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Abstract
Malaria, caused by the Plasmodium parasite, remains a serious global public health con-

cern. A vaccine could have a substantial impact on eliminating this disease, alongside other

preventative measures. We recently described the development of three novel, viral vec-

tored vaccines expressing either of the antigens PfUIS3, PfLSA1 and PfLSAP2. Each vacci-

nation regimen provided high levels of protection against chimeric parasite challenge in a

mouse model, largely dependent on CD8+ T cells. In this study we aimed to further charac-

terize the induced cellular immune response to these vaccines. We utilized both the IFNγ

enzyme-linked immunosorbent spot assay and intracellular cytokine staining to achieve this

aim. We identified immunodominant peptide responses for CD4+ and CD8+ T cells for each

of the antigens in BALB/c, C57BL/6 and HLA-A2 transgenic mice, creating a useful tool for

researchers for subsequent study of these antigens. We also compared these immunodo-

minant peptides with those generated from epitope prediction software, and found that only

a small proportion of the large number of epitopes predicted by the software were identifi-

able experimentally. Furthermore, we characterized the polyfunctionality of the induced

CD8+ T cell responses. These findings contribute to our understanding of the immunological

mechanisms underlying these protective vaccines, and provide a useful basis for the

assessment of these and related vaccines as clinical constructs.

Introduction
Malaria, caused by the Plasmodium parasite, remains an infectious disease of global concern
and there is widespread agreement that a vaccine is needed to eliminate this pathogen [1].
Whilst recent results using the pre-erythrocytic sub-unit vaccine RTS,S/AS01 are encouraging
[2], substantial increases in efficacy and durability are still required.
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Research in our laboratory has focused on a viral vectored, prime-boost sub-unit vaccina-
tion approach [3], and we recently demonstrated success using the P. falciparum pre-erythro-
cytic antigens liver-stage antigen 1 (PfLSA1), liver-stage associated protein 2 (PfLSAP2) and
up-regulated in sporozoites 3 (PfUIS3) [4]. We demonstrated that both PfLSA1 and PfLSAP2,
when delivered using the viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vac-
cinia virus Ankara (MVA) with an eight-week interval, could protect 70–87.5% of both inbred
and outbred mice against chimeric P. berghei parasites expressing the cognate P. falciparum
antigen. Whilst PfUIS3 did not deliver such high levels of sterile efficacy when delivered in the
same viral vectors, it provided a significant delay in the time to patent parasitaemia, equal to
that of P. falciparum circumsporozoite protein (CSP) (the antigen targeted by RTS,S
vaccination).

We further determined that the presence of CD8+ T cells was crucial for protection [4]; the
induction of exceptionally high CD8+ T cell responses is a key feature of this prime-boost
approach [5–7]. It has long been known that cellular responses against the liver-stage are essen-
tial for protection induced by irradiated sporozoite vaccines [8–11], arguably the most success-
ful vaccination regimen against P. falciparum developed so far. However, the actual
mechanism by which these CD8+ T cells provide protection is still largely unknown [12].

In this study we therefore aimed to further investigate the cellular immunological response
induced by these vaccines. We sought to identify the immunodominant peptide responses in
BALB/c and C57BL/6 mice to allow future studies of the specific T cells involved in protection
and to allow the design of epitope-based vaccines. A model was also available to assess the pres-
ence of HLA-A2-restricted responses within these antigens: transgenic mice expressing human
leukocyte antigen A2 (HLA-A2) [13]. HLA-A2 is a common major histocompatibility complex
type in the general human population [14], and hence finding an HLA-A2-restricted response
would suggest a high likelihood of immunogenicity in humans and facilitate immune-monitor-
ing in clinical trials of vaccines expressing these antigens. Furthermore, we wanted to assess the
polyfunctionality of the induced immune response, by assessing the populations of cytokines
secreted from antigen-specific T cells: the polyfunctionality, or strictly monofunctionality, of
CD8+ T cell responses have been correlated with vectored vaccine efficacy in controlled human
malaria infection phase II efficacy trials [15].

We present in this study immunodominant peptide responses to these antigens in mice, and
data showing most cells induced were polyfunctional, producing both interferon-gamma
(IFNγ) and tumor necrosis factor-alpha (TNFα). These findings contribute not only to our
understanding of the immunological mechanisms of these newly developed vaccines, but also
provide a useful tool for subsequent research in the form of identified immunodominant
regions.

Materials and Methods

Animals
Female BALB/c and C57BL/6 mice, of at least six weeks of age, were purchased from Harlan,
UK. A breeding pair of HLA-A2 transgenic (tg) mice [13] was kindly provided by Vincenzo
Cerundolo (Weatherall Institute of Molecular Medicine, Oxford) and this strain was then bred
in-house.

Ethics statement
All animal work was conducted in accordance with the UK Animals (Scientific Procedures)
Act 1986 and approved by the University of Oxford Animal Care and Ethical Review Commit-
tee for use under Project License PPL 30/2414 or 30/2889. Animals were group housed in
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individually ventilated cages under specific pathogen free conditions, with constant tempera-
ture, humidity and with a 12:12 light-dark cycle (8am to 8pm). For induction of short-term
anaesthesia, animals were anaesthetized using vaporized IsoFlo. All animals were humanely
sacrificed at the end of each experiment by an approved Schedule 1 method (cervical disloca-
tion). All efforts were made to minimize suffering.

Genotyping of HLA-A2 transgenic mice
To confirm expression of the human HLA-A2 gene, DNA was extracted from ear punch biop-
sies by incubation in 50mM Tris pH 8, 2mMNaCl, 10mM EDTA, 1% SDS and 1mg/ml pro-
teinase K in dH2O for 40 minutes at 55°C prior to heat inactivation of proteinase K at 99°C for
five minutes. PCR was performed using Reddymix PCR Mastermix (Thermo Fisher Scientific,
USA), according to the manufacturer’s instructions. Primers were designed using the online
software program Primer3 [16] for HLA-A2, H-2D and human and mouse beta-2 microglobu-
lin (β2m) (S1 Table). Control DNA was collected from the HepG2 cell line (HLA-A2) and
C57BL/6 mice (H-2Db). Genotyping results indicated expression of HLA-A2 and mouse β2m
and the ability to mount a HLA-A2 restricted response was confirmed by vaccination of mice
with MVA NP+M1 [17] and detection of a strong response to an Influenza A HLA-A2-res-
tricted epitope [18, 19] (S1 Fig).

Vaccines, immunizations and antigens used for in vitro restimulation
The generation of the ChAd63 and MVA vectored vaccines containing either of the inserts
PfUIS3, PfLSA1 and PfLSAP2 has previously been described in detail [4]. Mice were immu-
nized intramuscularly (i.m.) into the musculus tibialis with a total volume of 50μl vaccine
administered in endotoxin free D-PBS, with doses stated in the relevant figure legends. To
measure the immune response in the various cellular immunoassays described below, cells
were restimulated in vitro with a single peptide pool to the appropriate P. falciparum 3D7 anti-
gen encompassing synthetic crude 20mers overlapping by ten amino acids (peptides synthe-
sized by Neo Group Inc., USA, or Thermo Fisher Scientific). In the epitope mapping
experiments single 20mer peptides were used. All peptide sequences are provided (see S2–S4
Tables).

Spleen ex vivo IFNγ enzyme-linked immunosorbent spot (ELISpot)
assay
Splenocytes were treated with ammonium-chloride-potassium (ACK) lysis buffer followed by
stimulation for 18–20 hours with a final concentration of 1μg/ml of the appropriate peptide
pool, or single peptide, in MAIP ELISpot plates (Mabtech, Sweden). IFNγ ELISpots were per-
formed as previously described [20] using coating and detecting antibodies from MabTech.
Spots were enumerated using an ELISpot plate counter (AID, Germany) and expressed as the
number of spot forming units (SFU) per million splenocytes, after background subtraction
from wells containing media and no peptide.

Intracellular cytokine staining (ICS)
For intracellular cytokine staining, splenocytes were prepared as above or blood was lysed with
ACK lysis buffer to isolate the peripheral blood mononuclear cells, followed by stimulation for
six hours with a final concentration of 5μg/ml of the appropriate peptide pool, 1μg/ml Brefel-
din A (BD Biosciences, UK) and anti-mouse CD107a-PE (clone 1D4B, eBioscience, UK). Cells
were subsequently surface stained with anti-mouse CD16/32 (Fc block, clone 93, BD

Immunodominant Responses to the Antigens PfUIS3, PfLSA1 and PfLSAP2

PLOSONE | DOI:10.1371/journal.pone.0144515 December 11, 2015 3 / 14



Biosciences), anti-mouse CD4-eFluor1 450 (clone RM4-5, eBioscience) and anti-mouse
CD8α-PerCPCy5.5 (clone 53–6.7, BD Bioscience) followed by fixation with 10% neutral buff-
ered formalin solution containing 4% paraformaldehyde (Sigma Aldrich, UK). Staining of
intracellular cytokines was achieved using anti-mouse TNFα-FITC (clone MP6-XT22, BD Bio-
sciences), anti-mouse interleukin 2 (IL-2)-PeCy7 (clone JES6-5H4, BD Biosciences) and anti-
mouse IFNγ-APC (clone XMG1.2, eBioscience) diluted in Perm/Wash buffer (BD Biosci-
ences). Data were acquired using a LSRII flow cytometer (BD Biosciences) and analysed using
FlowJo (Tree Star Inc.).

Polyfunctionality analysis
Polyfunctionality of T cells was analysed using the Boolean gate platform in FlowJo followed
by subsequent preparation of data in Pestle (Mario Roederer, National Institutes of Health) for
final analysis and graphical representation in SPICE (simplified presentation of incredibly
complex evaluations, Mario Roederer [21]).

Predicted epitopes
T cell epitopes within the three antigen sequences were predicted using two different servers:
SYFPEITHI and the immune epitope database (IEDB). The strong H-2d-restricted epitope Pb9
from P. berghei CSP [22] was used as a comparison for epitope strength. Using SYFPEITHI,
the higher the score the greater the likelihood the peptide is processed and presented, based on
binding motifs [23]. Pb9 was given a score of 32. IEDB employs a consensus approach (com-
bining ANN [24, 25], SMM [26] and CombLib [27]) to determine the likely ability of the
sequence to bind MHC Class I molecules and the score is given as a percentile rank [28]. A
small percentile rank indicates high affinity; Pb9 was given a percentile rank of 0.1. For pre-
dicted CD4+ epitopes IEDB also uses a consensus approach to combine different methods and
the score is again given as a percentile rank, comparing the peptides average score of four
methods against 5 million random 15mers selected from the SWISSPROT database [29, 30].
These predictions were made on the 23rd and 25th March 2015.

Statistical analysis
The statistical software Prism version 5 (Graphpad, USA) was used for all analyses. Non-
parametric data are shown as the median with individual data points plotted, unless otherwise
indicated. A p value of less than 0.05 was considered significant.

Results and Discussion

Immunodominant responses to PfUIS3, PfLSA1 and PfLSAP2
For each antigen, immunodominant peptides were first identified by IFNγ ELISpot using sple-
nocytes from mice vaccinated with the ChAd63-MVA regimen, as described in the Materials
and Methods. To determine whether the identified immunodominant peptides elicited primar-
ily CD4 or CD8 responses, mice were vaccinated with ChAd63 only and responses in the spleen
measured by ICS.

For PfUIS3, two peptides were identified that could be broadly recognized, as positive
responses were seen in each strain of mice, representing amino acids (aa) 51 to 80 (labeled as
number 6 and 7, Fig 1). The immunodominant response in BALB/c was elicited by peptide 20,
aa191-210, along with five sub-dominant responses (including peptides 6 and 7). For BALB/c,
peptides 20 and 21 elicited strong CD8+ responses, whereas peptide 6 elicited a weaker CD4+

response (Fig 1A). The immunodominant response in C57BL/6 mice was to peptide 18, aa171
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to 190, and in HLA-A2 tg mice it was to peptide 21, aa201 to 220. For C57BL/6, peptides 6 and
7 elicited CD4+ responses, whilst the immunodominant peptide 18 was CD8+ (Fig 1B). This
appears to be the first report of identification of immunodominant regions of PfUIS3. This
finding warrants further investigation to determine whether the conserved responsive region
contains a single epitope, and whether this epitope is, or epitopes are, protective, given protec-
tion was dependent on a cellular response [4].

For PfLSA1, immunodominant responses were only mapped in BALB/c and HLA-A2 tg
mice as PfLSA1 is not immunogenic in C57BL/6 [4, 31, 32]. Immunodominant responses in

Fig 1. Immunodominant responses to PfUIS3. (A) BALB/c, (B) C57BL/6 or (C) HLA-A2 tg mice (n = 4 per strain) were vaccinated i.m. with 1x108 infectious
units (ifu) ChAd63-PfUIS3 followed eight weeks later by 1x106 plaque forming units (pfu) MVA-PfUIS3. Two weeks post-MVA boost, mice were sacrificed
and splenocytes isolated to perform an ex vivo IFNγ ELISpot. Splenocytes were stimulated with either an overlapping peptide pool to PfUIS3 or individual
peptides (20aa each, overlapping by ten). Both median and individual data points are shown. For (A) BALB/c and (B) C57BL/6, CD4+ and CD8+ epitopes
were also determined (right panel). Two weeks post-ChAd63 (n = 4 per strain), splenocytes were isolated and incubated with the appropriate peptide for six
hours prior to ICS staining. Box plots show the percentage IFNγ+ of CD4+ or CD8+ cells, with whiskers representing the maximum and minimum.

doi:10.1371/journal.pone.0144515.g001
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BALB/c mice were identified to peptides 20 (aa918 to 937) and 40 (aa1118 to 1137), with three
further subdominant responses (Fig 2A). Using ICS staining, peptides 20, 31 and 32 were
found to elicit CD8+ responses whilst peptide 40 was shown to be CD4+ (Fig 2A). A version of
PfLSA1 has previously been mapped; this vaccine is a 456aa polypeptide containing the N and
C terminal regions, and two slightly differing copies of the 17aa repeats, the entirety known as
FMP011 [31]. The immunodominant regions mapped were essentially the same as those cur-
rently identified. Our peptide 40 contains the sequence EKFIKSLFH, which Brando and col-
leagues identified to be the most immunogenic by IFNγ ELISpot. Brando and colleagues did
not identify the other major responsive region we identified, as this region (aa918 to 937) was
not included in their vaccine construct. This was the most immunogenic region identified in
our study, and importantly elicited a CD8+ response. The lack of clinical efficacy of the protein
in adjuvant vaccine studied by Brando and colleagues likely related to the lack of CD8+ T cell
induction in their clinical trial [33]. The other epitopes identified in FMP011 constituted
minor responsive regions in our vaccine construct (peptides 42 and 38). ChAd63-MVA
PfLSA1 was found to be non-immunogenic in HLA-A2 tg mice (Fig 2B).

PfLSAP2 is a relatively recently identified liver-stage antigen [34], and our previous work
constituted the first assessment of this antigen as a vaccine candidate [4]. Hence, this is the first
time this antigen has been mapped for immunogenic regions. We identified one immunodomi-
nant response in BALB/c mice to peptide 28, aa241 to 260 (Fig 3A). ICS staining this peptide
showed it to be MHCI-restricted (CD8+ T cell response). Of the minor immunodominant
regions, peptide 23 was also CD8+ whereas peptides 22 and 32 were CD4+. Two

Fig 2. Immunodominant responses to PfLSA1. (A) BALB/c or (B) HLA-A2 tg mice (n = 5) were vaccinated i.m. with 1x108 ifu ChAd63-PfLSA1 followed
eight weeks later by 1x107 pfu MVA-PfLSA1. Two weeks post-MVA boost, mice were sacrificed and splenocytes isolated to perform an ex vivo IFNγ ELISpot.
Splenocytes were stimulated with either an overlapping peptide pool to PfLSA1 or individual peptides (20aa each, overlapping by ten). Both median and
individual data points are shown. For (A) BALB/c, CD4+ and CD8+ epitopes were also determined (right panel). BALB/c mice (n = 4) were vaccinated with
1x108 ifu ChAd63-PfLSA1 and two weeks later sacrificed and splenocytes isolated. Cells were incubated for six hours with the relevant peptide prior to ICS
staining. Box plots show the percentage IFNγ+ of CD4+ or CD8+ cells, with whiskers representing the maximum and minimum.

doi:10.1371/journal.pone.0144515.g002
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immunodominant peptides were identified in C57BL/6 mice, peptides 10 and 11, covering
aa61 to 90 (Fig 3B). Both peptides were MHCI-restricted. An immune response was also
induced in HLA-A2 tg mice, with the immunodominant response to peptide 7, aa31 to 50
(Fig 3C).

For each of the three vaccines, the identified immunodominant responses represent not
only a potential mechanism of protection, but also provide a new resource for others assessing
the immune response to these antigens. The immunodominant peptide sequences and MHCI/

Fig 3. Immunodominant responses to PfLSAP2. (A) BALB/c (n = 3), (B) C57BL/6 (n = 4) or (C) HLA-A2 (n = 4) mice were vaccinated i.m. with 1x108 ifu
ChAd63-PfLSAP2 followed eight weeks later by 1x107 pfu MVA-PfLSAP2. Two weeks post-MVA boost, mice were sacrificed and splenocytes were isolated
to perform an ex vivo IFNγ ELISpot. Splenocytes were stimulated either with an overlapping peptide pool to PfLSAP2 or individual peptides (20aa each,
overlapping by ten) covering the entire sequence. Both median and individual data points are shown. For (A) BALB/c and (B) C57BL/6, CD4+ and CD8+

epitopes were also determined (right panel). Two weeks post-ChAd63 (n = 4 per strain), splenocytes were isolated and incubated with the appropriate
peptide for six hours prior to ICS staining. Box plots show the percentage IFNγ+ of CD4+ or CD8+ cells, with whiskers representing the maximum and
minimum.

doi:10.1371/journal.pone.0144515.g003
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MHCII-restriction are listed in Table 1. Whilst we performed epitope mapping using overlap-
ping peptides of 20aa in length, the optimal length for class I binding peptides is generally
accepted to be 8-10aa and for class II 12-24aa. Therefore to identify the minimal epitopes and
to determine the true magnitude of the induced response [35], further high-resolution map-
ping will be required.

Comparison to epitope prediction software
We next compared the dominant immunogenic peptides identified through our ELISpot
experiments to those predicted using two common epitope prediction servers, SYFPEITHI and
IEDB (Table 2). Only two of the seven peptides (peptide 18 from PfUIS3 for H-2b, and peptide
20 from PfLSA1 for H-2d) received a high score from both prediction servers. The remaining
dominant peptides were not predicted with high strength. Furthermore, of the top 3 epitopes
predicted for each antigen at each MHC haplotype (H-2d, H-2b and HLA-A2) by the servers,

Table 1. Top immunodominant peptides andMHCI/MHCII-restriction.

Antigen Strain Peptide Sequence CD4+ or CD8+

PfUIS3 BALB/c p6 AIEEHNKRKKLIYYSLIASG CD4

p20 GLQENRNISLSKYQENKAVM CD8

p21 SKYQENKAVMDLKYHLQKVY CD8

C57BL/6 p6 AIEEHNKRKKLIYYSLIASG CD4

p7 LIYYSLIASGAIASVAAILG CD4

p18 SNDQKDSHVNNMEYMQKFVQ CD8

PfLSA1 BALB/c p20 SENERGYYIPHQSSLPQDNR CD8

p31 EEEDDEDLDEFKPIVQYDNF CD8

p32 FKPIVQYDNFQDEENIGIYK CD8

p40 KNDKQVNKEKEKFIKSLFHI CD4

PfLSAP2 BALB/c p23 WHYSHSLLRDKFNKMKSSLW CD8

p28 ELLIKEHDDYNSIYNYINNE CD8

p32 FTMETFIKCKISLENNMRNV CD4

C57BL/6 p10 LIQNILLSNVSLISGSHLYK CD8

p11 SLISGSHLYKRNSRKFAEGY CD8

doi:10.1371/journal.pone.0144515.t001

Table 2. Immunodominant regions and the accuracy of epitope prediction servers.

Antigen MHC Dominant peptide sequencea SYF.b IEDB (I)c IEDB (II)d

PfUIS3 H-2d GLQENRNISLSKYQENKAVM <20 13 11.23

H-2b SNDQKDSHVNNMEYMQKFVQ 28 0.2 >50

HLA-A2 SKYQENKAVMDLKYHLQKVY 23 3 N/A

PfLSA1 H-2d SENERGYYIPHQSSLPQDNR 27 0.3 40.49

PfLSAP2 H-2d ELLIKEHDDYNSIYNYINNE 23 0.7 73.06

H-2b LIQNILLSNVSLISGSHLYKRNSRKFAEGY 25 0.4 27.70

HLA-A2 KKEKIKCGTFFGYIFLSKFM <20 3.45 N/A

a Dominant peptide identified in the ELISpot mapping assay.
b Score given by SYFPEITHI prediction server.
c Percentile rank given by IEDB MHC Class I binding server.
d Percentile rank given by IEDB MHC Class II binding server.

doi:10.1371/journal.pone.0144515.t002
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only a limited number were found to be immunogenic peptides in vivo (26% for SYFPEITHI,
19% for IEDB MHC Class I and 50% for IEDBMHC Class II) (S5–S7 Tables). Whilst the lim-
ited ability of the prediction server to identify our dominant peptides and choose immunogenic
targets is perhaps not surprising [36], we only studied three antigens and used just two servers.
Incorporating more predictions to create a more stringent definition of a ‘predicted epitope’
could result in greater success (reviewed in [37]), but our results do show the benefit of full
experimental peptide mapping to clearly define immunodominant regions.

Polyfunctionality of the immune response
It was also of interest to assess the polyfunctionality of the induced immune responses in
BALB/c mice, given each vaccine provided some degree of protection in this strain. We found
for both PfUIS3 and PfLSA1 (Fig 4A and 4B) that approximately one-third of antigen-specific
CD8+ T cells were dual cytokine producers in the blood after ChAd63 vaccination (primarily
IFNγ and TNFα), whilst after the MVA boost this increased to approximately 50% in the blood
and 75% in the spleen. For PfLSAP2 vaccination (Fig 4C), the overall response was lower and
the majority of antigen-specific CD8+ T cells were single cytokine producers (IFNγ or TNFα)
following both the prime and the boost.

In previous studies, the contributions of monofunctional or polyfunctional T cells to immu-
nity against malaria has not been clear; polyfunctional cells have been associated with induc-
tion of protective immunity after vaccination with sporozoites under chloroquine cover [38,
39], whilst monofunctional CD8+ T cells secreting IFNγ have correlated with protective immu-
nity in studies using viral vectors expressing the antigen thrombospondin-related adhesion
protein (TRAP) administered with a multiple-epitope string (known as ME-TRAP) [6, 15].
Furthermore, whilst correlates of protection were not identified in the recent irradiated sporo-
zoite vaccination study, the CD8+ T cells induced in protected volunteers only secreted IFNγ
[40]. Together with our current data, this suggests that different correlates or mechanisms of
protection will likely exist depending on the vaccination strategy and antigen/s used. Whilst we
were not able to identify specific functional correlates of protection for our vaccines [4], these
findings further expand our knowledge of the immunological profile of these vaccines, which
may assist in the identification of such correlates in future studies.

Conclusions
In conclusion, this paper presents a detailed immunological analysis of the protective antigens
PfLSA1, PfLSAP2 and PfUIS3. Immunodominant peptides were identified for all antigens
delivered in the viral vectored prime-boost regimen, in multiple strains of mice for both
PfUIS3 and PfLSAP2 and in BALB/c for PfLSA1. PfLSA1 is not immunogenic in C57BL/6
mice, as previously described [31, 32], and whilst no HLA-A2 responses were identified,
responses to this antigen in humans have been previously described [41]. The identification of
these immunodominant responses provides a useful tool for subsequent studies on these

Fig 4. Polyfunctionality of CD8+ T cells induced by ChAd63-MVA vaccination in BALB/c mice. BALB/c
mice (n = 4) were vaccinated with ChAd63-MVA (A) PfUIS3, (B) PfLSA1 or (C) PfLSAP2, as previously
described. Two weeks post-ChAd63 prime and one-week post-MVA boost blood was taken and cellular
immunogenicity assessed by ICS, after stimulation for six hours with an overlapping peptide pool to the
appropriate antigen. Two weeks post-MVA boost mice were sacrificed, spleens harvested and cellular
immunogenicity again assessed by ICS. The proportion of cells at each time-point expressing one, two or
three cytokines is shown. The bar chart indicates which cytokines were produced, whilst the slices of the pie
chart indicate the proportion of cells producing one (purple), two (orange) or three (black) cytokines.

doi:10.1371/journal.pone.0144515.g004
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antigens or vaccines. Furthermore, we clarified the immunological profile of these vaccines in
terms of polyfunctionality of CD8+ T cells induced in the blood and the spleen.
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S1 Fig. HLA-A2 mice elicit an immune response to the HLA-A2-restricted Influenza A epi-
tope not seen in the background C57BL/6 strain. Female HLA-A2 tg and C57BL/6 mice
(n = 4 per strain) were vaccinated intramuscularly with 1x106 pfu MVA expressing the Influ-
enza A nucleoprotein (NP) and matrix protein 1 (MP1) [17] and sacrificed twelve days later.
Immune responses to the Influenza A virus were measured by ex vivo spleen IFNγ ELISpot.
Splenocytes were stimulated with either overlapping peptides to NP+M1 split into three pools
(80 peptides total, pool 1 1–26, pool 2 27–52, pool 3 54–80) or the HLA-A2-restricted epitope
(located in M1, amino acids 58–66 [18, 19]). Results are expressed as SFU per million spleno-
cytes. Median and individual data points are shown.
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