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Abstract

Objective

Infants are more vulnerable to kidney injuries induced by inflammatory response syndrome

and ischemia-reperfusion injury following cardiopulmonary bypass especially with pro-

longed hypothermic low-flow (HLF). This study aims to evaluate the protective role of ulinas-

tatin, an anti-inflammatory agent, against acute kidney injuries in infant piglets model

undergoing surgery on HLF cardiopulmonary bypass.

Methods

Eighteen general-type infant piglets were randomly separated into the ulinastatin group

(Group U, n = 6), the control group (Group C, n = 6), and the sham operation group (Group S,

n = 6), and anaesthetized. The groups U and C received following experimental procedure:

median thoracotomy, routine CPB and HLF, and finally weaned fromCPB. The group S only

underwent shammedian thoracotomy. Ulinastatin at a dose of 5,000 units/kg body weight and

a certain volume of saline were administrated to animals of the groups U and C at the begin-

ning of CPB and at aortic declamping, respectively. Venous blood samples were collected at 3

different time points: after anesthesia induction in all experimental groups, 5 minutes, and 120

minutes after CPB in the Groups U and C. Markers for inflammation and acute kidney injury

were tested in the collected plasma. N-acetyl-β-D-glucosaminidase (NAG) from urine, markers

of oxidative stress injury and TUNEL-positive cells in kidney tissues were also detected.

Results

The expressions of plasma inflammatory markers and acute kidney injury markers

increased both in Group U and Group C at 5 min and 120 min after CPB. Also, numbers of
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TUNEL-positive cells and oxidative stress markers in kidney rose in both groups. At the

time point of 120-min after CPB, compared with the Group C, some plasma inflammatory

and acute kidney injury markers as well as TUNEL-positive cells and oxidative stress mark-

ers in kidney were significantly reduced in the Group U. Histologic analyses showed that

HLF promoted acute tubular necrosis and dilatation.

Conclusions

HLF cardiopulmonary bypass surgery could intensify systemic inflammatory responses and

oxidative stress on infant piglets, thus causing acute kidney injury. Ulinastatin might reduce

such inflammatory response and oxidative stress and the extent of kidney injury.

Introduction
In the last decades, improved perfusion techniques and perioperative interventions, corrected
congenital heart defects at a low operative mortality in more infant and children patients at an
early stage [1]. However, a wide range of postoperative end-organ complications including
brain, renal, pulmonary, and myocardial injuries remains after operations [2,3]. Acute kidney
injury(AKI) is one of the major complications of cardiac patients undergoing surgery on car-
diopulmonary bypass (CPB)[4]. Drs. Kumar [5] and Mariscalco [6] report the incidence of
acute kidney injury is as high as 6.6% to 40% after CPB, and that 1% to 6% of such patients
need long-term dialysis treatments.

Hypothermic low-flow (HLF) cardiopulmonary bypass, a noval perfusion technique, pro-
vides clear vision, good handling conditions, and a high surgical success rate during the opera-
tion. HLF technique has been frequently used for complex congenital heart defects surgeries in
patients at all ages, especially in neonates and infants. With undeveloped renal regulatory func-
tion, the patients are more susceptible to acute kidney injuries after CPB.

Recently, Li and colleagues [7] report that ulinastatin could be an effective treatment for
AKI following liver transplantation in rats and humans and their study suggests that ulinasta-
tincan protect against AKI following orthotopic liver transplantation by inhibiting inflamma-
tion and oxidation. However, the effectiveness of ulinastatin in the treatment of AKI caused by
HLF and its mechanisms are still unknown. This study was designed to determine the effective-
ness of ulinastatin on alleviating HLF induced AKI in infant piglet models.

Materials and Methods

Animal care and study protocol
General-type infant piglets (14 to 18 days old, weighting 3.0 to 6.2 kg) were supplied by Beijing
Huaige Farms. All protocols in this study were approved by the Committee on the Ethics of
Animal Experiments of Fuwai Hospital, Peking Union Medical College and the Beijing Council
on Animal Care, Beijing, China (IACUC permit number: FW2010-101523), in compliance
with the Guide for the Care and Use of Laboratory Animals published by the US National Insti-
tutes of Health (NIH publication no.85-23, revised 1996). All reasonable efforts were made to
minimize animal suffering and to use only the number of animals necessary to produce reliable
scientific data. Eighteen infant piglets were assigned into the ulinastatin group (Group U,
n = 6), the control group (Group C, n = 6), and the sham operation group (Group S, n = 6) by
computer-generated randomization. Ulinastatin at 2,500 IU/kg (Ulinastatin for Injection;
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Techpool Bio-Pharma Co., Ltd, Guangdong, China) was defined as a bolus infusion, respec-
tively when CPB was initiated and when the aortic cross-clamp was removed in the Group U
(totally received 5,000 IU/kg) [8, 9]. Equivalent volumes of normal saline was administered in
the Group C at the same times. Animals in the Group S were not accepted CPB and only were
performed sternotomy and 360 minutes general anesthesia.

Anesthesia and monitoring
Procedures in the pediatric cardiac perioperative management and anesthesia was performed in
order to maximize survival rate and experimental reliability, as detailed in our previous study
[10]. Briefly, animals were respectively fasted formula for 6 hours and water for 2 hours before
anesthesia. During basic anesthesia, ketamine (10mg/kg), midazolam (0.5mg/kg), and atropine
(0.05mg/kg) were administered intramuscularly. For each animal, an ear vein access was estab-
lished and a urine catheter was inserted. Animal were connected to a monitor (the IntelliVue
MP60; Philips Medizinsysteme, Boeblingen, Germany), to monitor nasopharyngeal temperature
(NT); electrocardiogram (ECG) with electrodes pasted on the distal limbs following skin prepara-
tion; pulse oximetry with an ear clip-oximetry probe; invasive arterial blood pressure (ABP) with
20G trocar catheterized in right carotid artery after cervical partial incision; central venous pres-
sure (CVP), with 5Fr double-lumen central venous catheter catheterized in right external jugular
vein after the incision. The cervical partial incision was performed at the beginning of mainte-
nance anesthesia phase just after induction of anesthesia. Induction and maintenance of anesthe-
sia were performed as following steps. Fentanyl citrate (20μg/kg), pipecuronium bromide
(1.5mg/kg) and midazolam (0.25mg/kg) was administered as a bolus to each animal through ear
veins, then manual breathing was performed using asimple breathing mask, and finally a cuffed
endotracheal tube with internal diameter 4.0mm was intubated after the glottis exposed with
anesthesia laryngoscope and was connected to an anesthetic machine (Dräger Primus; Dräger
Co, Lübeck, Germany) with its breathing pattern in the volume control mode. Initial ventilatory
parameters were setup as inspired oxygen fraction at 1.0; respiratory rate at 30 per minute; deliv-
ered tidal volume at 10 ml/kg; positive end-expiratory pressure (PEEP) at 4 cmH2O; endtidal
carbon dioxide tension ranging from 35 to 40 mmHg; and inspiratory timeat 0.65 s. Anesthesia
was maintained by administering intermittently boluses of narcotics and the drugs used in anes-
thesia induction at the following time points: skin incision, median thoracotomy, cardiopulmo-
nary bypass. Experimental animals were given 1% sevoflurane by an anesthesia machine or a
CPB circuit when vena cava were blocked and CPB started. Appropriate treatments were used to
maintain stable hemodynamics and internal environment based on monitoring data and arterial
blood gas analysis. Following indexes of blood gas analysis were tried to maintained: pH:
7.35~7.45; oxygen partial pressure: 80~120mmHg; carbon dioxide partial pressure: 35 ~
45mmHg; oxygen saturation: 95%~100%; residual alkali: -2.3~2.3mmol/L; hemoglobin:>85g/L;
sodium ions: 135 ~ 145mmol/L; and potassium ion: 3.5~4.5mmol/L.

Surgical procedure, cardiopulmonary bypass and HLF
Following median sternotomy and heparinization with heparin at 400 IU/kg, a conventional
nonpulsatile systemic CPB flow was established using an 8 Fr aortic cannula in the ascending
aorta and a 22 Fr venous cannula in the right atrial appendage. Sterile CPB circuits (Tianjin
Plastics Research Institute, Tianjin, China) primed with 400 ml donor porcine blood, 200 ml
hydroxyethyl starch (6%), 5ml sodium bicarbonate solution (5%), and heparin (400 IU/kg)
bridging cannulas with roller pumps (Jostra HL20; Maquet Co, Solna, Sweden), membrane
oxygenator (Capiox; Terumo Co, Tokyo, Japan), and standard arterial filter (Xijing Co, Xian,
China). When NT was decreased to 30°C through a moderate systemic hypothermia (Jostra
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Heater Cooler Units, Maquet Co, Solna, Sweden), cardiac arrest was obtained by aortic cross-
clamp and antegrade infusion of St. Thomas’ cardioplegic solution at 4°C at an initial dose of
20 ml/kg and a maintain dose of 10 ml/kg every 30 min via a cannula inserted in the aortic
root. Iced saline was placed in the pericardium for further myocardial protection. Left atrial
drainage was established and the ventilator was in standby mode during the cardiac arrest
period. When body temperatures of animals were gradually decreased to 25°C, arterial pump
flow down-regulated to 50 ml/kg/min (HLF). After 120 min of cardiac arrest, NTs were up-reg-
ulated to 30–32°C, aortic cross-clamps were removed and dopamine was infused at 5μg/kg/
min and adjusted by hemodynamic indexes. In the next 30 min, animals underwent assisted
circulation and modified ultrafiltration, were rewarmed to 35–36°C, and finally were weaned
from CPB. Ventilations as mentioned above were given when cardiac resuscitation. In the
meanwhile, protamines (1.3 mg vs 100 IU heparins) were given to reverse heparinization and
finally sternums were closed. Then, animals were observed for 120 min and sacrificed by intra-
venous hyperkalemic injection. Piglets failed to wean from CPB were excluded and replaced in
this study.

Measurements
Measurements of the blood and urine samples. Venous blood samples collected immedi-

ately after anesthesia induction (T1) as a baseline, at the 5 min (T2) and 120 min (T3) weaned
from CPB in Group U and Group C. All samples were handled and transported using iceboxes
and centrifuged at the speed of 3,000xg for 15 minutes at 5°C. Urine samples were obtained via
urine catheters at the end of each experiment. Supernatants were stored at -80°C for subse-
quent chemical analysis.

Concentrations of kidney injury marker, cystatin C (CysC) and plasma inflammatory fac-
tors (interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)) were detected using porcine
enzyme-linked immunosorbent assays (ELISA) kits (R&D Systems, Inc., Minneapolis, MN,
USA). Serum creatinine (SCr), a kidney injury marker, and blood urea nitrogen (BUN) were
measured with an automatic biochemical analyzer (UniCel DXC800 Synchron, Beckman Coul-
ter Inc, CA, USA). Urine N-acetyl-β-D-glucosaminidase (NAG) was tested by particles-
enhanced nephelometric immunoassays (Dade Behring Inc, CA, USA). All experiments were
performed according to manufacturer’s instructions.

Measurements of the kidney samples. Tissue samples of the upper segment of right kid-
neys were collected immediately after the animal demise and were divided into two groups.
One group of tissue samples would be frozen in liquid-nitroge and further used to examine oxi-
dative stress markers, superoxide dismutase (SOD) and malondialdehyde (MDA) with ELISA
kits (R&D Systems, Inc., Minneapolis, MN, USA). The other group of tissue samples was uti-
lized for tissue pathology test. Experimental procedures were specified as follows, samples were
rinsed, cleared of connective tissues with 10×PBS buffer at 4°C for 48 hours, then fixed in 10%
formalin, embedded in paraffin, cut into 5 μm thick sections, and finally stained with hematox-
ylin-eosin (H&E), deoxyuride-5’ -triphosphate biotin nick end labeling (TUNEL), an apoptotic
detection (Roche Diagnostics, Mannheim, Germany). Fifty four photographs from H&E
stained slides (three slides from each animal) were examined by two independent pathologists
blinded to the experiments, and evaluated the degree of renal damage (tubular cell necrosis,
cytoplasmic vacuole formation, hemorrhage, and tubular dilatation) using a semi-quantitative
score method [A high score represents more severe damage: maximum score is 4; normal kid-
ney is 0; minimal damage is (0–5% involvement); mild damage is 2 (5–25% involvement);
moderate damage is 3 (25–75% involvement); and severe damage is 4 (75–100% involvement)]
[4] using a light microscopy (Olympus Corp, Tokyo, Japan). Fifty-four images from TUNEL
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tests were examined. TUNEL-positive renal cells as well as the number of total cells were
counted with Leica Qwin plus V3 software (Nussloch, Germany) and the percentage of
TUNEL positive renal cells to the total cells was employed for statistical analyses.

Power of the study and statistical analysis
Increase in SCr to�1.5 times baseline, which is known or presumed to have occurred within
the prior 7 days, as an index of definitions of acute kidney injury[11], was the primary end-
point, and assuming SCr to<1.5 times baseline in ulinastatin group.With preliminary experi-
ments (2 animals in each group), 2h after CPB, SCr levels were increased(86.5±12.02μmmol/L
in control group vs 73.2±16.9μmmol/L, with 51.4±9.8 vs 52.6±14.6 as baseline). Therefore, we
calculated that a study with 12 animals (six per group) would have a 90% power to detect a
large effect size of 0.7 standard deviations, equivalent to a difference of 21.8μmmol/L in SCr
between groups assuming a within group standard deviation of 13.5. Extra animal experiments
(n = 6) were added as sham operation group to excluding the impact of median sternotomy on
renal function. All data were expressed as mean ± standard deviation. Plasma/urine markers of
inflammation, oxidative stress and kidney injury were compared between groups by the single
factor analysis of variance. The LSD-t test was used to perform pairwise comparisons. Data at
different time points were analyzed by variance analysis of repeated measures. Data for nonre-
petitive measurements were analyzed by one-way analysis of variance (ANOVA) for compari-
sons between any two groups. All data were analyzed with a commercially available statistical
software package (SPSS for Windows version 13.0; SPSS Inc, Chicago, IL, USA) and statistically
significance was setup at P< 0.05.

Results

Perioperative general parameters
No animal in the three groups was excluded in the experiments. Perioperative general parameters
are presented in Table 1. No significant differences were found in age, weight, gender, durations
of anesthesia, duration of CPB, and duration of aortic clamped among three groups (P>0.05).

Plasma markers of inflammation
Data of plasma markers of inflammation are presented in Fig 1. For IL-6 (Fig 1A) and TNF-α
(Fig 1B), no statistical significance was found at T1 among three groups (all P>0.05), but an
increasing trend after CPB both in Group C and Group U. At T2, IL-6 and TNF-α decrease by
26.28% and 10.81% in Group U respectively compared to Group C. At T3, IL-6 and TNF-α
declined by 18.12% and 8.57% respectively in Group U, compared to Group C.

Table 1. Perioperative general parameters of the three groups.

Group C (n = 6) Group U (n = 6) Group S (n = 6)

Age (days) 16.50±1.87 16.83±3.06 19.00±2.3

Weight (kg) 5.21±0.52 5.47±0.48 5.83±0.42

Gender 4/6 Female 4/6 Female 3/6 Female

Duration of anesthesia (min) 341.64±17.33 363.69±26.42 359.50±5.86

Duration of CPB (min) 194.73±14.48 187.84±11.69 –

Duration of aortic clamped (min) 129.28±15.38 137.92±14.75 –

Data are shown as mean ± SD.

doi:10.1371/journal.pone.0144516.t001
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Markers of oxidative stress injury in kidney
Data of oxidative stress injury markers MDA and SOD in kidney are presented in Table 2.
MDA of kidney tissues in the Group S was very low and significantly increased after HLF in
the Group C, while exposure to ulinastatin in the Group U could inhibit the increase. The vari-
ation of SOD was in a contrary situation in the three groups.

Markers of kidney injury
At T1, plasma concentrations of SCr (Fig 2A), BUN (Fig 2B), and CysC (Fig 2C) were very low,
and no statistical significance was found among the three groups (P>0.05). These three mark-
ers also tended to increase after CPB both in the Groups C and U. At T2, SCr, BUN, and CysC
respectively reduced by 2.97%, 0.37% and 12.50% in the Group U, compared to the Group C.
At T3, compared to the Group C, SCr, BUN, and CysC, decreased respectively by 17.20%,
16.82%, and 24.37%, in the Group U. For urine NAG (Fig 2D), statistical significance was
found between the Group C and the Group U (13.30±2.23 U/L in Group U vs 27.24±4.53 U/L
in Group C, P = 0.02). All data are presented as Fig 2.

Histologic examination and TUNEL assays
The Group S exhibited normal structure of kidney tissues (Fig 3A). Histologic changes, includ-
ing tubular dilatation, tubular necrosis, vacuole formation, and glomerular over-filling were
observed in the Group C (Fig 3B). In the Group U, the structure of kidney tissues was not clear,

Fig 1. Results of plasmamarkers of inflammation in the three groups. (A) serum IL-6, interleukin-6; (B)
serum TNF-α, tumor necrosis factor-α. Data are presented as mean±SD, n = 6, *P <0.05 versus Group C. For
graphs pooled estimates for pairwise comparisons derived from Analysis of Covariance with adjustment for
baseline serum IL-6 at 0.94±0.13μg/L, serum TNF-α 0.32±0.05ng/L, were as follows: IL-6; 5min post CPB
(T2): Group C, 1.37±0.16μg/L, Group U, 1.01±0.13μg/L. Test for overall treatment effect p = 0.021. 120min
post CPB(T3): Group C, 1.38±0.28μg/L, Group U, 1.13±0.24μg/L. Test for overall treatment effect P = 0.001.
TNF-α; 5min post CPB(T2): Group C, 0.37±0.19 ng/L, Group U, 0.33±0.19ng/L. Test for overall treatment
effect P = 0.075. 120min post CPB(T3): Group C, 0.35±0.13 ng/L, Group U, 0.32±0.13 ng/L. Test for overall
treatment effect P = 0.088.

doi:10.1371/journal.pone.0144516.g001

Table 2. MDA and SOD in kidney tissues in three groups.

Group S (n = 6) Group C (n = 6) Group U (n = 6)

MDA (nmol/μL) 10.07±2.33 24.62±3.57a 15.57±2.23 a,b

SOD (U/μL) 153.74±17.84 83.58±9.63 a 99.85±10.75 a,b

Data are shown as mean ± SD, compared with the Group S
a P <0.05, compared to the Group C
b P <0.05.

doi:10.1371/journal.pone.0144516.t002
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and the injury presented to a lesser extent (Fig 3C). The results from semi-quantitative scoring
analyses also supports the finding. Pathologic damages scores correlated significantly with the
Group C and the Group U (3.21 ± 0.5 in Group C vs 1.80 ± 0.4 in Group U, P = 0.02), com-
pared to the Group S (0.33 ± 0.52), CPB groups showed statistically significance (both
P< 0.05).

The percentage of TUNEL-positive cells both in the Groups C and U were significantly
more than that in the Group S (7.87 ± 0.69/1000 vs. 2.58 ± 0.36/1000, P = 0.000 and
4.87 ± 0.78/1000 vs. 2.58 ± 0.36/1000, P = 0.003). However, the percentage of TUNEL-positive
cells decreased in the the Group U compared to that in the Group C (7.87 ± 0.69/1000 vs.
4.87 ± 0.78/1000, P = 0.005).

Discussion
Due to the complexity in establishing CPB, common animal models are adult dogs [12], pigs
[2, 13, 14] and other large animals, whereas infant animals are rarely used in relevant

Fig 2. Results of markers of kidney injury in the three groups. (A) serum creatinine; (B) serum BUN; (C) serum CysC; (D) urine NAG, urine N-acetyl-β-D-
glucosaminidase. Data are presented as mean±SD, n = 6, *P <0.05 versus Group C,ΨP <0.05 versus Group S. For graphs pooled estimates for pairwise
comparisons derived from Analysis of Covariance with adjustment for baseline serum creatinine at 53.61±9.53μmmol/L, serum BUN 4.31±1.34μmmol/L,
serum CysC 24.35±4.2μg/L, were as follows: serum creatinine; 5min post CPB(T2): Group C, 64.24±12.53μmmol/L, Group U, 62.33±11.73μmmol/L. Test
for overall treatment effect P = 0.074. 120min post CPB(T3): Group C, 86.62±11.41μmmol/L, Group U, 71.72±12.55μmmol/L. Test for overall treatment effect
P = 0.032. serumBUN; 5min post CPB(T2): Group C, 5.43±1.87μmmol/L, Group U, 5.41±1.72μmmol/L. Test for overall treatment effect P = 0.081. 120min
post CPB(T3): Group C, 7.37±1.72μmmol/L, Group U, 6.13±1.69μmmol/L. Test for overall treatment effect P = 0.025. serum CysC; 5min post CPB(T2):
Group C, 30.47±4.4μg/L, Group U, 26.66±5.7μg/L. Test for overall treatment effect P = 0.069. 120min post CPB(T3): Group C, 40.62±6.5μg/L, Group U,
30.72±6.2μg/L. Test for overall treatment effect P = 0.001.

doi:10.1371/journal.pone.0144516.g002
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experiments. In a study using a big animal model, significant differences of perioperative man-
agement in clinical practice appear. The main defects of the study include a long time water
fasting, tracheal intubation without muscle relaxant, failure of timely adjusting internal envi-
ronments based on results of blood gas analyses. For an infant animal model, it has limited
renal functions and could be easily avoid the two experimental flaws mentioned above. When
moderate or severe water shortages, and internal environmental disorders cannot be corrected
timely during surgery, renal functions would be impaired. In this study, management proce-
dures of clinical pediatric cardiac perioperative including people (a dedicated team of anesthe-
siologists, surgeons, perfusionists, and nurses), equipments, drugs and supplies were employed,
leading to a high successful rate using infant piglet CPB model. Also, no animal was excluded
or replaced in the study.

HLF bypass strategy is frequently used in complex congenital heart defects surgeries for
infants and children and HLF should be prolonged based on the complexity of defects. In this
study, after 2 hour HLF, acute kidney injury can be happened not only with the increase of
markers as CysC, SCr, BUN in plasma and NAG in urine but also with pathologic damage and
increased apoptosis rate in kidney tissue in the Group C. This indicates a certain kidney injury
accompanied with prolonged HLF in infant piglets, which is consistent with the majority of
similar studies in the literature [14–16]. Among kidney injury markers, SCr and BUN are the
most widely used markers in the last 40 years. CysC is an endogenous cysteine proteinase
inhibitor and is produced by nucleated cells at a constant rate. It is freely filtered, reabsorbed,
and catabolized by the glomeruli, but it is not secreted by the tubules. CysC is a useful detection
marker in acute kidney injury reflecting disease severity, prognosis superior to other markers
such as serum creatinine and blood urea nitrogen [17,18]. NAG is a lysosome hydrolase widely
distributing in various tissues and cells with a molecular weight of approximately 140 kDa
which limits NAG molecules to be filtered through the glomeruli. Urine NAG is a novel indica-
tor more sensitive than SCr which can be used to evaluate an early damage to epithelial cells in
proximal convoluted tubules during the progression of renal diseases and is also an index of
renal tubular damage [19].

Postoperative acute kideny injury is thought to be the consequence of an interplay of differ-
ent pathophysiologic mechanisms. Systemic inflammatory responses, ischemia-reperfusion
and oxidative stress injuries in kidney induced by CPB, and so as the peculiar blood circulation
of kidney, all those factors are considered as relevant determinants of postoperative AKI[6].
During CPB, surgical trauma, organs ischemia-reperfusion and CPB relevant monocyte-mac-
rophages, neutrophils and other inflammatory cells can be recruited and activated, release of
inflammatory cytokines can be induced by blood components contacting with the surfaces of
the artificial heart-lung machine. Inflammation-mediated cytokines interact with inflamma-
tory cells and finally induce inflammatory cascade by amplification reactions trigger systemic
inflammatory response syndrome (SIRS) eventually leading to renal damages [6]. Additionally,
tubular obstruction caused by free hemoglobin results in renal tubular cell necrosis, which
exacerbates the renal injury [20]. Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-
α) are plasma markers of early inflammation response initiating the cascade of activation of
other cytokines in the inflammatory response and final attributing to SIRS [4]. The increasing
extent of IL-6 and TNF-α can reflect serious degrees of kidney injury. In this study, plasma IL-

Fig 3. Typical histological examination results in the three groups. A, Group S, Tubules and glomeruli
appear normal (H&E×400); B, Group C, after 2h CPB, kidney histologic changes include tubular dilatation(*),
vacuole formation(▲), and glomerular over-filling (arrow) appeared obvious (H&E×400); C, Group U, injury
changes of kidney still exist as tubular dilatation(*), vacuole formation(▲), and glomerular over-filling (arrow)
but were milder with intervention of ulinastatin(H&E×400).

doi:10.1371/journal.pone.0144516.g003
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6 and TNF-α increased critically both at 5-min and 120-min after the weaning from CPB, indi-
cating that prolonged HLF cardiac surgery could cause a significant inflammatory reaction.
Ischemia-reperfusion and oxidative stress injury is another mechanism of kidney injury under-
going CPB in combination with systemic inflammatory responses. Target organ's concentra-
tions of MDA and SOD were commonly examined to evaluate the severity of oxidative stress
injury [12]. MDA is an end-product of lipid peroxidation and also an indicator of the extent of
lipid peroxidation as well as the degree of tissue injury induced by oxygen free radicals. SOD is
an oxygen free radical scavenger reflecting the ability of scavenging oxygen free radicals. In this
study, MDA in kidney increased and SOD decreased significantly after HLF, demonstrating
that kidney is one of the severe target organs oxidative stress injured by prolonged HLF.

Ulinastatin is a broad-spectrum hydrolase inhibitor (a molecular weight of 67 000 daltons)
and is purified from fresh urine of healthy men. It can have anti-inflammatory effects by inhib-
iting various inflammatory proteases such as trypsin, chymotrypsin, and neutrophil elastase,
and plasmin [21]. Considering its effective anti-inflammatory effects, and ulinastatin has been
widely used for pancreatitis, rheumatoid arthritis, sepsis, and other inflammatory diseases in
China, Korea, and Japan [21–23]. This study shows that renal injury indicators CysC, SCr, and
BUN in the Group U were lower than those in the Group C, 5 and 120 min weaning from CPB
under the exposure to ulinastatin. Pathological examination also found kidney injury in the
experimental groups was milder than the control group. The results indicate ulinastatin could
protect against acute kidney injury in infant piglets undergoing HLF. Plasma IL-6, TNF-α and
MDA of kidney tissues in the Group U were less than those in the Group C while SOD in the
Group U is more than that in the Group C. The finding indicates ulinastatin can reduce inflam-
mation by inhibiting the release of a variety of inflammatory cytokines, and relieve oxygen free
radical damage caused by ischemia and reperfusion. Furthermore, Nishiyama and colleague's
[24] studies suggest ulinastatin can prevent red blood cells from destructing and reduce free
hemoglobin in blood, resulting in free hemoglobin obstructing renal tubular.

In this study, we found that prolonged HLF could cause actue renal injury, ulinastatin dose-
dependently ameliorated CPB-induced kidney injury, probably mediated by inhibiting inflam-
matory response and oxidative stress.

Limitations
Several limitations exist in this study. Above all, only two indicators of early inflammation (IL-
6 and TNF-α) were tested, upstream factors (eg the related mRNA) and related regulatory fac-
tors (such as NF-κB) were not detected in our study. Therefore, the target link in the inflamma-
tion chain which ulinastatin inhibited and its mechanism remains to further explore. Then,
infant piglets were sacrificed 120min after weaning CPB, long-term effects on renal functions
were not investigated. Additionally, this study was not focused renal vascular permeability.
CPB-induced acute inflammation and renal ischemia-reperfusion injury can increase renal vas-
cular permeability. It is necessary to further test whether ulinastatin's protective effects on kid-
ney are mediated via increasing renal vascular permeability.
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