with confidence. BMI in children with CF is multifac-
torial in nature, but generally regarded as a measure of overall health (i.e. low BMI is an
independent predictor of mortality). Thus, elevated C5a concentration in the lung may be asso-
ciated with poorer overall health in children with CF. The association of high C5a with low
BMI percentile is from a small data set and needs to be validated in a larger study, but could
potentially translate clinically as a biomarker for risk of wasting in children with CF.

Interestingly, elevated sputum C3a levels correlated positively with higher FEV1% predicted
measurements. C3a has been shown to have anti-inflammatory effects in ischemia-reperfusion
and septicemia by inhibiting neutrophil mobilization [27]. Thus, C3a may have protective
effects in cystic fibrosis by regulating neutrophil activity [28]. Alternatively, C3a could be a
marker of robust complement activation and activity against bacterial pathogens in the CF
lung. However, the considerable literature describing multiple complement-evasion strategies
for P. aeruginosa and S. aureus [19,29–34], suggest this is unlikely. These strategies include
AprA degradation of C2 [31], Tuf recruitment of factor H [35], elastase degradation of C3 [36],
and protease IV degradation of C1q and C3 [37]. Clearly, this association deserves further elu-
cidation in a larger clinical study to determine whether this correlation is upheld and whether
the C3a level trends with FEV1% predicted over time.

It remains unclear the extent to which complement is effective against bacterial pathogens
in the CF lung; clearly normal host defenses are altered to such an extent that eradication of
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Fig 5. Correlation plots for complement effectors and clinical measures. (A) C5a concentrations in CF
sols positively correlate with increasing age, r = 0.53, p = 0.04. (B) C5a concentrations in CF sols correlate
inversely with BMI percentile in children, r = -0.77, p = 0.04. (C) C3a concentrations in CF sols positively
correlate with FEV1%, rs = 0.63, p = 0.02.

doi:10.1371/journal.pone.0144723.g005
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bacterial pathogens (e.g. P. aeruginosa, B. cepacia and MRSA) rarely occurs. It is plausible that
complement may be modulating inflammation in the CF lung, but providing little antimicro-
bial effect. Thus, there may be an opportunity in the future to pharmacologically modulate
complement effectors in CF lung fluid without further impairing already poor immunological
control of pathogens.

Materials and Methods

Ethics Statement
Sputum samples were obtained from consented patients as part of their standard of care visit at
the Children’s Hospital of The King’s Daughters Cystic Fibrosis Center under an Eastern Vir-
ginia Medical School IRB approved protocol 12-08-EX-0200. Written consent was obtained.
The EVMS IRB specifically approved this study under protocol 12-08-EX-0200. Control spu-
tum samples were obtained from healthy human volunteers.

Sputum sols
Expectorated sputum samples were placed immediately on ice. The soluble (sol) fraction was
generated by cold (4°C) centrifugation at 14,000 g for 60 minutes and recovery of the free flowing
liquid fraction, similar to methods previously described [38]. Sol fractions were non-viscous and
not normalized for protein content, consistent with previously described methods [39].

Clinical data
Clinical data were obtained from data entered into Port CF for the clinic visit at which the spu-
tum sample was collected and from review of the medical record. The FEV1% predicted was
performed the same day the sputum was collected. Bronchiectasis was scored based on the
most recent radiographic: 0 = normal; 1 = 1 lobe, mild; 2 = 2–4 lobes; 3 = all lobes. Cystic fibro-
sis related diabetes (CFRD) status was based on the most recent endocrinology assessment
prior to obtaining the sputum sample. CFRD status was scored: 0 = normal; 1 = glucose intoler-
ance; 2 = CFRD. Organisms were recorded from routine culture performed in the clinical
microbiology laboratory. The organisms were categorized as to whether the following were
present or absent: P. aeruginosa, S. aureus, B. cepacia complex, or Candida species. Patient
medications at the time of clinic visit were categorized as to whether the following were present
or absent: systemic corticosteroid, inhaled corticosteroid, azithomycin, inhaled antibiotic, or
systemic antibiotic (excluding azithromycin).

ELISAs
The C5a, C3a, and C4a concentrations in sputum sols were measured via ELISA kit (R&D Sys-
tems, Minneapolis, MN or BD Biosciences, San Jose, CA) [40–42]. Bound C3-fragments were
measured using a total C3 ELISA using a goat anti-human C3 antibody (Complement Technol-
ogy, Tyler, TX) for capture and a chicken anti-human C3 antibody (Sigma, St. Louis, MO) for
detection, as previously described [43]. Bound C4-fragments were evaluated via same ELISA
using a goat anti-human C4 antibody for capture and a chicken anti-human C4 antibody
(Abcam, Cambridge, MA) for detection.

Western blots
C5a fragments were analyzed by Western Blot using a mouse anti-human C5a antibody (R&D
Systems) to probe followed by a goat anti-mouse HRP antibody (Sigma) and detected with
ECL.

Complement in CF Lung Fluid

PLOS ONE | DOI:10.1371/journal.pone.0144723 December 7, 2015 9 / 13



S. aureus opsonization with CF sols
S. aureus strain Reynolds was grown in 2% NaCl Columbia broth at 37°C to log phase, washed
twice and resuspended to 1 × 109 cells/ml in GVBS++ buffer. An equal volume of bacteria and
sol were incubated for one hour at 37°C. The bacteria were washed twice with GVBS-—buffer
and then stripped of bound complement fragments using methylamine, as previously described
[44].

C5a generated in CF sols by live and dead P. aeruginosa and S. aureus
Pseudomonas aeruginosa and S. aureus were grown in broth to log phase and washed. Both
bacteria were gently heat killed by incubating in a 70°C water bath for 15 min. Sols were incu-
bated with live or dead P. aeruginosa or S. aureus at equal volumes for one hour at 37°C. Sam-
ples were sedimented and the supernatant recovered. Equal volume of CF sol and PIC1, a
PEGylated derivative of polar assortant (PA) [23,24,26], at 50 mg/ml, or saline, was combined
for 30 minutes before adding 5 × 107 CFU heat-killed P. aeruginosa for 30 minutes. Samples
were sedimented and the supernatant recovered.

Statistical analysis of clinical measures with C5a/C3a
The data were analyzed using SAS 9.4 (SAS Institute, Cary, NC) and SPSS 19 (SPSS Inc., Chi-
cago, IL) software. The level of significance was set at 0.05 and all hypothesis tests were two-
sided. Pearson and Spearman correlation coefficients were reported, where appropriate, for
C5a level, C3a level, and the clinical measures. Descriptive statistics (mean, median, and inter-
quartile range (IQR)) were reported for C5a and C3a level stratified by clinical measures. Sim-
ple linear regression and Mann-Whitney U tests were used, where appropriate, to determine
associations between C5a level, C3a level, and the clinical measures. A multivariable linear
regression model for FEV1% was used to determine associations with C5a level and C3a level.

Statistical analysis of laboratory data
Medians, quartiles, and 90th percentiles were calculated using PSI plot. Means and standard
error of the means (SEM) were calculated from independent experiments. Statistical compari-
sons were made using Student’s t-test where appropriate.

Supporting Information
S1 Table. Characteristics of the CF subjects.
(DOCX)

S2 Table. Correlation coefficients for complement effectors and clinical measures.
(DOCX)
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