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Abstract

Purpose

To assess and compare choroidal thickness changes related to aging, we determined

whether changes are due to thinning of the choriocapillaris plus Sattler's (CS) layer and/or

the large vessel layer in healthy eyes using swept-source optical coherence tomography

(SS-OCT) at a wavelength of 1,050-nm.

Methods

We studied 115 normal eyes of 115 healthy volunteers, all with refractive errors of less than

-6 diopters. All 115 eyes underwent analysis of choroidal thickness at the fovea, the CS

layer and the large choroidal vessel layer. In 68 of the 115 eyes, choroidal thickness was

determined at five sites (the fovea, and superior, inferior, nasal, and temporal sites) using

SS-OCT with an Early Treatment of Diabetic Retinopathy grid scan.

Results

Total choroidal thicknesses at each of the five sites were related to subject age (P<0.0001).

The choroid was thinnest at the nasal site, followed by the temporal, inferior, superior and

finally the subfoveal site itself. The total choroidal thickness at the nasal site was signifi-

cantly less than those at the other four sites (p<0.05). The CS layer showed thinning which

correlated with age (P<0.0001). The thickness of the choroidal large vessel layer also

decreased with age (p = 0.02). Subfoveal choroidal thickness was calculated as follows:

443.89–2.98×age (μm) (P<0.0001).

Conclusion

Subfoveal choroidal thickness decreases by 2.98 μm each year. Total choroidal thickness

diminishes with age. The CS and large vessel layers of the choroid at the subfovea showed

significant decreases, though only the former correlated strongly with age.
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Introduction
The choroid contains a large number of blood vessels, pigments, and immune system compo-
nents. The choroid absorbs light, supplies oxygen, and provides nourishment to protect the ret-
ina. However, the choroid is also the site of many pathological processes such as inflammation,
ischemia and neovascularization. Optical coherence tomography (OCT), which became avail-
able in the late 1990s, allows non-invasive observations of the ocular fundus. Most recent oph-
thalmological studies have used OCT as a routine medical examination along with standard
visual acuity testing. Time-domain OCT with an 820nm wavelength and 400 A-scans/sec rep-
resents a major advancement in the quality of OCT imaging as it allows better visualization of
the retina. Spectral-domain (SD) OCT, providing in excess of 40,000 A-scans/sec, allows even
more precise assessment of retinal structure, comparable to that of a histopathological speci-
men. Even SD-OCT is not, however, sufficient for detailed observations of the choroid.

Spaide et al. [1] reported the enhanced depth imaging (EDI)-OCT method based on
SD-OCT, which enabled the chorioscleral border to be detected. However, clear choroidal
images cannot be obtained in some cases, due to obscuring of the outer boundary of the cho-
roid when the Heidelberg EDI-OCT device is employed [2,3]. Recently, swept-source (SS)-
OCT with a wavelength of 1,050 nm and 100,000A-scans/sec has allowed in depth visualization
of the eye from the retina to the sclera even in patients with moderate to severe cataracts, as
well as during eye blinking and/or ocular movement. Therefore, SS-OCT provides clear, sharp
images of the choroid. There are many reports describing overall choroidal thickness as
decreasing with age [4–10], while no differences have been detected among sites in the healthy
eye [5–10].

Branchini et al. [11] reported on the choroidal vasculature of healthy eyes, describing large
choroidal vessel layer thickness and medium choroidal vessel layer/choriocapillaris layer thick-
ness values obtained using spectral-domain OCT with an 840 nm wavelength. Esmaeelpour
et al. [12] determined Sattler's and Haller's layer thicknesses using 3-dimensional 1060-nm
OCT with an automatic measurement function. However, their method was used without
determining the border between Sattler’s and Haller’s layers and may not be feasible. In our
view, only manual measurements allow Sattler's and Haller's layers to be clearly distinguished.

Neither of these prior reports examined, or even took into consideration, the age-change
correlation with choroidal thickness. Therefore, using SS-OCT, we investigated choroidal
thickness (choriocapillaris plus Sattler's (CS) layer and/or large vessel layer) in relation to age.
We manually measured layer thicknesses, to obtain clear images and to derive formulas that
would allow us to calculate thickness based on OCT data.

We assessed choroidal thinning using SS-OCT manually to assure clear measurements, in
relation to age decades, in order to determine whether the CS and/or the large vessel layer con-
tributes to the widely recognized decrease in the thickness of the choroidal layer with advanc-
ing age. We also endeavored to clarify the etiology of choroidal thinning.

Materials and Methods
Between September 2013 and August 2014, healthy patients were recruited for this study. All
subjects were at least 21 years of age and had normal eyes. None had visual symptoms or a his-
tory of ocular disease. The only inclusion criterion was refractive error less than -6 diopters
(D). This criterion was applied to eliminate the potential effects of axial length and high myo-
pia [13]. Participant details are presented in Tables 1 and 2.

The institutional review board of Nihon University Hospital, Tokyo, Japan, deemed
approval to be unnecessary for this study (Waiver of approval the consent process form). For
this study, we recruited volunteers, who visited our hospital to undergo periodic eye
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examinations, obtaining verbal consent without a signature in all cases. Furthermore, all partic-
ipants had the right to opt-out of the study. If the volunteers agreed to participate in this study,
they did not need to sign a consent form. If a volunteer decided to drop out of the study, we
requested that they sign a consent form to opt-out of the study.

We chose 115 eyes (62 males, 53 females) for analysis of the thickness of each subfoveal
layer (the CS layer and the large vessel layer) as the primary endpoint. Out of these 115 eyes,
we chose 68 (34 males, 34 females) eyes for subgroup analysis of choroidal thickness in five
areas (at the fovea itself, and at the sites superior, inferior, nasal, and temporal to the fovea).

We examined only one eye, mainly the right eye, in each subject to eliminate individual vari-
ation. However, if the right met any of our exclusion criteria, we studied the left eye instead.

It is necessary to measure all 512 (horizontal) and 64 (vertical) lines clearly when measuring
mean choroidal thicknesses of the five aforementioned areas. If even one slice is missing, due
to blinking, the mean choroidal thickness value will not be accurate. Therefore, five of the 68
eyes were excluded from the analysis of choroidal thickness due to blinking during the exami-
nation. There are no effects of blinking on choroidal thickness at the fovea.

We performed horizontal and axial scans and three-dimensional analysis of a 6 by 6 mm
area at the center of the fovea using SS-OCT (Topcon Corp., Tokyo, Japan). The three-dimen-
sional images were obtained with SS-OCT using raster scans of 512 (horizontal) and 64 (verti-
cal) lines. The A-scan value per dataset (total 32,768 axial scans) was 0.8 seconds. Choroidal
thickness and the chorioscleral border were measured manually with a built-in caliper (Y.W.),
according to Rhaman et al [14]. In each case, choroidal thickness was measured from the bot-
tom of the hyper-reflective line of the retinal pigment epithelium (RPE) to the chorioscleral
border.

Choroidal thickness was measured at the fovea and at each of the other four sites (superior,
inferior, nasal, and temporal to the fovea) 3mm from the fovea for each age decade employing
the Early Treatment Diabetic Retinopathy Study (ETDRS) grid (Fig 1). The mean choroidal

Table 1. Age and number of eyes by age decade at each site.

Age decade (years) Mean age (years) Number of eyes (subjects)

21–29 26.3±3.1 9 (9)

30–39 35.4±3.7 9 (9)

40–49 44.2±2.8 18 (18)

50–59 54.6±2.7 18 (18)

60–69 64.4±2.8 28 (28)

70–79 73.4±3.0 24 (24)

80–85 81.2±1.7 9 (9)

doi:10.1371/journal.pone.0144156.t001

Table 2. Age and number of eyes by age decade in each area.

Age decade (years) Mean age (years) Number of eyes (subjects)

21–29 26.3±3.1 9 (9)

30–39 35.2±1.9 6 (6)

40–49 44.1±3.1 10 (10)

50–59 54.4±2.6 11 (11)

60–69 63.6±2.5 14 (14)

70–79 73.5±3.2 12 (12)

80–85 81.5±2.1 6 (6)

doi:10.1371/journal.pone.0144156.t002
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thickness within the ETDRS grid was averaged by SS-OCT automatically. The ETDRS grid
consists of three circles; the outermost circle has a radius of 3 mm, the second circle of 1.5 mm,
and the innermost circle of 0.5 mm.

We defined “site” as a pin-point portion of the retina and used the term “area” for the
broader portion. We defined the superior area as the total of the outer and inner superior areas

Fig 1. The choriocapillaris plus Sattler’s (CS) layer and the choroidal large vessel layer. (A-D) Choroidal thickness of each layer. The bold yellow arrow
indicates the choriocapillaris plus Sattler’s layer, the bold blue arrow the choroidal large vessel layer. Total subfoveal choroidal thickness is the sum of these
two layers (between the yellow and blue arrows). (B1) The green line represents the bottom of the RPE, the two yellow arrows the thickness of the subfoveal
choroid. (B2) This image is the expanded image of the yellow square portion of B1. (E) Early Treatment Diabetic Retinopathy Study (ETDRS) macular map
sectors. The central area represents the fovea. Mean macular thickness was calculated for the superior (S), inferior (I), temporal (T), and nasal (N) areas, all
for diameters of 1 mm, 3 mm, and 6 mm. We defined ‘C’ as the “mean foveal choroidal thickness area”, and each of the other four areas as follows: ‘S1
+S2 = mean superior choroidal thickness area’, ‘I1+I2 = mean inferior choroidal thickness area’, ‘N1+N2 = mean nasal choroidal thickness area’, and ‘T1
+T2 = mean temporal choroidal thickness area’.

doi:10.1371/journal.pone.0144156.g001
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as well as those of the inferior, nasal, and temporal areas (Fig 1). The average choroidal thick-
ness (6,872mm2, 6,255 measured points) was calculated for each of the four areas. The foveal
area was taken to be that surrounded by the innermost circle (0.785mm2, 715 measured values)
and its average thickness was calculated.

Chan-Ling et al. reported that the undifferentiated human’s capillary plexus forms first and
that the layers of larger vessels form thereafter [15], and calponin was expressed only on large
vessels [16]. From these reports, based on immunohistochemical observations, we can reason-
ably speculate that there are differences between the CS and large choroidal vessel layers.
Therefore, we investigated the CS and large choroidal layers. We defined the CS layer as start-
ing just below the RPE line and extending to the upper border of the hypo-reflective large tubu-
lar structure area (choroidal large vessel layer), as in a previous report (Fig 1) [11].

Items investigated
The following items were investigated; subfoveal choroidal thickness and the choroidal thick-
nesses at the aforementioned four sites 3mm from the fovea for each age decade and each eye,
as well as the mean choroidal thickness at each of these five areas. The thicknesses of the subfo-
veal CS layer and the large vessel layer were also determined (Fig 1).

Statistical Analysis
The relationships between age and choroidal thicknesses were evaluated using regression mod-
els and regression coefficients. For the comparisons among choroidal thicknesses adjusted for
age, a mixed model was applied, and we evaluated the differences of choroidal thickness and
the distance between regression lines. The statistical power was 0.493, which was calculated
based on a previous report, employing a distance of ‘23 μm’ for our 68 subjects (significance
level of 0.05) [14]. We defined statistically significant differences as having a value of p<0.05.
SAS version 9.3 was used for all statistical analyses.

Results
The subfoveal choroidal thickness and those at the four sites 3mm from the fovea are shown in
Table 3 and Fig 2.

Mean choroidal thicknesses of each of the five sites (Table 3)
Subfoveal choroidal thickness. Mean choroidal thickness values (±SD) for each age

decade were; 20s: 336.33±52.38 μm, 30s: 377.67±117.86 μm, 40s: 345.44±57.78 μm, 50s: 286.88
±83.01 μm, 60s: 208.50±59.43 μm, 70s: 230.62±69.57 μm, and 80s: 215.00±68.69 μm.

These data confirm a significant linear correlation between subfoveal choroidal thickness
and age (p<0.0001). The regression formula is: macular choroidal thickness (μm) = 443.89–
2.98×age (p<0.0001). Mean subfoveal choroidal thickness decreased by 2.98 μm per year.

Superior site. Mean choroidal thickness values (±SD) at the site superior to the fovea for
each age decade were; 20s: 300.22±50.79 μm, 30s: 308.17±68.86 μm, 40s: 327.69±63.84 μm, 50s:
259.87±76.08 μm, 60s: 211.50±89.20 μm, 70s: 208.64±76.25 μm, and 80s: 191.17±51.88 μm.

There was a linear relationship between superior site choroidal thickness and age. The
regression formula is: superior choroidal thickness (μm) = 396.36–2.52×age (p<0.0001). Mean
choroidal thickness at the superior site decreased by 2.52 μm per year.

Inferior site. Mean choroidal thickness values (±SD) at the site inferior to the fovea for
each age decade were; 20s: 289.50±62.61 μm, 30s: 286.25±73.83 μm, 40s: 310.94±78.98 μm, 50s:
237.60±78.12 μm, 60s: 185.93±80.23 μm, 70s: 185.36±59.77 μm, and 80s: 133.33±41.25 μm.
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There was a linear relationship between choroidal thickness at the inferior site and age. The
regression formula is: inferior choroidal thickness (μm) = 396.66–2.99×age (p<0.0001). Mean
choroidal thickness at the inferior site decreased by 2.99 μm per year.

Nasal site. Mean choroidal thickness values (±SD) at the nasal site for each age decade
were; 20s: 181.67±35.17 μm, 30s: 178.50±53.52 μm, 40s: 183.19±48.81 μm, 50s: 145.00
±46.33 μm, 60s: 110.64±50.38 μm, 70s: 101.82±42.08 μm, and 80s: 117.17±46.45 μm.

Table 3. Mean choroidal thicknesses at each of the five sites.

Age No. of eyes Subfoveal Site Superior Site Inferior Site Nasal Site Temporal Site

20s 9 336.33±52.38 300.22±50.79 289.50±62.61 181.67±35.17 312.17±50.80

30s 9 377.67±117.86 308.17±68.86 286.25±73.83 178.50±53.52 268.25±73.82

40s 18 345.44±57.78 327.69±63.84 310.94±78.98 183.19±48.81 259.13±55.64

50s 18 286.88±83.01 259.87±76.08 237.60±78.12 145.00±46.33 209.93±54.79

60s 28 208.50±59.43 211.50±89.20 185.93±80.23 110.64±50.38 191.79±79.52

70s 24 230.62±69.57 208.64±76.25 185.36±59.77 101.82±42.08 184.45±50.71

80s 9 215.00±68.69 191.17±51.88 133.33±41.25 117.17±46.45 153.00±45.14

Total 115

doi:10.1371/journal.pone.0144156.t003

Fig 2. Choroidal thicknesses at five measurement sites by age. Scatterplot for age and choroidal thickness at each site, as measured at a single point,
are shown. There is a negative correlation between age and choroidal thickness, and the nasal site of the choroid appears to be the thinnest, followed by the
temporal, inferior, superior, and foveal sites.

doi:10.1371/journal.pone.0144156.g002
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There was a linear relationship between choroidal thickness at the nasal site and age. The
regression formula is: nasal choroidal thickness (μm) = 236.01–1.70×age (p<0.0001). Mean
choroidal thickness at the nasal site decreased by 1.70 μm per year.

Temporal site. Mean choroidal thickness values (±SD) at the temporal site for each age
decade were; 20s: 312.17±50.80 μm, 30s: 268.25±73.82 μm, 40s: 259.13±55.64 μm, 50s: 209.93
±54.79 μm, 60s: 191.79±79.52 μm, 70s: 184.45±50.71 μm, and 80s: 153.00±45.14 μm.

There was a linear relationship between choroidal thickness at the temporal site and age.
The regression formula is: temporal choroidal thickness (μm) = 372.95–2.73×age (p<0.0001).
Mean choroidal thickness at the temporal site decreased by 2.73 μm per year.

The choroid was thinnest at the nasal site, followed in order by the temporal, inferior, supe-
rior and subfoveal sites. There was no significant difference in choroidal thickness between the
temporal and inferior sites (p = 0.19) for any of the age groups (Table 4).

Mean choroidal thicknesses of each of the five areas (Table 5)
Foveal area (innermost circle area). Mean choroidal thickness values (±SD) for each age

decade were; 20s: 296.44±43.56 μm, 30s: 295.17±111.87 μm, 40s: 306.50±69.36 μm, 50s: 234.55
±85.77 μm, 60s: 187.64±57.97 μm, 70s: 206.73±65.38 μm, and 80s: 204.80±57.10 μm.

There was a linear relationship between mean choroidal thickness in the foveal area and
age. The regression formula is: mean foveal choroidal thickness (μm) = 366.27–2.24×age
(p<0.0001). Mean choroidal thickness in the foveal area decreased by 2.24 μm per year.

Superior area. Mean choroidal thickness (±SD) values for each age decade were; 20s:
300.44±35.67 μm, 30s: 277.42±89.60 μm, 40s: 300.75±48.45 μm, 50s: 246.18±75.39 μm, 60s:
179.91±55.65 μm, 70s: 208.91±70.85 μm, and 80s: 213.20±57.84 μm.

There was a linear relationship between mean choroidal thickness in the superior area and
age. The regression formula is: mean superior choroidal thickness (μm) = 364.66–2.22×age
(p<0.0001). Mean choroidal thickness in the superior area decreased by 2.22 μm per year.

Inferior area. Mean choroidal thickness values (±SD) for each age decade were; 20s:
286.11±58.33 μm, 30s: 289.58±104.49 μm, 40s: 302.35±79.85 μm, 50s: 236.82±73.33 μm, 60s:
189.59±59.53 μm, 70s: 194.73±59.70 μm, and 80s: 168.90±46.24 μm.

There was a linear relationship between mean choroidal thickness in the inferior area and
age. The regression formula is: mean inferior choroidal thickness (μm) = 373.99–2.51×age
(p<0.0001). Mean choroidal thickness in the inferior area decreased by 2.51 μm per year.

Nasal area. Mean average choroidal thickness values (±SD) for each age decade were; 20s:
254.33±37.89 μm, 30s: 256.25±95.87 μm, 40s: 259.25±61.84 μm, 50s: 218.59±64.90 μm, 60s:
154.23±56.46 μm, 70s: 168.64±56.91 μm, and 80s: 167.50±53.18 μm.

There was a linear relationship between mean choroidal thickness in the nasal area and age.
The regression formula is: mean nasal choroidal thickness (μm) = 325.52–2.14×age
(p<0.0001). Mean choroidal thickness in the nasal area decreased by 2.14 μm per year.

Temporal area. Mean choroidal thickness values (±SD) for each age decade were; 20s:
309.11±36.70 μm, 30s: 288.50±101.75 μm, 40s: 278.75±52.78 μm, 50s: 217.23±74.28 μm, 60s:
184.95±53.66 μm, 70s: 205.14±50.72 μm, and 80s: 182.90±41.87 μm.

There was a linear relationship between mean choroidal thickness in the temporal area and
age. The regression formula is: mean temporal choroidal thickness (μm) = 369.69–2.47×age
(p<0.0001). Mean choroidal thickness in the temporal area decreased by 2.47 μm per year.

The choroid was significantly thinner in the nasal area than in the other four areas
(p<0.05), while there were no significant differences among the other four areas (p>0.05)
(Table 6 and Fig 3).
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Thicknesses of the subfoveal CS layer and the large vessel layer
Subfoveal CS layer thickness by age. Mean CS layer thickness values (±SD) for each age

decade were; 20s: 110.78±40.80 μm, 30s: 89.89±25.16 μm, 40s: 73.11±28.25 μm, 50s: 54.56
±23.03 μm, 60s: 50.57±29.06 μm, 70s: 55.42±38.37 μm, and 80s: 39.89±32.47 μm.

There was a linear relationship between CS layer thickness and age (Fig 4). The regression
formula is: CS layer thickness (μm) = 125.71–1.08×age (p<0.0001, R2 = 0.29).

Subfoveal choroidal large vessel layer thickness by age. Mean subfoveal choroidal thick-
ness values (±SD) of the large vessel layer for each age decade were; 20s: 214.56±74.54 μm, 30s:
239.5±88.86 μm, 40s: 225.59±47.75 μm, 50s: 183.40±55.08 μm, 60s: 185.86±58.76 μm, 70s:
189.26±49.82 μm, and 80s: 200.00±48.53 μm.

There was a linear relationship between large vessel layer thickness and age (Fig 5). The
regression formula is: choroidal large vessel layer thickness (μm) = 250.07–0.87×age
(p<0.0209, R2 = 0.056). A significant age-dependent difference in choroidal thickness was
observed for both the CS layer (p<0.0001) and the large vessel layer (p<0.0209) (Table 7, Figs
4 and 5).

The statistical power was 0.493, which was calculated based on a previous report, employing
a distance of ‘23 μm’ for our 68 subjects (significance level of 0.05).[14]

Discussion
Chen et al reported axial length to be the main predictor of foveal choroidal thickness but they
did not examine refractive error [17]. High myopia may reportedly affect subfoveal choroidal

Table 4. Correlations among the mean choroidal thicknesses of the five sites.

Site×Site Difference estimate Standard error Variance t-value Pr >t R2

Superior×Inferior 21.95 7.17 391 3.06 0.0023 0.51

Superior×Temporal 31.33 7.17 391 4.37 <.0001 0.58

Superior×Nasal 116.91 7.17 391 16.32 <.0001 0.61

Superior×Foveal -27.37 7.17 391 -3.84 0.0001 0.58

Inferior×Temporal 9.38 7.17 391 1.31 0.19 0.54

Inferior×Nasal 94.97 7.17 391 13.25 <.0001 0.62

Inferior×Foveal -49.31 7.17 391 -6.92 <.0001 0.59

Temporal×Nasal 85.59 7.17 391 11.94 <.0001 0.48

Temporal×Foveal -58.699 7.17 391 -8.24 <.0001 0.56

Nasal×Foveal -144.28 7.17 391 -20.25 <.0001 0.63

doi:10.1371/journal.pone.0144156.t004

Table 5. Mean choroidal thicknesses of each of the five areas.

Age No. of eyes Foveal area Superior area Inferior area Nasal area Temporal area

20s 9 296.44±43.56 300.44±35.67 286.11±58.33 254.33±37.89 309.11±36.70

30s 6 295.17±111.87 277.42±89.60 289.58±104.49 256.25±95.87 288.50±101.75

40s 10 306.50±69.36 300.75±48.45 302.35±79.85 259.25±61.84 278.75±52.78

50s 11 234.55±85.77 246.18±75.39 236.82±73.33 218.59±64.90 217.23±74.28

60s 14 187.64±57.97 179.91±55.65 189.59±59.53 154.23±56.46 184.95±53.66

70s 12 206.73±65.38 208.91±70.85 194.73±59.70 168.64±56.91 205.14±50.72

80s 6 204.80±57.10 213.20±57.84 168.90±46.24 167.50±53.18 182.90±41.87

Total 68

doi:10.1371/journal.pone.0144156.t005
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thickness in Japanese eyes, a factor significantly associated with refractive error [18,19]. Refrac-
tive error was, however, reported to correlate significantly with posterior staphyloma height
[19]. Fujiwara et al. reported a correlation between subfoveal choroidal thickness and refractive
error, and noted that subfoveal choroidal thickness tended to correlate negatively with

Table 6. Correlations of mean choroidal thickness values between each pair of areas.

Area×Area Difference estimate Standard error Variance t-value Pr >t R2

Superior×Inferior 6.57 11.76 309 0.56 0.58 0.27

Superior×Temporal 8.44 11.76 309 0.72 0.47 0.29

Superior×Nasal 35.15 11.76 309 2.99 0.003 0.34

Superior×Foveal -0.3 11.76 309 -0.03 0.98 0.27

Inferior×Temporal 1.87 11.76 309 0.16 0.87 0.23

Inferior×Nasal 28.58 11.76 309 2.43 0.016 0.27

Inferior×Foveal -6.87 11.76 309 -0.58 0.56 0.29

Temporal×Nasal 26.71 11.76 309 2.27 0.024 0.34

Temporal×Foveal -8.74 11.76 309 -0.74 0.46 0.27

Nasal×Foveal -35.45 11.76 309 -3.01 0.0028 0.23

doi:10.1371/journal.pone.0144156.t006

Fig 3. Mean choroidal thickness at each site by age. Scatterplot of age and the mean choroidal thickness, by sector, at each measurement site are
shown. There is a negative correlation between age and mean choroidal thickness. The choroid appears to be thinnest at the nasal site.

doi:10.1371/journal.pone.0144156.g003
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refractive error, though this correlation was not significant between -6D and +6D. (p = 0.10, R2

= 0.1) [13].
Therefore, high myopia -6D or greater was excluded in our present study to eliminate the

effect of axial length and high myopia. Since lymphatics are also highly related to axial length
changes in myopia, we need to consider this factor in future studies [20].

The subfoveal choroidal thickness regression formula yielded differences ranging from
2.98 μm (mean subfoveal choroidal thickness) to 2.24 μm (mean choroidal thickness at the
foveal area).

There are many reports describing choroidal thickness in each of the aforementioned areas,
i.e. the fovea itself, and the sites superior, inferior, nasal, and temporal to the fovea [5–10].

The choroidal thicknesses of both sites and areas decreased with age. The choroid was thin-
nest at the nasal site, followed by the temporal, inferior, superior, and foveal sites. The choroid
was significantly thinner at the nasal site than at the other four sites. Choroidal thickness aver-
ages for each site were derived from a broad area extending from the outer portion of the cho-
roid to the fovea itself, but the choroidal thicknesses of each site were obtained from only a
single measurement. Therefore, a lack of measurement data might have produced differences.

There are no reports, to our knowledge, presenting a formula relating the thicknesses of dis-
tinct parts of the choroid with age. The correlations between mean choroidal thicknesses and

Fig 4. Subfoveal CS layer thickness. Scatterplot of age and subfoveal CS layer choroidal thickness, measured at a single point, are presented. There is a
negative correlation between age and the choroidal thickness of the CS layer (p<0.0001, y = 125.71–1.08×age. R2 = 0.29).

doi:10.1371/journal.pone.0144156.g004
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age are presented as scatter diagrams with minor deflection, with p values for degree of skewing
and the intercept being<0.0001. We thus consider our data to be reliable.

Esmaeelpour et al reported automatic measurements of the thicknesses of Sattler's layer and
Haller's layer at the choroid using 3-dimensional OCT with a 1060-nm wavelength [12]. We
manually measured CS and large choroidal vessel layer thicknesses using SS-OCT, encounter-
ing no difficulties such as obscuring of the border between the layers.

Fig 5. Subfoveal large vessel layer thickness. Scatterplot for age and subfoveal large vessel layer choroidal thickness measured at a single point are
presented. There is a negative correlation between age and the choroidal thickness of the large vessel layer (p = 0.0209, y = 250.07–0.87×age. R2 = 0.056).

doi:10.1371/journal.pone.0144156.g005

Table 7. CS layer and large vessel layer choroidal thickness by age decade.

Age No. of Eyes Subfoveal CS layer Subfoveal choroidal large vessel layer

20s 9 110.78±40.80 214.56±74.54

30s 9 89.89±25.16 239.5±88.86

40s 18 73.11±28.25 225.59±47.75

50s 18 54.56±23.03 183.40±55.08

60s 28 50.57±29.06 185.86±58.76

70s 24 55.42±38.37 189.26±49.82

80s 9 39.89±32.47 200.00±48.53

Total 115

doi:10.1371/journal.pone.0144156.t007
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We endeavored to assess choroidal thickness related to age decades and to determine which
layer(s) might be involved in the observed choroidal thinning. Therefore, we conducted man-
ual segmentation, employing a built-in caliper, and analyzed the thickness of both the CS layer
and the choroidal large vessel layer. The thickness of the subfoveal CS layer decreased with age
and the correlation was statistically significant (p<0.0001). The thickness of the large vessel
layer also decreased with age (p = 0.0204), indicating a trend for the thickness of this layer to
decrease with aging. The p values indicated, however, that the decrease in the CS layer was
more than 200 times that in the large choroidal vessel layer. Therefore, we speculate that the
aging change in total choroidal thickness at the fovea is mainly attributable to a decrease in CS
layer thickness. The resolution quality of SS-OCT is not sufficient to allow the choriocapillaris
layer to be distinguished from Sattler’s layer. In addition, the choriocapillaris is too thin to be
evaluated by itself.

In this study, we were also interested in vascular endothelial growth factor (VEGF)-A,
which is secreted by the RPE and exerts a trophic influence on the choriocapillaris. The RPE
secretes VEGF toward its basal side, where VEGF receptors are located on the adjacent chorio-
capillaris endothelium, suggesting VEGF to play a role in the maintenance of choriocapillaris
fenestration in the normal eye [21,22]. An increased lipid content, documented in Bruch's
membrane with aging in some cases, has also been postulated to specifically impede the move-
ment of water and water-soluble agents between the choroidal and RPE compartments [23,24].
Furthermore, lipid accumulation appears to be higher in the macula than in the peripheral fun-
dus [21,25,26].

It has been suggested that in hypoxic states and with aging, this paracrine relationship is dis-
turbed by a thickened Bruch’s membrane, and that this age-associated change may block the
passage of VEGF-A from the RPE to the choriocapillaris [21,26,27]. In normal eyes, as revealed
by autopsy but not studies of the eyes of living subjects, from the first to the tenth decade of life
the choriocapillaris diameter and choroidal thickness decrease while the thickness of Bruch’s
membrane increases with age [4].

Our results reflect the choroidal layer changing with age, possibly in relation to the func-
tions of VEGF-A and lipid accumulation. The CS layer is closer to the RPE layer than to the
choroidal large vessel layer, i.e., the CS layer would presumably be more affected by the aging
changes described in prior reports. However, the CS layer consists of Sattler’s layer and the
choriocapillaris layer. Whether one or both of these layers contributes to diminished choroidal
thickness with aging remains as yet unknown.

We speculate that not only VEGF but also systemic water may exert effects on the thick-
nesses of ocular layers. The total amount of water in the body decreases with age, possibly con-
tributing to the observed decreases in choroidal thickness with aging. The water drinking test
revealed that as the amount of water in the body increases, choroidal thickness also increases
[28]. Although VEGF might significantly influence differences between the thicknesses of the
large choroidal vessel and CS layers, the origin of such differences is unknown.

Conclusions
We found that subfoveal choroidal thickness decreases by 2.98 μm per year, on average. Cho-
roidal thickness decreased at all measurement sites with age. Thicknesses of the subfoveal CS
layer and the large vessel layer decreased significantly, and that of the CS layer correlated espe-
cially strongly with age.
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