
RESEARCH ARTICLE

Theoretical Basis for Dynamic Label
Propagation in Stationary Metabolic
Networks under Step and Periodic Inputs
Serguei Sokol1,2,3*, Jean-Charles Portais1,2,3

1 Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, LISBP, Université de Toulouse, INSA,
UPS, INP, Toulouse, France, 2 Laboratoire Ingénierie des Systèmes Biologiques et des Procédés, INRA
UMR792, Toulouse, France, 3 UMR5504, CNRS, Toulouse, France

* sokol@insa-toulouse.fr

Abstract
The dynamics of label propagation in a stationary metabolic network during an isotope

labeling experiment can provide highly valuable information on the network topology, meta-

bolic fluxes, and on the size of metabolite pools. However, major issues, both in the experi-

mental set-up and in the accompanying numerical methods currently limit the application of

this approach. Here, we propose a method to apply novel types of label inputs, sinusoidal or

more generally periodic label inputs, to address both the practical and numerical challenges

of dynamic labeling experiments. By considering a simple metabolic system, i.e. a linear,

non-reversible pathway of arbitrary length, we develop mathematical descriptions of label

propagation for both classical and novel label inputs. Theoretical developments and com-

puter simulations show that the application of rectangular periodic pulses has both numeri-

cal and practical advantages over other approaches. We applied the strategy to estimate

fluxes in a simulated experiment performed on a complex metabolic network (the central

carbon metabolism of Escherichia coli), to further demonstrate its value in conditions which

are close to those in real experiments. This study provides a theoretical basis for the rational

interpretation of label propagation curves in real experiments, and will help identify the

strengths, pitfalls and limitations of such experiments. The cases described here can also

be used as test cases for more general numerical methods aimed at identifying network

topology, analyzing metabolic fluxes or measuring concentrations of metabolites.

Introduction
Isotopic studies of biochemical systems have been greatly improved since they were first used
to identify metabolic pathways in the early 1930s. Modern approaches combine isotope label-
ing experiments with mathematical models to obtain highly detailed quantitative information
about metabolic pathways (particularly metabolic fluxes) and networks of increasing size and
complexity [1, 2]. From a mathematical point of view, these approaches require solving two
related problems: first, the ‘direct’ problem of calculating labeling distribution in metabolites
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when the fluxes and, where necessary, metabolite pools are known, plus the ‘inverse’ problem
of calculating fluxes (and metabolite pools) from the measured label distributions. In the
2000s, in situations where the metabolic state and label distribution are stationary, both prob-
lems were solved numerically in a cumomer (cumulated isotopomers) framework [3]. Since
then, the numerical efficiency of solving such problems increased dramatically thanks to pro-
gresses in different aspect: reduction in the size of the direct problem which was achieved in
the framework of elementary metabolite units (EMU) [4], more efficient programming [5] and
better fitting algorithms such as the non-linear least squares algorithm NLSIC [6]. It now takes
from only a few seconds to at the most a few minutes to solve inverse problems of flux estima-
tion for stationary labeling versus up to several hours previously.

The current challenge is to efficiently solve both the direct and inverse problems in situa-
tions in which the metabolic context is stationary but the label distribution is not (i.e. dynamic
label propagation in a stationary network). Knowing such dynamics provides significantly
more information about metabolic systems [7]. An efficient mathematical solution to the direct
problem, i.e. simulating dynamic label propagation is indispensable to solve the corresponding
inverse problem in a reasonable time frame and with acceptable accuracy and precision. Prom-
ising results have been reported in several particular cases [8–11] and the first publicly available
software was reported recently [12, 13]. However, many difficulties remain to be overcome.
First, direct simulation often requires finding numerical solution for ordinary differential equa-
tions (ODE). In its general form, it may be a difficult numerical problem per se due to approxi-
mation errors introduced by a discretization scheme or more importantly, due to numerical
stability issues, not to mention the tremendous quantity of calculation that may be required.
Next, the metabolite concentrations are now part of the problem and they are tightly coupled
with the fluxes. This makes the inverse problem of flux and concentration estimation even
more ill-conditioned than in stationary labeling. Finally, using a linearized approach for the
minimization of non-linear least squares can require even more iterations due to the increased
non-linearity of the problem.

In this context, it is important to find theoretical solutions to properly describe label propa-
gation in stationary metabolic networks. Here, we report on two major developments in the
field. First, we provide analytical solutions to several basic problems in dynamic 13C-labeling
experiments. These solutions were evaluated using case studies of increasing difficulty and gen-
erality. They provide a better understanding of the mechanisms underlying label propagation
but also of the nature of the difficulties that have to be addressed in any past or future numeri-
cal approaches like the appearance of singularities, sources of non-linearity, non-identifiability
etc. Second, instead of the step label input classically applied in dynamic labeling experiments,
we introduce novel types of label inputs: sinusoidal and rectangular periodic pulses (RPP), as
useful strategies to investigate dynamically labeled stationary systems.

The paper is organized as follows. The following Analysis section comprises five subsec-
tions. In the first subsection, the label propagation problem is formulated. Analytical solutions
are then provided for linear non-reversible pathways of arbitrary length. The solutions for this
pathway are analyzed for three types of label inputs: 1) the classical step label experiment (also
known as label shift or jump); 2) a sinusoidal label wave and 3) an RPP labeling. In the fifth
subsection, we propose an approach for studying a complex metabolic network in the context
of RPP labeling. In the last section Results and Discussion, we discuss a numerical experiment
on a complex network inspired by a real world example.

A script written in R (http://www.R-project.org) to enable modeling of all the cases exam-
ined here as well as all the necessary data is freely available under an OpenSource licence (cf. S1
Software).
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Analysis

Problem formulation
An ODE describing the balance of a metabolite quantitym is conceptually simple and can be
written as

m0ðtÞ ¼ finðtÞ � foutðtÞ ð1Þ

where the prime symbol stands for a derivative with respect to time t, fin and fout are respec-
tively the sum of input (or producing) and output (or consuming) fluxes for the metabolitem.
For cultures growing exponentially at a rate μ, quantities of metabolites and metabolic fluxes
also increase exponentially, at the same rate μ. Based on this assumption, it is common practice
to divide all these quantities by a biomass term x(t) = x(0)eμt to be able to use values that
remain constant over time (hence the name “metabolic stationary state”) which we refer to
using capital lettersM =m/x, Fin|out = fin|out/x. After taking the derivative ofm, we obtain

mM ¼ Fin � Fout ð2Þ

The growth (or dilution, depending on the cultivation device) term μM is often neglected
compared to Fin and/or Fout. In the rest of the paper, we omit this term and consider only sta-
tionary chemostat situations. In a chemostat, the substrate is fed into the biological reactor as
continuous constant flow. At the same time, the culture is pumped out of the reactor at the
same flow rate, hence maintaining the volume, biomass, culture composition and a particular
growth rate of the microorganism concerned, constant.

Let us consider the label balance for a metabolite with only one input and one output flux:

ðMlðtÞÞ0 ¼ FlinðtÞ � FlðtÞ ð3Þ

where l(t) is a labeled fraction ofM (and therefore taking its values in the interval [0, 1]), lin(t)
is input label fraction for this metabolite and F is the value of the input and output fluxes,

which are necessarily the same in a stationary context. AsM0 = 0, the above equation can be
simplified to:

l0ðtÞ ¼ nðlinðtÞ � lðtÞÞ ð4Þ

where ν is a fraction F/M> 0, which is none other than a turnover rate. A general solution to
this equation is well known and is given as

lðtÞ ¼ lð0Þe�nt þ n
Z t

0

enðt�tÞlinðtÞdt: ð5Þ

An analytical form of l(t) can be obtained when the integral in the Eq (5) can be taken explic-
itly and depends on a particular form of the input label lin(t). For example, when lin(t) is a step
function, i.e. lin(t) = 1 for t� 0 and lin(t) = 0 for t< 0, the solution is [14]

lðtÞ ¼ 1� e�nt; for t � 0: ð6Þ

Here we have assumed that l(0) = 0. In the following subsections, we explore a linear non-
reversible pathway and labeling strategies leading to analytical forms of l(t) for all metabolites
in the pathway under study. Based on these analytical forms, we will establish some basic prop-
erties of the solutions. Then, helped by the established properties, we will consider a complex
network in which some fluxes will be estimated using an original numerical method in a novel
context with rectangular periodic pulses.
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Label propagation in a linear pathway of non-reversible reactions under
a step input signal
Let start by considering a plain linear pathway of nmetabolites at constant concentrations
Mi (i = 1, . . ., n) where all reactions are non-reversible. The constant flux across the pathway is
noted F. At t = 0, the input is instantly switched from unlabeled to labeled so that the pathway
receives a step input signal, i.e. lin(t) for the first metabolite is a step function mentioned above.
All the metabolites in the pathway are assumed to be unlabeled at t = 0.

For the sake of simplicity, the metabolite concentrations are assumed to be all pairwise dif-
ferent. Later we will see that equality of different metabolite concentrations leads to singulari-
ties in solutions. Nevertheless, the cases when some concentrations are repeated (i.e. for some i
and j we haveMi =Mj) are correctly treated by the software accompanying this paper and the
formulas for such solutions can be found in the S1 Text.

We have already given the solution for the first metabolite in Eq (6). It is known that the
same function can describe the label concentration in a chemostat [15]. This can be used
to interpret the first metabolite in a non-reversible pathway as a model for the label in a
chemostat.

Due to the construction of the network, the label fraction of the first metabolite l1(t) plays
the role of the source term lin(t) for the second metabolite and the solution of Eq (5) is

l2ðtÞ ¼ 1þ n2
n1 � n2

e�n1t þ n1
n2 � n1

e�n2t: ð7Þ

We note that this solution is a linear combination of exponential functions which makes
possible to take the integral in Eq (5) in an analytical form for the next metabolite l3(t). A
generic solution for a metabolite i can be written as

liðtÞ ¼ 1þ
Xi

k¼1

aðiÞk e
�nkt ð8Þ

where constant coefficients aðiÞk can be calculated simply as

aðiÞk ¼ �
Yi

m¼1
m 6¼k

nm
nm � nk

; k ¼ 1; . . . ; i; for i � 2: ð9Þ

or in a recursive form

að1Þ1 ¼ �1 ð10Þ

aðiÞk ¼ aði�1Þ
k

ni
ni � nk

; k ¼ 1; . . . ; i� 1; for i � 2 ð11Þ

aðiÞi ¼ � ð1 þ
Xi�1

k¼1

aðiÞk Þ: ð12Þ

Here aðiÞk designates the k-th exponential coefficient of the i-th metabolite. In our numerical
experiments, we noted that due to the presence of the differences νm − νk in denominators, the

absolute values of aðiÞk can increase very rapidly with an increase in the length of the pathway.
This can lead to significant round off errors. Actually, only the coefficients for pathways of
moderate length, say less than 10–15 metabolites, can be calculated with usual double precision
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arithmetic (when a floating number is represented by a storage of 64 bits). For longer pathways,
arbitrary precision software is required to calculate label propagation.

Another consequence of the term νm − νk in the denominators is the need to only consider
the pathways where allMi (and hence all νi) are pairwise different. In this way, the denomina-
tors are never zero and formula (9) can be used. As already mentioned, a more general case,
when for somem and k indices it can happen that νm = νk, is considered in the S1 Text.

An example of label propagation curves for a linear pathway composed of 5 metabolites is
given in Fig 1. In this example, the metabolite pool sizesMi were drawn randomly and uni-
formly from an interval [0, 1] and the flux F was set to 1.

We can see that the curves are sigmoid beginning at 0 (as imposed by the initial conditions)
and monotonously increase to approach an asymptotic value 1. All curves except the first start
with the first derivative equal to 0. As the label propagates in the network, the curves become
progressively flatter. Every labeling curve evolves strictly under the curves of upstream metabo-
lites and over the curves of the downstream metabolites. In other words, the kinetic curves can
never intersect for any t> 0 as lj (t)< li (t) for all j> i.

This statement is not specific to this particular example but results from a more general
property of coercion which can be formally proven for any linear pathway of non-reversible
reactions. To demonstrate this, let us rewrite Eq (5) after applying a rule of integration by parts
and assuming l(0) = 0 and lin (0) = 0:

lðtÞ ¼ linðtÞ �
Z t

0

enðt�tÞl0inðtÞdt: ð13Þ

We can see that the solution for a given metabolite l(t) is composed of its input label lin (t)
diminished by the value of the integral. The coercion property will be proven if it can be shown
that the value of the integral is positive for any metabolite in the pathway.

Consider the solution for the second metabolite

l2ðtÞ ¼ l1ðtÞ �
Z t

0

enðt�tÞl01ðtÞdt ð14Þ

It can be seen from the Eq (6) that l01ðtÞ > 0 for t> 0. So the integral in Eq (14) has a posi-
tive value and therefore l2(t)< l1(t). This inequality can be used in Eq (4) to establish that
l02ðtÞ > 0. In turn, adapting formula (13) to l3(t) implies that l3(t)< l2(t) and so on. This dem-
onstration by induction can be repeated successively for all metabolites in the pathway. Note
that it proves not only the coercion property but also themonotonic increase in labeling curves,
as it was shown that l0iðtÞ > 0 for all i = 1, . . ., n.

Another property we call invariance under reordering is a direct consequence of formula (9)
and can be formulated as follows. The labeling curve of an i-th metabolite in a non-reversible
linear pathway is independent of a particular order of the first imetabolites. Indeed, the value
of a product will not change if its terms are renumbered.

The invariance under the reordering property is related to the notion of label shock wave
(LSW) propagation. In fluid mechanics, a shock wave corresponds to abrupt changes in the
characteristics of the medium. We borrow this notion to describe abrupt changes in label frac-
tion to draw a parallel between the propagation of the label in a pathway and the propagation
of a shock wave. Naturally, LSW positions (noted t�i for i = 1, . . ., n) can be represented by the
points of maximum first derivatives (indicated by circles in Fig 1) as they correspond to the
points where the maximum speed of label change has been reached. The value t�1 is always 0 as
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the maximum derivative of the first metabolite is reached at t = 0. This can be easily checked by
taking the first derivative of Eq (6). An analytical expression for t�2 can be obtained by taking
the second derivative of Eq (7) and finding the time point t�2 at which the second derivative
equals 0:

t�2 ¼
ln n2 � ln n1
n2 � n1

ð15Þ

Fig 1. Labelling curves in a linear non-reversible pathway. (a) A linear non-reversible pathway subjected to a step label input. (b) Label propagation
curves for a linear non-reversible pathway of 5 randomly sized metabolites. Circles indicate the position of “label shock wave”, i.e. the time points at which the
first derivative of each labeling curve reaches maximum. The values of the pool sizesMi and the shock wave positions t�i are given in the legend.

doi:10.1371/journal.pone.0144652.g001
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It is not easy to obtain a general analytical expression for the LSW position of an i-th metab-
olite. For t�3 , the following empirical approximation was established

t�3 ’ t�2 þ
ln n3 � ln n1
n3 � n1

ð16Þ

For the following metabolites, the delay between two successive LSW positions i − 1 and i
(for i� 4) is approximated by n�1

i ¼ Mi=F . The longer the residence time n�1
i ¼ Mi=F , the longer

the LSW will be delayed by the i-th metabolite:

t�i ’ t�3 þ
Xi

k¼4

n�1
k for i ¼ 4; . . . ; n ð17Þ

An agreement between estimated and exact LSW positions is illustrated in Fig 2. We can see
that estimations of t�i based on formulas (15–17) are close enough to the real LSW positions
found numerically for three randomly generated linear non-reversible pathways of length 10.
The fact that in some pathways the LSW positions lie on a line parallel to the line y = xmeans
that LSW are well approximated for all metabolites except one or two. These one or two over-
or underestimated LSW positions introduce a shift in positions for all the following metabolites
in the pathway.

Invariance of the sum with respect of metabolite ordering in formula (17) is in agreement
with the invariance under reordering established above. However, the latter property is a stron-
ger affirmation as it postulates that not only the LSW of the last metabolite in the pathway will
remain in the same position under metabolite shuffling but also that the whole labeling curve
of the last metabolite will be exactly the same irrespective of the order of metabolites. On the
other hand, LSW position for the last metabolite is relatively independent of particular values
ofMi/F under the condition that their sum is kept the same.

A practical consequence of the invariance property is that if we observe only the label of the
last metabolite in a pathway, there is no unique way to estimate all {νi}i = 1, . . ., n. Another prac-
tical consequence is related to metabolite lumping in a linear non-reversible pathway. If, for
the sake of network simplicity, several metabolites are lumped together to form a new fictitious
metabolite, the pool size of this new metabolite should equal the sum of lumped pools. In this
way, the LSW position will be kept more or less at the same moment in time.

The time needed for an LSW to pass through the entire pathway can be used as a measure of
the pathway length from the point of view of labeling. The longer the whole LSW delay, the
longer the pathway for labeling.

A parameter, called the relaxation time of a pathway Tr, can be introduced to characterize
the duration of the label propagation in the network. The parameter is defined as the time
needed for all metabolites in the pathway to be labeled at a level greater or equal to 0.99 of the
input label fraction. This time is always finite. It can be seen by examining the structure of the
solution in Eq (8). Indeed, we can always find a finite time when all exponents terms are low
enough to sum up to an absolute value less then 0.01. This parameter will be useful in the fol-
lowing subsections.

Sinusoidal label input
So far, we have considered a linear non-reversible pathway subjected to a step label input. Let
us consider now the same pathway subjected to a sinusoidal label input. The characterization
of a system by application of sinusoidal input signals and analysis of its outputs is a common
practice in many disciplines, for example in electronics or more generally in studies of
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automatic systems, including some biological molecular systems [16]. To date, such an
approach has not been applied to isotope labeling experiments. However, experimental devices
allowing the sinusoidal addition of compounds are described in the literature, e.g., [17] mean-
ing the application of sinusoidal label inputs is experimentally feasible.

Let us start by recalling that sine and cosine functions can be represented as a linear combi-
nation of exponential functions with imaginary exponents:

cos ðotÞ ¼ eiot þ e�iot

2
; sin ðotÞ ¼ eiot � e�iot

2i
: ð18Þ

Fig 2. Comparison between estimated and real LSW positions.We now compare three randomly generated linear non-reversible pathways of length 10.
Estimations were based on formula (17). Real values were obtained by numerically solving l00i ðtÞ ¼ 0. The solid line corresponds to y = x.

doi:10.1371/journal.pone.0144652.g002
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Here, i is the imaginary unit and ω is an angular frequency. Another way to deal with a sinu-
soidal wave is to keep only a real or imaginary part of eiωt. Without loss of generality, let us con-
sider only cos(ωt) in the input signal. To keep it between 0 and 1, a constant must be added. To
obtain the maximum possible wave amplitude, a wave amplitude of 0.5 and an additive con-
stant of the same value were chosen, so that the input signal looks like

linðtÞ ¼
1þ cos ðot þ pÞ

2
ð19Þ

A phase delay π was added to make the input signal continuous at t = 0. This was done only
to obtain more aesthetic graphs and is not essential for the subsequent developments. Indeed, a
constant phase delay ψ does not change the way to represent a cosine as exponential, it just
makes the amplitude a complex number:

a cos ðot þ cÞ ¼ ReðaeiðotþcÞÞ ¼ ReðaeiceiotÞ ð20Þ

so that the new complex amplitude of the exponential is the constant product aeiψ.
In previous subsections, a generic solution for label inputs written as a linear combination

of exponential with real coefficients was established. Now, the above considerations show the
interest of generalizing the input label to a linear combination of exponential functions with
complex exponents and coefficients:

linðtÞ ¼
Xn0
k¼1

að0Þk ebkt; for t � 0 ð21Þ

here the exponents βk are complex numbers, as are the coefficients að0Þk , while n0 is an integer
giving the number of different exponential terms in the input signal. For example, the step

label input considered in the previous subsection fits this formula by setting n0 = 1, að0Þ1 ¼ 1

and β1 = 0. It is worth noting that formula (21) can be used to approximate any real world peri-
odic signal whatever its waveform. More will be said about such representations in the next
subsection.

The linear nature of Eq (5) offers us the opportunity to consider every input exponential
separately and then to sum the results in a final solution with appropriate coefficients. Let us
examine the contribution to the solution of an isolated complex sinusoidal wave lin(t) = eiωt. By
taking the integral in Eq (13) we get the output label

lðtÞ ¼ n
nþ io

ðeiot � e�ntÞ ð22Þ

We can see that the solution is composed of a sinusoidal wave eiωt and a decaying exponen-
tial e−νt. After a relaxation period (as defined in the previous subsection), the term e−νt will
become negligeable and only the stationary wave part of the l(t) will be observable. In practice,
such a stationary wave solution could facilitate the collection of labeled samples. Another possi-
ble advantage is obtaining technical replicates to reduce measurement errors. Finally, in resolv-
ing the inverse problem of fitting parameters, it is much easier to fit a stationary sinusoidal
wave than a linear combination of exponential functions that we saw in the case of step input
signal. We will discuss the possible advantages of the periodic input label in more detail at the
end of the last section of this paper.

Let us now look more closely at the wave part of solution Eq (22). After passing through a
metabolite pool, the wave kept its frequency ω but changed its amplitude and phase. The

amplitude is damped by a factor jn n þ ioj ¼ n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ o2

p < 1
..

while the phase is shifted by
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ψ = Arg(ν/ν+iω) = arctan(−ω/ν) 2 (−π/2, 0) which corresponds to a delay d = ψ/ω’ −1/ν in
wave propagation. Note that the delay is basically the same as that found empirically in the
step label experiment. The amplitude is always diminished whatever the values of ν and ω
while the phase shift is always negative, i.e. the wave is always damped and delayed, and never
“advanced”. These two properties ensure that the solution Eq (22) is physically realistic.

It is interesting to note that the reduction in the amplitude is greater for bigger ω but the
delay is less sensitive to ω variations, especially when ω/ν� 1. These observations are impor-
tant for the choice of an appropriate input frequency. An example of simulations with high and
low input frequencies are presented in Fig 3.

A generic solution for the label of i-th metabolite that resulted from input Eq (21) is given
by

liðtÞ ¼
Xn0
k¼1

að0;iÞk ebkt þ
Xi

k¼1

aðiÞk e
�nkt ð23Þ

where the constant coefficients að0;iÞk and aðiÞk can be calculated according to

að0;iÞk ¼ að0Þk

Yi

m¼1

nm
nm þ bk

; k ¼ 1; . . . ; n0 ð24Þ

að1Þ1 ¼ �
Xn0
k¼1

að0;1Þk ; ð25Þ

aðiÞk ¼ að1Þ1

Yi

m¼1
m 6¼k

nm
nm � nk

; i > 1: ð26Þ

These formulas generalize formula (9) and the previous observations made concerning a
single stationary wave: the decaying exponentials e−νk t will vanish after a certain relaxation
time Tr and the label will have only a stationary wave part corresponding to a superposition of
exponentials that have purely imaginary exponents βk. If some βk are not purely imaginary, i.e.
they have a negative real part, they will be naturally damped because eRe(βk)t ! 0 as t!1.
Note that positive real parts in βk are not physically realizable as this would have led to values
tending to infinity as t!1.

The structure of formulas (24–26) shows that the invariance under reordering established
for the step input also holds for a more general input Eq (21) as the products in Eqs (24 and
26) are independent of the order of the metabolites in the pathway up to the rank i. Hence, the
shape of the labeling curve of the i-th metabolite in a linear non-reversible pathway will remain
unaffected if the lower or equal ranked metabolites are reordered.

Rectangular periodic pulses
In the previous subsection, we saw that a sinusoidal input could have some practical advantages
for dynamic labeling experiments but is difficult to implement from a technical point of view.
In this subsection, we show that applying RPP inputs can avoid such technical difficulties with-
out jeopardizing the advantages of sinusoidal inputs.

RPP are relatively simple to perform in a chemostat culture. At t = 0, an input is switched
from unlabeled to a labeled substrate and maintained for an interval of time t1. At t = t1,
the input is switched back to the unlabeled substrate and maintained for an interval of
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time t2. At t = t1 + t2, the substrate is again switched to the labeled input, and so on. A full label-
ing cycle lasts T = t1 + t2.

From a theoretical point of view, the solution for the first labeled phase of RPP is the same
as the one described in subsection for the step input. But the formulas given in the subsection
should be modified for the following RPP periods, as the metabolites are already labeled at the

Fig 3. Examples of label propagation in the pathway of Fig 1 after applying a sinusoidal Eq (19) label input. (a) Pathway scheme subjected to a
sinusoidal label input; (b) A high frequency input wave (T = 2π/ω = 1 s) leads to a rapid reduction in amplitude through propagation via the pathway. (c) A low
frequency (T = 2 s) preserves the wave amplitude at the end of the pathway better and leaves the wave delay almost unchanged compared to case T = 1 s.
The same wave delay explains the impression that this graph is merely stretched out compared to graph b) (abstraction made of the change in amplitude).

doi:10.1371/journal.pone.0144652.g003
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beginning of each period, i.e. the previous assumption of unlabeled state as initial condition
does not hold for the pulses which follow the first one.

To obtain the formulas for intervals t1 or t2, we place the time reference t = 0 at the begin-
ning of each interval and use the solution at the end of the previous interval as the initial label
state for the interval concerned. The whole solution will simply be the juxtaposition of piece-
wise solutions in labeled/unlabeled intervals.

The solution for labeled and unlabeled intervals is still a linear combination of exponential
functions like in Eq (8). But in this case, the initial label states Li = li(0) 6¼ 0 is taken into

account. Modified recursive formulas for aðiÞk during a labeled period t1 are

að1Þ1 ¼ L1 � 1 ð27Þ

aðiÞk ¼ aði�1Þ
k

ni
ni � nk

; k ¼ 2; . . . ; i� 1 ð28Þ

aðiÞi ¼ Li � ð1þ
Xi�1

k¼1

aðiÞk Þ ð29Þ

During an unlabeled interval, the solutions can be written as

liðtÞ ¼
Xi

k¼1

aðiÞk e
�nkt; ð30Þ

which tends to 0 as t!1 and not to 1 as was the case in Eq (8). For the unlabeled interval, the
coefficients can be calculated according to

að1Þ1 ¼ L1 ð31Þ

aðiÞk ¼ aði�1Þ
k

ni
ni � nk

; k ¼ 1; . . . ; i� 1; fori � 2 ð32Þ

aðiÞi ¼ Li �
Xi�1

k¼1

aðiÞk ð33Þ

Two examples of numerical simulations with two different periods T = 2π/ω of 1 and 2 sec-
onds are presented in Fig 4. The periods T in these examples were chosen to be the same as in
the two examples given in Fig 3 for sinusoidal inputs. We can see that after application of an
RPP input, the labeling curves of the metabolites furthest from the label entry point (in this
example, metabolites with rank 3 or above) look very similar to those obtained for a sinusoidal
wave input. This is a logical consequence of the fact that high frequencies are damped faster
than low frequencies.

Indeed, each real world periodic function, such as RPP, can be approximated by an appro-
priate linear combination of sine and cosine functions with periods that are multiples of T by
using the Fourier series. Each individual wave in this series will behave according to principles
established in the previous subsection: after going through each metabolite pool, the wave
amplitude will be reduced to a greater or lesser extent and its phase delayed by different length
periods depending on its frequency and on the turnover rate ν of the crossed metabolite. After
a relaxation time Tr, independent of frequencies, a stationary periodic solution will be set up
for each metabolite. Its particular shape will depend on how each particular Fourier component
(called harmonic) was damped and delayed. The further we move towards the end of the
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pathway, the more the harmonic with the lowest frequency will dominate. It will make the sig-
nal look increasingly like a plain sinusoidal wave with a period T.

In this subsection, we have proposed a solution obtained by the juxtaposition of step label-
ing. But there is an alternative way to obtain the stationary wave part of such a solution. Fourier
series corresponding to periodic input signals can be found and the formulas (23–26) can be
applied to each harmonic in this series, which can then be summed to obtain the resulting

Fig 4. Examples of label propagation in the previously considered linear pathway subjected to an RPP label input. The labeling curves of metabolites
ranked 3 or above closely resemble the labeling curves obtained with a plain sinusoidal wave input. (a) Pathway subjected to an RPP label input; (b) Like in
sinusoidal wave input, applying an RPP with high frequency (T = 1 s) leads to a rapid reduction in amplitude as the signal moves along the pathway. (c) The
same observation as for sinusoidal wave applies to the low frequency RPP (T = 2 s): it preserves the wave amplitude at the end of the pathway better and
leaves the wave delay observed for T = 1 s almost unchanged.

doi:10.1371/journal.pone.0144652.g004
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stationary wave form. Let us stress that this approach can be applied to any periodic label
input, e.g., ramp waveforms or alike. In the following subsection, a simplified version of this
strategy is applied to a complex metabolic network.

Inverse problem in RPP labeling experiments
Up to now, our discussion focused on the direct problem: knowing the values of fluxes and of
the metabolite pools, simulate label propagation in a linear non-reversible pathway or more
generally, in a metabolic network. In this subsection, we are also interested in the inverse prob-
lem: given a network and knowing some (noisy) label propagation curves, how to estimate
fluxes and metabolite pools whose label kinetics match these curves. Usually, inverse problems
are solved in a least squares framework where free parameters (here a ν vector, a ratio of fluxes
and pool sizes) are adjusted iteratively to create simulations to fit experimental measurements.

It follows from formulas (24–26) that parameters of an observable periodic signal are partic-
ularly easy to evaluate if we know {νi}i = 1, . . ., n. Actually, only the parameters of the first har-
monic are simulated, as the other harmonics will be more or less damped after crossing a few
metabolites. Even if the final signal does not yet look like a plain sinusoidal wave, we fit a single
sinusoidal wave of period T and use its parameters as experimental data to be fitted. This major
simplification of experimental data appears to be sufficient for the practical purpose of estimat-
ing fluxes in the example below.

It turns out that the straightforward formulas (24–26) used to estimate harmonic parame-
ters in a linear pathway also hold for a general case of any metabolic network. To confirm this,
let us consider a linear system of equations describing label propagation in terms of cumomers
(cumulated isotopomers) of weight 1 [18, 19]. Given that cumomers of weight 1 and EMU of
weight 1 are equivalent entities, for the sake of brevity, we use only the term “cumomers”. In
this framework, the ODE linear system is

l0ðtÞ ¼ AlðtÞ þ sðtÞ ð34Þ
with a n × n real matrix A (which only depends on the turnover rate vector ν) expressing the
cumomer balance, and complex vectors l(t) and s(t) of the length n, which are respectively
cumomer and input (or source) vectors. Taking into account only source terms of a given fre-
quency ω: s(t) = beiωt and looking for a solution in stationary wave form l(t) = aeiωt (where a
and b are constant complex vectors of length n), we get a new linear system on unknowns a
after simplifying by eiωt

ioa ¼ Aaþ b; ð35Þ
which is solved as

a ¼ �ðA� ioIÞ�1b: ð36Þ

Here I is a n × n identity matrix. Under certain conditions (no isolated sub-network, no
zero flux through a metabolite), all eigenvalues of the matrix A are known to have a strictly
negative real part [20], which means that the matrix A − iωI is invertible under the same
conditions. The fact that a single matrix inversion is sufficient to simulate the vector a from
known A and b (instead of a full ODE system solution) is of major importance, since it enables
a radical simplification of parameter estimation in the inverse problem in the RPP labeling
experiment.

We illustrate the feasibility of this approach by simulating the propagation of a label in
Escherichia colimetabolism upon addition of uniformly labeled glucose according to RPP label
input. The metabolic network was taken from Supplementary Data 3 of [21] corresponding to
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the reference network from the Fig 5 of the cited paper. It is defined in an FTBL file which
stands for Flux Table format. This format was introduced in [3] and originally used as input
format for 13CFlux software. In this plain text file, several sections describe the network topol-
ogy, measurement data and some additional information. We used only the parts describing
the network topology, the nature of fluxes (reversible or not) and what kind of molecules and
their fragments were measurable. As to measured labeling data, they were modeled by a
numerical ODE solution of system Eq (34). The labeling data considered in these simulations
were expressed as ‘mean label incorporation’m(t) representing the fraction of label in the
molecular species. For a k-th metaboliteMk, this value can be calculated in two different but
equivalent ways.

The first way is a simple averaging of cumomers of weight 1

mk ¼
Pn

ðcÞ
k

i¼1 lik
nðcÞ
k

; ð37Þ

where lik is a i-th cumomers of weight 1 of the k-th metabolite, nðcÞ
k is the number of carbon

atoms in the k-th metabolite andmk its mean label. This formula is used for simulations in the
direct problem.

Another way to calculate the mean label is to pass by a weighted sum of mass isotopomers

Mk,+i (i ¼ 0; . . . ; nðcÞ
k ), e.g.,Mk,+0 is a fraction of molecules of metaboliteMk with 0 labeled

carbon atoms,Mk,+1 is a fraction of molecules with only one labeled carbon atom, and so on
[22, 23]

mk ¼
Pn

ðcÞ
k

i¼1 iMk;þi

nðcÞ
k

ð38Þ

The second way is used to estimate mean label values from the mass spectrometry (MS)
measurements. A formal proof of the equivalence of formulas (37) and (38) is given in the S2
Text.

Results and Discussion
In this section, we present a numerical example estimating fluxes of central carbon metabolism
of E. coli. The numerical method underlying this example is based on the subsection “Inverse
problem in RPP labeling experiments”. For the sake of brevity, we don’t detail it here but invite
an interested reader to examine the accompanying software distributed under OpenSource
licence. We have voluntary limited numerical examples to this alone case leaving linear non
reversible chains aside because of its practical interest and its closeness to real world problems.

The simulations of experimental data were done with arbitrarily chosen but realistic fluxes
and metabolic pool sizes. Metabolite fragments observable in MS were the same as in the origi-
nal FTBL file [21], i.e. 24 amino acid fragments resulting from 11 distinct amino acids. Note
that using uniformly labeled substrate as sole carbon source makes the data redundant as the
mean label on any fragment of a molecule is the same as the mean label for the whole molecule.
We kept all the fragments in the original dataset to stay close to real experimental conditions
and because redundant measurements make it possible to reduce the confidence intervals (CI)
of estimated parameters. All metabolic pool sizes were considered as known. After an ODE
simulation of the label propagation in a RPP experiment with t1 = t2 = 30 min and “sampling”
at 2-min intervals, a centered Gaussian noise with a standard deviation of 0.01 was added to
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the mean label to simulate an experimental noise. The chemostat was simulated as running for
a period of 10 hours and the data were “sampled” during the last hour.

A least squares problem was formulated as minimizing the difference between the Fourier
coefficients for the first harmonic of measured metabolites and the harmonic fitted to the

Fig 5. Comparison of estimated and true fluxes in a simulated RPP experiment. (a) Scheme of RPP experiment on E. coli. Fully labeled glucose is fed to
the culture in RPP form. Several aminoacids are measured by GC-MS. (b) Only statistically and structurally identifiable free and dependent fluxes
(distinguished by “f” and “d” at the beginning of the flux names) are reported (17 of 70). The prefixes “n” and “x” in flux names correspond to net and exchange
fluxes respectively. Exchange fluxes are mapped on [0, 1] intervals. Error bars correspond to 95% CI estimated by linearized statistics. The solid line
indicates y = x positions. This example shows that in an RPP experiment, we can expect a good agreement between true and estimated values for
identifiable fluxes.

doi:10.1371/journal.pone.0144652.g005
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simulated experimental noisy data. In this problem, 28 free variables (2 Fourier parameters
for the input harmonic plus 26 free fluxes) were estimated by fitting 2 × 24 = 48 experimental
data (one harmonic for each of 24 metabolite fragments and 2 coefficients per harmonic)
of which only 2 × 11 = 22 are not redundant. This problem is therefore structurally
undetermined because the number of independent measurements (22) is less than the
number of parameters to estimate (28). Its Jacobian matrix (i.e. the matrix of partial deriva-
tives of the residual vector with respect to the parameter vector) is necessarily rank deficient.
The least squares problem was solved using the NLSIC algorithm with an additional require-
ment of least norm increments [6]. The starting point for the optimization was randomly
chosen.

In Fig 5, the estimated flux values obtained by solving the least squares problem are pre-
sented and compared to their true values which were used in the ODE simulation. Note that
only 17 out of a total 70 free and dependent fluxes that were structurally and statistically identi-
fiable are shown. These 17 fluxes (7 free fluxes and 10 dependent fluxes) were selected on the
basis of 95% CI below ±0.2. The full set of fitted fluxes can be found in S3 Text.

This example is by no means an approximation of a real experiment. Too many shortcuts
were used in the network topology. For example in the cited FTBL file, the synthesis of serine is
resumed just as PGA! Ser (3-phospho-D-glycerate! L-serine) while, in reality, this trans-
formation includes two more intermediate compounds: 3-phospho-hydroxypyruvate and
3-phospho-L-serine. Such shortcuts are commonly accepted for stationary labeling as they
have absolutely no impact on measurements but they do introduce more or less perceptible
biases for the dynamic label propagation. This example simply shows that an RPP approach
can be successfully applied to realistic complex networks including linear pathways, reversible
reactions, branching, condensing reactions and cycles.

Among the many numerical advantages offered by RPP inputs, we can emphasize the very
low computational requirements both for memory and CPU time; independence of the calcu-
lus procedure on an actual form of input periodic signal; noise robustness and last but not
least, ease of Jacobian calculation.

Some drawbacks are common to all dynamic labeling methods. It is frequently true that in a
poorly defined network or because of missing data, not all fluxes can be estimated. Fortunately,
most of those that can are in good agreement with true values. Another drawback is the tight
coupling between fluxes f and pool sizesMmeaning that label data can be used only to estimate
turnover rate vector ν, but not to estimate f andM distinctly. This is why the label data must be
accompanied by some metabolite and/or flux measurements to assess all the fluxes and metab-
olites. In the example above, we assumed thatM was known, which allowed us to estimate the
remaining part of ν, the flux vector f.

The potential technical advantages of RPP inputs include the following features:

autocheck for a stationary periodic regime. As two consecutive labeling cycles must provide
almost identical signals, it is easy to see whether a desired stationary regime is achieved or
not. If only one cycle is sampled, two halves of the cycle must be symmetrical in a stationary
regime (provided that t1 = t2);

outliers in measurements are identified more easily in a periodic waveform;

sample accumulation is allowed during consecutive label cycles. In a chemostat, the use of
large collection volumes can significantly affect the stability of the regime. Hence, collecting
a series of small samples rather than a single large sample is much better to ensure the physi-
ological state of the cells remains constant. Moreover, measurement errors can be reduced
by increasing the size of the sample and/or accumulating the quantity of samples;
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the resolution of sampling frequency can be enhanced if the sampling time grids are made
with bigger time steps but are shifted to interleave from one labeling cycle to another. Tradi-
tionally, the sampling of labeled material in dynamic labeling experiments is very challeng-
ing, because samples have to be collected very rapidly (within seconds) in sufficient
amounts, and at high sampling frequency (depending on the metabolic timescales). By
spreading the sample collection over several cycles and interleaving them, RPP label input
facilitates sampling from a practical point of view.

Conclusions
The theoretical investigations reported here introduce novel concepts in the description of
label propagation, such as label shock wave and its delay, relaxation time and stationary wave.
Depending on the shape of the label input, some basic properties of the label propagation were
established. Curve coercion, monotonic increase and invariance under reordering (or in a
weaker form: LSW delay invariance) were established for step inputs, while wave damping and
phase delay were explicitly formulated for periodic inputs. All these developments will help
advance our understanding and rational interpretation of labeling data in real experiments, but
also help develop a more general numerical approach for the simulation of dynamic labeling
data in the near future. These new concepts also enable better identification of the strengths,
pitfalls and limitations of the dynamic labeling, thereby enabling better prediction of the situa-
tions in which it could be applied successfully.

This paper also introduced periodic inputs of label as highly valuable alternatives to classi-
cal step inputs. Compared to other input shapes (step label and sinusoidal wave), rectangular
periodic pulses are very attractive not only because they give reliable estimations of fluxes for
a realistic network with very low computational effort, but also because they are relatively sim-
ple to perform experimentally and offer valuable practical advantages in labeled metabolite
sampling.
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