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Abstract
Sesamin is a furofuran lignan biosynthesized from the precursor lignan pinoresinol specifi-

cally in sesame seeds. This lignan is shown to exhibit anti-hypertensive activity, protect the

liver from damages by ethanol and lipid oxidation, and reduce lung tumor growth. Despite

rapidly elevating demand, plant sources of lignans are frequently limited because of the

high cost of locating and collecting plants. Indeed, the acquisition of sesamin exclusively

depends on the conventional extraction of particular Sesamum seeds. In this study, we

have created the efficient, stable and sustainable sesamin production system using triple-

transgenic Forsythia koreana cell suspension cultures, U18i-CPi-Fk. These transgenic cell

cultures were generated by stably introducing an RNAi sequence against the pinoresinol-

glucosylating enzyme, UGT71A18, into existing CPi-Fk cells, which had been created by

introducing Sesamum indicum sesamin synthase (CYP81Q1) and an RNA interference

(RNAi) sequence against pinoresinol/lariciresinol reductase (PLR) into F. koreanna cells.
Compared to its transgenic prototype, U18i-CPi-Fk displayed 5-fold higher production of

pinoresinol aglycone and 1.4-fold higher production of sesamin, respectively, while the wild-

type cannot produce sesamin due to a lack of any intrinsic sesamin synthase. Moreover,

red LED irradiation of U18i-CPi-Fk specifically resulted in 3.0-fold greater production in both

pinoresinol aglycone and sesamin than production of these lignans under the dark condi-

tion, whereas pinoresinol production was decreased in the wildtype under red LED. More-

over, we developed a procedure for sodium alginate-based long-term storage of U18i-CPi-

Fk in liquid nitrogen. Production of sesamin in U18i-CPi-Fk re-thawed after six-month cryo-

preservation was equivalent to that of non-cryopreserved U18i-CPi-Fk. These data warrant

on-demand production of sesamin anytime and anywhere. Collectively, the present study

provides evidence that U18i-CP-Fk is an unprecedented platform for efficient, stable, and

sustainable production of sesamin, and shows that a transgenic and specific light-regulated

Forsythia cell-based metabolic engineering is a promising strategy for the acquisition of rare

and beneficial lignans.
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Introduction
The consistent and appropriate intake of low-cost healthy diets and clinical drugs are the most
promising and effective ways to improve the quality of life including a healthy life expectancy
and to prevent lifestyle-related diseases. Particularly, the recent escalation in the number of
elderly individuals has increased the importance of efficient dietary supplement and drug
development. Over the past few decades, plant specialized metabolites (formerly termed sec-
ondary metabolites), including alkaloids, flavonoids, isoflavonoids, and lignans, have attracted
attention as dietary supplements and medicines. Lignans are naturally occurring phenylpropa-
noid dimers (C6-C3 units; e.g., coniferyl alcohol), in which the phenylpropane units are linked
by the central carbons of the side chains [1–7]. Lignans have been characterized from Podo-
phyllum, Linum, Sesamum, Forsythia and various other plant families [1–7]. Sesamin is classi-
fied as a furofuran lignan and is the most abundant water-insoluble lignan in Sesamum
indicum (sesame) seeds [1–7]. This Sesamum lignan is biosynthesized by the sesame cyto-
chrome P450, CYP81Q1, through the formation of two methylenedioxy bridges in a precursor
lignan, pinoresinol (Fig 1) [5–8]. Sesamin was also shown to exert diverse beneficial effects on
mammals including human [1–7], including an anti-hypertensive effect [9], the reduction of
breast tumor growth [10], and recovery of liver damage caused by ethanol and lipid oxidation
[11, 12]. These findings indicate that the demand for sesamin will rapidly increase in the near
future. However, sesamin is acquired via extraction from sesame seed oil, and although sesame
plants produce more sesamin than any other plant, the oil contains a maximum of 0.4–0.6%
(w/w) sesamin [1–7]. Furthermore, sesame seeds are cultivated only once per year, thereby lim-
iting opportunities to obtain large amounts of this compound. These shortcomings, combined
with elevating demands on sesamin, indicate that a novel strategy for systematic sesamin pro-
duction is clearly required.

Genetic engineering of biosynthetic pathways in plants and in vitro cell or organ cultures
either through stable or transient transformation has been attempted in the development of
production systems for several plant specialized metabolites, such as alkaloids and flavonoids
[13–23]. However, most of transgenic metabolic engineering studies involve merely overex-
pression of, or RNA interference against, an endogenous biosynthetic enzyme. Furthermore,
there have been no reports of the up-regulation of authentic and exogenous beneficial lignan
production via either transient or stable gene engineering, except for production of sesamin
using Forsythia cells [20]. Wild-type Forsythia koreana plant lacks CYP81Q1 and its functional
orthologs, and therefore fails to produce sesamin [1–7]. Instead, this plant abundantly and con-
sistently produces a direct precursor of sesamin, pinoresinol [1–7, 20, 24], which is then either
reduced stepwisely into secoisolariciresinol via pinoresinol-lariciresinol reductase (PLR) or glu-
cosylated by UGT71A18 [1–7, 20, 25] in Forsythia (Fig 1). Previously, we showed that sesamin
was produced by CPi-Fk, a double-transgenic cell suspension culture line of F. koreana in
which a Sesamum sesamin-synthase CYP81Q1 is constitutively expressed and an endogenous
PLR is suppressed by RNAi [20]. This was the first report on the exogenous lignan via meta-
bolic engineering, suggesting the potential of CPi-Fk as a prototype of the efficient, stable and
sustainable sesamin production system. Unfortunately, CPi-Fk cannot be stored by any proce-
dures, which is a critical drawback of CPi-Fk as a stable and sustainable platform of lignan pro-
duction. Furthermore, the ability of CPi-Fk to produce sesamin was expected to be markedly
improved by introduction of other genes, optimization of culture conditions, and/or the estab-
lishment of the procedure for long-term storage. In this paper, we present the development of a
triple-transgenic F. koreana cell line, U18i-CPi-Fk, which exhibits a marked increase in pro-
duction of pinoresinol aglycone and sesamin over that of CPi-Fk and the establishment of an
optimized procedure for the long-term cryopreservation and recovery of U18i-CPi-Fk.
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Materials and Methods

Cell culture
All cell suspension culture lines were maintained in Gamborg’s B-5 liquid medium supple-
mented with 6% sucrose and 0.05 mg l-1 2,4-D (Cell Culture Medium; CCM) at 22°C. All sus-
pensions were agitated on a rotary shaker at 110 rpm in the dark and subcultured every 2
weeks with an inoculum of 5 ml of saturated suspension cells. For light treatments, cell cultures
were grown in CCM for 2 weeks either under continuous irradiation by blue LED (450–550
nm, 470 nm peak), red LED (600–700 nm, 630 nm peak) (NKsystem, Japan) or white light
(white fluorescent tubes) at 100 μmol m-2s-1 photosynthetic photon flux density (PPFD) after
an initial 2-week cultivation in the dark.

Binary vector construction
To construct a binary vector for the RNAi of the UTG71A18 gene (Accession: AB524718), the
corresponding open reading frame was amplified by PCR using a primer set, RNAi-cacc-
UGT71A18-F (5’-CAC CCA GGA ATA GGT CAC TTG ATATCAA-3’) and RNAi-UGT71A18-R
(5’-GAA TGG AGC CAA CTA TCC TT-3’). The resultant PCR product was inserted into the
pANDA35HK RNAi vector [26] using LR Clonase (Life Technologies).

Fig 1. Biosynthesis pathways of major lignans in Forsythia and Sesamum. Chemical conversions at
each step are indicated in red. Solid and broken lines represent identified and unidentified enzyme-catalyzed
reactions, respectively.

doi:10.1371/journal.pone.0144519.g001
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Transformation of suspension cells
A single colony of Agrobacterium tumefaciens strain EHA105 harboring the UGT71A18-R-
NAi vector was used to inoculate LB (Luria-Bertani) liquid medium containing 50 mg ml-1

kanamycin and grown at 28°C in a gyratory shaker (180 rpm) until OD600 reached 0.5. The
cultures of A. tumefaciens (100 μl) were added to 10 ml of 4-day-old cultures of F. koreana
CPi-Fk cells [20] in CCM, followed by co-incubation at 27°C for 2 days in the dark. The sus-
pension cells were then washed four times with 10 ml of fresh CCM, and were plated onto
solid CCMmedium containing 50 mg ml-1 hygromycin and 100 mg ml-1 cefotaxime. Hygro-
mycin-resistant callus were selected and transferred onto a fresh solid medium containing 50
mg ml-1 hygromycin, and then resuspended in CCM liquid medium to obtain suspensions of
UGT71A18-RNAi-transformed CPi-Fk, designated as U18i-CPi-Fk. The resultant U18i-CPi-
Fk suspension line was maintained by agitating at 120 rpm in the same medium at 25°C in
the dark.

Reverse transcription (RT)-PCR
Total RNA was isolated from 7-day-old suspension cells by the use of RNeasy Plant Mini Kit
(Qiagen, CA). First-strand cDNA synthesis was performed using 1 μg of the total RNA with
reverse transcriptase SuperScript III (Invitrogen, CA). The endogenous PLR (Accession:
AAC49608), UGT71A18 (Accession: AB524718), rRNA (Accession: AJ236041) and introduced
CYP81Q1 (Accession: AB194714) were amplified with the following primer sets: PLR-F (5'-
ATG GGA AAA AGC AAA GTT TTG ATC ATT GG-3') and PLR-R (5'-CAC GTA ACG CTT GAG
GTA CTC TTC CAC-3') for PLR, UGT71A18-F (5'-TAG CAG ATC AAC CCA GTA AAT-3') and
UGT71A18-R (5'-TAG CAG ATC AAC CCA GTA AAT-3') and for UGT71A18, rRNA-F (5'-GAA
ACC TGC AAA GCA GA-3'), rRNA-R (5'-CTG ACC TGG GGT CGC TGT CGA-3') for rRNA, and
CYP81Q1-F (5'-ATG GAA GCT GAA ATG CTA TAT TCA GCT-3') and CYP81Q1-R (5'- AAC
GTT GGA AAC CTG ACG AAG AAC TTT TTC-3') for CYP81Q1, respectively. PCR reactions
with ExTaq DNA polymerase (Takara Bio, Shiga, Japan) were run at 94°C for 1 min followed
by 28 cycles of 94°C for 30 sec, 57°C for 30 sec and 72°C for 1 min, and a final extension at
72°C for 7 min (GeneAmp 9700, Applied Biosystems). PCR products were visualized using
1.5% agarose gel electrophoresis by ethidium bromide staining.

Lignan quantification
Lignan quantification was performed as previously reported [20, 24]. In brief, the suspension
cells were cultured for 14 days, and frozen in liquid (LN2) nitrogen and lyophilized followed
by extraction by 80% methanol at 4°C and evaporation in vacuo. The residue was dissolved in
water, and the remaining aqueous phase, containing the lignan glycoside, was digested at
40°C overnight with 6 units/ml almond β-glucosidase (Sigma) in 0.15 M sodium acetate
buffer (pH 5.2). The resulting samples were adjusted with 50% acetonitrile and then centri-
fuged at 15,000 rpm for 5 min. The supernatant was filtered through a Millex-LH filter
(0.45 μm 4 mm-1; Millipore) and then subjected to analysis by reverse-phase high perfor-
mance liquid chromatography (HPLC) using a Develosil C30-UG-5 column (4.6 × 150 mm,
Nomura Chemical, Aichi, Japan). Each sample was eluted with a linear gradient of 35–90%
solvent B [90% acetonitrile containing 0.1% (v/v) trifluoroacetic acid] in solvent A [H2O con-
taining 0.1% (v/v) trifluoroacetic acid] for 20 min at a flow rate of 0.6 ml min-1 and then was
eluted with 90% solvent B for 7 min. Lignans were monitored by UV absorption at 280 nm,
and identified by both retention time and mass spectrum comparison with standard com-
pounds [20].
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Stock of cells in liquid nitrogen
Cryopreservation of F. koreana wildtype and transgenic cells was tested under various condi-
tions using sodium alginate based on previous reports with various modifications [27, 28].
U18i-CPi-Fk was centrifuged at 100 x g for 5 min, and was then resuspended in Gamborg’s
B-5 medium containing 2% (w/v) sodium alginate, with cell density of 5 x 106 / ml. The cell
suspension was dropwisely added to Gamborg’s B-5 medium containing 0.1 M calcium chlo-
ride, leading to encapsulation of cells in alginate beads. The resultant beads were washed by
Gamborg’s B-5 medium for 10 min, and incubated for 1 h at 25°C in Gamborg’s B-5 medium
containing 2 M glycerol, 0.4 M sucrose, and 1% (w/v) proline. Five beads were transferred to
a 1-ml cryovial in 0.25 ml of the same medium, followed by 5-hour pre-freezing at -30°C and
storage in liquid nitrogen.

Re-culturing of cells from cryopreservation
Cryopreserved cells were rapidly thawed at 40°C, and the beads were stepwisely incubated in Gam-
borg’s B-5 medium containing 1.2 M sucrose at 25°C for 15 min, Gamborg’s B-5 medium contain-
ing 0.5 M sucrose at 25°C for 15 min, and standard Gamborg’s B-5 medium. The recovered cells
were re-grown for 55 days as described above and provided for the lignan quantification.

Statistical analysis
Results are expressed as means ± SEM for the indicated number of observations. Data were
analyzed by one-way ANOVA with Dunnett’s error protection. Differences were accepted as
significant for p< 0.05.

Results

Generation of U18i- CPi-Fk
Initially, we attempted to simultaneously introduce CYP81Q1, PLR-RNAi, and UGT71A18-R-
NAi cDNA sequences into F. koreana wildtype cells using an expression vector bearing these
three sequences. However, this approach failed to obtain triple-transgenic cell cultures, because
the expression of either PLR or UGT71A18 was not suppressed by RNAi in the resultant trans-
genic cells. We therefore introduced the UGT71A18-RNAi sequence into transgenic F. koreana
cells harboring CYP81Q1 and PLR-RNAi (CPi-Fk) [20]. CPi-Fk was transformed with A.
tumefaciens containing the UGT71A18-RNAi sequence. More than twenty cell lines were ini-
tially selected and grown on Gamborg’s B-5 solid media containing hygromycin and cefotax-
ime. Several independent cell lines, designated as U18i-CPi-Fk, were selected and proliferated
in Gamborg’s B-5 liquid medium as suspension cultures.

RT-PCR revealed that the expression of both UGT71A18 and PLR was completely sup-
pressed in a U18i-CPi-Fk line, compared to those of F. koreana wildtype cells (Fig 2).
CYP81Q1 gene expression was also observed specifically in U18i-CPi-Fk, as seen in CPi-Fk
(Fig 2). Altogether, these results provide evidence that all three transgenes, CYP81Q1,
PLR-RNAi, and UGT71A18-RNAi, were functionally expressed in U18i-CPi-Fk.

Lignan production in U18i-CPi-Fk
UGT71A18 is responsible for specific glucosylation of pinoresinol [25], and CYP81Q1 converts
pinoresinol aglycone, but not its glucosides, into sesamin [7]. Hence, U18i-CPi-Fk, in which
UGT71A18 expression is not detected (Fig 2), is expected to accumulate more pinoresinol agly-
cone and sesamin than CPi-Fk. To evaluate the effect of UGT71A18-RNAi on the production
of pinoresinol aglycone and sesamin, we assessed major lignans in CPi-Fk and U18i-CPi-Fk.
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The lignan mixtures extracted from 2-week cultures of each cell line were either treated or left
untreated with β-glycosidase and then subjected to HPLC analysis. As shown in Fig 3A, the
amount of total pinoresinol (pinoresinol aglycone and glucoside) was slightly decreased in
U18i-CPi-Fk than in CPi-Fk, whereas U18i-CPi-Fk accumulated approximately 5-fold higher
amounts of pinoresinol aglycone (2.21 ± 0.72 μg/ g of cell dry weight, DW) than CPi-Fk
(0.34 ± 0.09 μg/ g DW). Furthermore, as depicted in Fig 3B, the ratio of pinoresinol aglycone to
total pinoresinol in U18i-CPi-Fk is 81.81 ± 6.43%, which is approximately 6.5-fold greater than
that in CPi-Fk (13.19 ± 2.35%). These results prove that the introduction of UGT71A18-RNAi
construct contributed a great deal to the increase in the ratio of pinoresinol aglycone to total
pinoresinol. Consistently, the lignan quantification (Fig 3A) revealed that the amount of sesa-
min in U18i-CPi-Fk (10.83 ± 0.35 μg/ g DW) was also approximately 1.4-fold greater than that
in CPi-Fk (7.57 ± 0.27 μg/ g DW). Collectively, these results verified that U18i-CPi-Fk had con-
siderably higher pinoresinol aglycone and sesamin productivity than the prototypic cell, CPi-
Fk, due to the introduction of UGT71A18-RNAi.

Effects of light on lignan production in U18i-CPi-Fk
Productivity of several plant specialized metabolites including lignans is affected by the wave-
length and the period of light [29–32]. To examine whether the light quality alters lignan pro-
duction in U18i-CPi-Fk, we compared lignan content in U18i-CPi-Fk cultured either under
the dark condition, white fluorescent, blue LED, or red LED light for two weeks following two-
week pre-culture under the dark condition. As shown in Fig 4A, pinoresinol aglycone was
3.4-fold (7.41 ± 0.06 μg/ g DW) and 2.8-fold (6.30 ± 1.82 μg/ g DW) greater produced under
white fluorescent and red LED, respectively, than under the dark condition (2.21 ± 0.72 μg/ g

Fig 2. Generation of U18i-CPi-Fk. Expression of CYP81Q, PLR, and UGT71A18 in F. koreana wildtype,
CPi-Fk, and U8i-CPi-Fk.

doi:10.1371/journal.pone.0144519.g002
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DW). A striking feature is that sesamin production in U18i-CPi-Fk was approximately 3-fold
(31.02 ± 3.45 μg/ g DW) up-regulated specifically under red LED, whereas neither white fluo-
rescent nor blue light resulted in elevation of sesamin production (Fig 4B). To examine the
specificity of the effect of red LED on the lignan production in U18i-CPi-Fk, we compared
accumulation of pinoresinol aglycone and matairesinol aglycone in the F. koreana wildtype

Fig 3. Amounts of pinoresinol aglycone, total pinoresinol (aglycone and glucosides), and sesamin. Comparison of the three lignans between CPi-Fk
and U18-CPi-Fk (A). The ratio of pinoresinol aglycone to total aglycone was also calculated (B). Pinoresinol aglycone was quantified separately after a
culture period of 15 d under the same conditions. Values (%) in (B) are presented as the ratio of pinoresinol aglycone (2.21 ± 0.72 μg/ g DW and
0.34 ± 0.09 μg/ g DW) to total pinoresinol (3.71 ± 0.40 μg/ g DW and 2.88 ± 0.47 μg/ g DW) in CPi-Fk and U18i-CPi-Fk, respectively. Data are obtained from
three independent experiments as the mean ± SEM (P < 0.05).

doi:10.1371/journal.pone.0144519.g003
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cells and U18i-CPi-Fk. In wild-type cells cultivated under red LED, the levels of pinoresinol
aglycone and matairesinol aglycone were decreased to 50% (0.51 ± 0.09 μg/ g DW) and 80%
(1.16 ± 0.14 μg/ g DW), respectively, compared to the amounts of pinoresinol (1.02 ± 0.18 μg/
g DW) and matairesinol (1.45 ± 0.20 μg/ g DW) in cells cultured in the dark (Fig 5A). In con-
trast, red LED light increased the production of these lignans and sesamin in U18i-CPi-Fk rela-
tive to production in cells cultivated in the dark; production of pinoresinol aglycone and
matairesinol aglycone were approximately 3-fold (8.13 ± 1.68 μg/ g DW) and 2.5-fold
(1.07 ± 0.14 μg/ g DW), respectively, under red LED irradiation than those in the dark (Fig
5B). Taken together, these data provide compelling evidence for the specific effect of red LED
on the increase of sesamin production in U18i-CPi-Fk.

Cryopreservation and recovery of U18i-CPi-Fk
Continuous culturing of transgenic plant cells frequently resulted in the loss of transgene func-
tions or reduced cell viability. Recently, cryopreservation procedures for various plant cells
have been developed [27, 28]. We thus attempted to establish a procedure for sodium alginate-
based cryopreservation of F. koreana cell cultures under various conditions. Although we failed
to preserve or revive any Forsythia cells using reported procedures, U18i-CPi-Fk was cryopre-
served without significant loss of viability for more than six months as described in the Materi-
als and Methods section. Notably, productivity of both pinoresinol aglycone and sesamin of
U18i-CPi-Fk re-cultured for 55 days following six-month cryopreservation was comparable to
those before cryopreservation (Fig 6). These data lead to the conclusion that U18i-CPi-Fk is an
excellent long-term sustainable platform for lignan production.

Discussion
Metabolic engineering using transgenic organisms is one of the most promising strategies for
efficient and sustainable production of beneficial, but rare, natural compounds in nature.

Fig 4. Comparison of the production of (A) pinoresinol and (B) sesamin in U18i-CPi-Fk cells under the dark, white, blue, and red continuous light
conditions. Lignans were quantified separately for each sample after a culture period of two weeks in the samemedium. Data are presented as the average
of three independent experiments (mean ± S.E.M., P < 0.05).

doi:10.1371/journal.pone.0144519.g004
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Transgenic plant cells have prominent advantages over transgenic microbes or animals for pro-
ducing such phytochemicals, including sesamin. Most of the biosynthetic pathways for plant
specialized metabolites involve multiple enzymatic steps that are unique to selected plant spe-
cies. Therefore, transformation of a whole set of the biosynthetic genes would be required for
the establishment of transgenic microbial or animal cell lines that could produce phytochemi-
cals [33–36]. In contrast, transgenic plants or their cell lines producing phytochemicals of
interest can be generated by transformation of a minimum set of genes using a plant species
that originally biosynthesizes precursors or metabolites structurally related to the target com-
pound. Nevertheless, introduction of more than two sets of genes into a plant has been
markedly limited, and no such multiple-transgenic plants have yet been created for metabolic
engineering of lignan biosynthetic pathways. In the present study, we show stable, efficient and
sustainable production of sesamin using novel triple-transgenic Forsythia cells, U18i-CPi-Fk.

Fig 5. Differential effects of red LED irradiation on the increase of lignan production in Forsythiawildtype and U18i-CP-Fk. Each indicated lignan in
wildtype (A) and U18i-CP-Fk (B) in the dark (black) and red LED (gray) was assessed. Each point represents the mean ± S.E.M (P < 0.05) of three
preparations.

doi:10.1371/journal.pone.0144519.g005
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The triple-transgenic Forsythia cells, U18i-CPi-Fk, produced 1.4-fold greater sesamin and
5-fold greater pinoresinol aglycone than CPi-Fk (Fig 3). To the best of our knowledge, this is
the first report on the production of both an endogenous and exogenous plant specialized
metabolites by triple-transgenic plants.

The level of phytochemical production by plants is also regulated by various environmental
factors, particularly light wavelengths [29–32]. The responsiveness of plant cell cultures and
organs to light stimuli enable the regulation of the production of specialized metabolites, which
cannot be used for microbes or animals. Indeed, red LED irradiation specifically increased the
production of pinoresinol and sesamin up to 3-fold in U18i-CPi-Fk over production in the
dark (Figs 4 and 5). The increase of sesamin is compatible with that of pinoresinol aglycone
(Figs 4 and 5). In contrast, red LED irradiation resulted in the reduction of pinoresinol produc-
tion in F. koreana wildtype cells (Fig 5A). These results suggest that red LED light affect the
expression or functions of genes responsible for pinoresinol biosynthesis in F. koreana cells. In
addition, in Linum album cell culture, red light reportedly up-regulates expression of enzymes
involved in the biosynthesis of phytochemicals upstream of pinoresinol, including phenylala-
nine ammonia-lyase (PAL) and cinnamoyl-CoA reductase (CCR) [30]. Similarly, production
of non-lignan plant specialized metabolites is affected by other light types [30, 37–40]. In this
study, the treatment of U18i-CPi-Fk cells with white fluorescent tubes failed to promote sesa-
min production, while the white light significantly increased pinoresinol aglycone production
(Fig 4). These results can be interpreted in two ways. First, the white light tubes include other
light wavelengths that might induce metabolic processes or degradation of sesamin. Alterna-
tively, other light wavelengths than red LED might hinder the enzyme activity of CYP81Q1.
Although the precise molecular mechanisms await further investigation, these findings clearly
demonstrate the importance of the choice of specific light source for maximal production of
metabolites of interest in plant cell culture system. Taken together, the present data prove that

Fig 6. Evaluation of lignan production after cryopreservation of U18i-CPi-Fk. Pinoresinol aglycone and
sesamin were extracted from U18-CPi-Fk before cryopreservation (white) and after re-thawing following
6-month cryopreservation (gray). Each lignan was assessed separately after 55-day culture since the
recovery under the same condition and expressed as the mean ± SEM of three independent experiments
(P < 0.05).

doi:10.1371/journal.pone.0144519.g006
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red LED-directed increase in lignan productivity is a unique and promising advantage of U18i-
CPi-Fk for lignan production (Fig 7).

Glycosylation affects the chemical reactivity and water solubility of plant specialized metab-
olites, frequently leading to changes in their biological activities and the relevant plant pheno-
types. For example, changes in the colors of flowers, leaves, and fruits greatly depend on the
position and structure of sugars that are attached to the aglycones of various phytochemicals
[41–50]. In F. koreana, 90% of total pinoresinol is stored as glucosylated forms in vacuole [2,
20, 24], and pinoresinol glucosides are not converted into sesamin by CYP81Q1 [8]. These
findings are in good agreement with the present data demonstrating that RNAi against
UGT71A18 led to the marked increase in productivity of sesamin as well as pinoresinol agly-
cone in U18i-CPi-Fk (Fig 3). In addition, we failed to generate UGT71A18-RNAi-single or
UGT71A18-RNAi- and PLR-RNAi-double transgenic Forsythia cells, whereas generation of
PLR-RNAi-Forsythia cells was succeeded in our previous study [20]. These results suggest that
the accumulation of unreacted pinoresinol aglycone exhibit cytotoxicity that is more lethal to

Fig 7. Strategy for efficient, stable, and sustainable lignan production via metabolic engineering of Forsythia cells.

doi:10.1371/journal.pone.0144519.g007
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Forsythia than the loss of other lignans downstream of pinoresinol that occurred due to the
introduction of PLR-RNAi. In other words, the toxicity of pinoresinol aglycone reinforces the
biological significance of pinoresinol glucosylation in Forsythia. Such a view is further sup-
ported by previous reports of the toxicity of pinoresinol and its metabolites on plants [51–53].
In contrast, the introduction of CYP81Q1 resulted in increased conversion of pinoresinol agly-
cone to sesamin and likely contributed to a reduction in the toxicity associated with pinoresinol
aglycone accumulation, eventually leading to the generation of U18i-CPi-Fk.

Resilient platforms for the production of beneficial materials in cell culture systems require
not only high and efficient productivity but also protocols for long-term and reproducible
stocks without significant loss of cell viability. In the present study, we show that, after cryo-
preservation for six months in liquid nitrogen using a sodium alginate preparation method,
U18i-CPi-Fk successfully propagated and produced pinoresinol and sesamin at levels compa-
rable to the original cultures (Fig 6). Universal procedures for long-term stock of plant cell cul-
tures, unlike those of seeds or animal cell cultures, have not been well established. Moreover,
cryopreservation procedures for a particular plant species are not readily applicable to other
species [27, 28, 54]. In addition, long-term cultures of plant cell cultures frequently result in the
loss of cell viability or of inserted genes. In our previous study, we observed a decrease in the
growth rate of CPi-Fk cells after two years of culture, and eventually, proliferation loss (data
not shown). Consequently, the present establishment of the freeze stocks of U18i-CPi-Fk
endorses the usefulness of U18i-CPi-Fk as a stable and sustainable platform of lignan produc-
tion anytime and anywhere.

Model plants, such as A. thaliana, Nicotiana tabacum, and Oryza sativa, are frequently
endowed with only partial or no biosynthetic pathway for specialized metabolites of interest,
or, if any, can biosynthesize only very small amounts of most specialized metabolites including
lignans [5, 7]. Hence, generation of transgenic model plants competent in lignan production
would require complexed transformation of multiple exogenous genes. Indeed, no studies have
ever reported efficient and sustainable production of specialized metabolites such as lignans
using these model plants. Consequently, a transgenic metabolic engineering strategy using For-
sythia, which biosynthesizes large amounts of a basal lignan, pinoresinol (Fig 1), is one of the
most promising for efficient and sustainable production of lignans (Fig 7). Moreover, the
pinoresinol aglycone to total pinoresinol ratio is high in U18i-CPi-Fk (Fig 3B) owing to the
gene-silencing of a pinoresinol-glucosylating enzyme, UGT71A18 (Fig 2). Recent studies of
genomes and transcriptomes of non-model, lignan-rich plants such as Sesamum [55–57],
Linum [58–60], and Podophyllum [61–63] will enhance not only the elucidation of species-spe-
cific total lignan biosynthetic pathways, but also facilitate metabolic engineering of lignan pro-
duction through transformation of Forsythia plants and cell cultures with newly identified
lignan biosynthetic enzyme genes. In addition, a growing body of studies has revealed that the
biosynthesis of lignans, including pinoresinol, lariciresinol, and podophyllotoxin, is potentiated
by chemical and fungal elicitors in a plant/fungal species- and compound-specific fashion in
Linum and Podophyllum cells [6, 7]. Particularly, various elicitors have been found to upregu-
late the gene expression of early lignan-biosynthetic enzyme genes: CCR, PAL, and PLR, which
ultimately contributes to an increase in production of lariciresinol and podophyllotoxin in
Linum [6, 7, 64–68]. Although the current sesamin content in U18i-CPi-Fk cells with red LED
irradiation (Fig 4) is still low compared to that in sesame seed oil (0.4–0.6% w/w) [1–7], the
productivity of sesamin in U18i-CPi-Fk will be more efficient than that of sesame seed oil by
combination of the aforementioned multiple approaches for the up-regulation of lignan bio-
synthesis and the advantages of scalability and year-round sesamin extraction periods of U18i-
CPi-Fk. Collectively, we conclude that U18i-CPi-Fk possesses unprecedented functionalities
for transgenic metabolic engineering-based platforms for the efficient production of an
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exogenous lignan, sesamin, and has potential for producing other beneficial lignans via meta-
bolic engineering of the relevant biosynthetic pathways. Consequently, U18i-CPi-Fk is a novel
platform that will pave the way for the conversion of conventional agricultural lignan produc-
tion to innovative bio-industrial lignan production
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