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Abstract
Crossmodal associations may arise at neurological, perceptual, cognitive, or emotional lev-

els of brain processing. Higher-level modal correspondences between musical timbre and

visual colour have been previously investigated, though with limited sets of colour. We devel-

oped a novel response method that employs a tablet interface to navigate theCIE Lab colour

space. Themethod was used in an experiment where 27 film music excerpts were presented

to participants (n = 22) who continuously manipulated the colour and size of an on-screen

patch to match the music. Analysis of the data replicated and extended earlier research, for

example, that happy music was associated with yellow, music expressing anger with large

red colour patches, and sad music with smaller patches towards dark blue. Correlation anal-

ysis suggested patterns of relationships between audio features and colour patch parame-

ters. Using partial least squares regression, we tested models for predicting colour patch

responses from audio features and ratings of perceived emotion in the music. Parsimonious

models that included emotion robustly explained between 60% and 75% of the variation in

each of the colour patch parameters, as measured by cross-validated R2. To illuminate the

quantitative findings, we performed a content analysis of structured spoken interviews with

the participants. This provided further evidence of a significant emotion mediation mecha-

nism, whereby people tended to match colour association with the perceived emotion in the

music. The mixed method approach of our study gives strong evidence that emotion can

mediate crossmodal association between music and visual colour. TheCIE Lab interface

promises to be a useful tool in perceptual ratings of music and other sounds.

Background

Crossmodal association
When associating colour with music, natural soundscapes, or soundscape compositions, do
people use different strategies? The question of how associations between visual and auditive
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modes of perception emerge has been scientifically investigated for more than a hundred years
(e.g. [1]). It is generally understood that while some aspects of crossmodal correspondences
might have a psychobiological basis [2], other patterns of association might depend on gender
[3], be acquired by the individual [4], or defined culturally [5]. The literature identifies at least
four mechanisms whereby crossmodal association can emerge, roughly corresponding to levels
of neural processing in the brain. An overview is given in Spence’s tutorial [2], which focusses
on three classes of crossmodal correspondence: structural, statistical, and semantic. They will
be briefly reviewed.

First, at the level of sensory information, crossmodal association can be determined by
structural correspondences based on commonalities in the way neurons code sensory stimula-
tion. They occur at early processing stages in the brain. Neuro-biological mechanisms may give
rise to crossmodal association, since an increase in stimulus intensity or density generally
appears to produce more neural spikes ([2], p. 989). The physical structure of the brain might
also produce crossmodal capture effects when sensorispecific regions are located in proximity,
such as in the deeper layers of the superior colliculus (cf. [6], p. 17).

The second class of crossmodal association is based on the principles of statistical co-occur-
rence and ecological perception. Stimuli perceived simultaneously through different sensory
organs and via parallel neurons might become associated at an intermediate point in the neural
processing path if they both increase an organism’s level of alertness or arousal, or if they both
happen to have the same effect on emotional state, mood, or affective state ([2], p. 973). In evolu-
tionary terms, such associations may have arisen as part of a strategy for the brain to optimise
co-varying sensory input, and then may gradually have become hard-wired ([7], p. 564). The
brain’s plasticity is such that these kinds of associations might develop gradually through habits
during the life span of a single organism. It is essential for an organism to learn from prior envi-
ronmental exposure. To determine an optimal action, the information-processing entity must
accurately match new sensory input with retained prototypical experiences, as well as, in the case
of higher organisms, the appraisal of those encounters through episodic memory ([7], p. 567).

Third, at the cognitive level, crossmodal association is learned consciously. Its effects are
available to the individual for inspection, as well as, to some degree, for control and training.
Inasmuch as learning can be understood as an individual’s acquisition of methods to decode
the communication system of her social environment, this mechanism is based on language.
This kind of crossmodal association favours semantically mediated correspondences based on
a descriptive terminology that is common between modalities. We believe that this mechanism
is deeply connected with listening intentionality, as in Tuuri’s framework [8], though a review
goes beyond the scope of the present text.

Beyond structural, statistical, and semantically mediated mechanisms, a fourth way that
crossmodal association might arise is via emotion at a pre-cognitive level. The proposition that
emotion processing has a role to play in crossmodal correspondences is not new but, as stated in
[2], empirical evidence has been lacking. A recent study showed that people’s liking of basic
food tastes such as bitter or sweet predicted their crossmodal association of shapes such as angu-
lar or rounded with taste ([9]; especially p. 156 suggesting a hedonic mediation effect). In music
emotion research, Palmer and collaborators claimed that experimental results provided “clear
evidence of cross-modal correspondences based on emotion” ([10], p. 5; see the next section for
details). As will be shown, the present results also support an emotion mediation mechanism.

Previous studies of colour association with music
Research on audiovisual matching has provided evidence that many non-arbitrary correspon-
dences exist between auditory and visual stimulus features. These correspondences have been
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documented both between simple stimulus dimensions, such as loudness and brightness, and
between more complex stimuli, such as visual shapes or pictures, and music (see [2], p. 975).
Stimuli features are called ‘modal’ when they identify an aspect that is specific to a single sen-
sory modality, such as the timbre of a sound, or the colour of a light. Features that are not
domain-specific are called ‘amodal’. They may reflect more fundamental attributes of stimuli,
such as perceived intensity or size. Several studies have lent support to the suggestion that
audiovisual correspondences are based on amodal correspondences, for example, the loudness
of sound and the ‘lightness’ of light [2].

In the 1930s, Stevens demonstrated that participants paired light grey colour patches with
louder sounds and darker grey patches with quieter sounds. More recently, the study by [11]
asked participants to match sine waves and colour patches (see also [12] where a similar
method was used). The results confirmed the hypothesised correspondence between light
intensity and pitch, and between colour hue saturation and loudness. Lipscomb and Kim inves-
tigated associations between frequency modulated tones and visual amodal attributes, such as
vertical location and size, in a factorial experiment design [13]. They reported strong “pairings”
between location and pitch, also known as SMARC effect (Spatial–Musical Association of
Response Codes; see [14] and [15]), and between size of visual objects and loudness of tones.
They also claimed evidence for higher level and mode-specific correlations: for example, that
visual shape was associated with timbre, and that colour matched “equally well with both pitch
and loudness” ([13], p. 74), though colours were only reported by word labels.

These studies brought our attention to how people normally speak about aspects of visual
colour and how language can function as a mediator of crossmodal association. There has been
a long-standing discussion in anthropo-linguistics whether colours are stable, cross-cultural
semantic concepts. A meta-study of colour words in 110 languages, including primitive socie-
ties, showed that most cultures display concept clusters near ‘red’, ‘green’, ‘yellow’, and ‘blue’
(in addition to ‘white’ and ‘black’) [16]. The authors provided a strong argument that “focal
colours” are universal (but for a nuanced perspective by the same researchers, see [17]). Bar-
bière and collaborators [18] investigated the relation between colour and discrete emotions
expressed in music, and found that ‘red’, ‘yellow’, ‘green’, ‘blue’ were chosen for ‘happy’music,
and that ‘grey’ (i.e. a de-saturated colour) was chosen for ‘sad’music. However, the study was
limited since it used only four excerpts of classical music and pre-determined word labels for
colours (and not actual colour patches). Holm and co-workers [19] investigated the question of
colour association with musical genre. They selected 12 colour patches, and music by genre
word labels, and found that black was associated with ‘metal rock’, blue with ‘blues’, pink with
‘pop’, and so forth. However, the reason for their selections of audio-visual categories was
arbitrary.

In [20], Bresin defined 24 colour patches by sampling parameters in HSL (Hue, Saturation,
Lightness) at approximately equal distances. This produced a colour palette with arguably more
evenly distributed patches, from a perceptual point of view, than in any of the studies men-
tioned earlier. The participants judged how well the colours matched two different pieces of
music that had been performed with twelve different emotional intentions, such as happiness,
love or contentment. Bresin analysed the correlations between emotional intentions and rat-
ings of HSL colour parameters, and found that colour brightness (i.e. Lightness) was associated
with positive emotions, and darker colours with negative emotions. While the results are simi-
lar to those reported in [18], the stronger methodology lends them greater reliability. A limita-
tion of the study, acknowledged by the author, was that the results appeared to be highly
dependent on the different musical instruments used in the stimuli: that is, timbral qualities.
Furthermore, since HSL is a simple transformation of RGB (a device-dependent model where
levels of red, green, and blue are added), it gives insufficient information to reconstruct the
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perceptual appearance of colour patches unequivocally. More important still, theHSL dimen-
sions are perceptually confounded, and HSLmight be described as a pseudo-space. It follows
that many statistical operations (e.g. calculating a parametric correlation) are not justifiable on
HSL values (cf. Method section). The reliance on RGB andHSL to represent colour is partly the
reason why previous research has been limited. Notwithstanding, Bresin’s study is remarkable
for having examined patterns of relationship between audio features, emotion, and colour asso-
ciation in a controlled experiment. In the same spirit, Palmer and collaborators [10] investi-
gated colour association with excerpts of music in classicist style. Stimuli were rendered using a
MIDI synthesiser, allowing for tempo and tonal mode to be manipulated in a factorial design.
They reported that colours of high saturation and Lightness (“brighter”), and more towards yel-
low (“warmth”) were selected for music stimuli in fast tempo, and that conversely, de-saturated
(“greyer”), “darker”, and blue colours were selected for music of slow tempo in minor mode.
They claimed strong support for emotion as a mediating mechanism for the observed cross-
modal associations (see also the previous section). Table 1 sums up the reviewed studies in
terms of the methods employed, numbers of stimuli, and specifically, the way in which colours
were presented to the participants.

The studies (where actual colours were used) had three main limitations in regards to col-
our. Firstly, the number of colour response options was generally small. Some crossmodal
effects might not be detected if the response method has low resolution. Secondly, the experi-
menter’s selection of colour response options was a function of the representation scheme
rather than a perceptual model. Analytical results might not be ecologically valid if the colour
model does not match human perception. Moreover, it is difficult to replicate experiments
where colours have not been specified unambiguously. Thirdly, the experiments presented
patches in parallel or in Mondrian-style patterns, that is, there were multiple response options
side by side, and the respondent might indicate one by clicking on it. This approach introduces
two problems. One is that low-high and left-right screen placement might cause spatial bias
(SMARC effect; [14]). The other is that simultaneous presentation is known to cause contrast
effects [21]. Since the eye detects colour not only at the focal point but also in a large peripheral
region [22], the appearance of a colour patch depends on adjacent patches. As we will show,
these sources of potential bias can be avoided by designing the response interface accordingly.

Aims
We are interested in identifying which aspects of music might cause certain colours to be
selected, what perceptual or cognitive mechanisms might be involved, and whether emotion
plays a significant part in crossmodal correspondences. First, we formulated three testable
questions: Do people associate different colours with music expressive of discrete emotions? Do
colour associations align with perceived dimensional emotions in music? Do men and women
differ in colour patch association with music? Then, we explored the extent to which colour
association could be explained by computationally extracted audio features and emotion rat-
ings of the music: specifically, whether emotion would contribute to predicting colour over and
above audio features. Finally, we aimed to probe the perceptual and cognitive mechanisms
involved in crossmodal correspondence, from music via emotion to colour, through a qualita-
tive analysis of focus interviews.

Methods

Response interface and CIE Lab colour space
As seen in the Introduction, previous studies might have been biased due to colour representa-
tion schemes having low resolution and uncertain congruity with human perception, and due
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to the simultaneous presentation contrast effect. To avoid these problems, we designed a novel
response interface from scratch.

To be able to detect effects of crossmodal correspondences between timbral features of
music and visual colour, which might be small, the response interface needed to present a large
range of colours with high resolution. To assure ecological validity of the captured data, we
needed a colour representation model that closely matches human perception. CIE L�a�b�

(henceforth Lab) meets these requests (see [23] and [24] for details). This colour model has
three orthogonal dimensions, developed to match human perception, that are labelled Light-
ness (also referred to as L�; dark-to-bright), a� (green-to-red), and b� (blue-to-yellow). Note
that because colour perception is determined by contextual factors, a minimal requirement for
a Lab specification to be meaningful is that the reference illuminant or ‘white spot’ is indicated.
The dissimilarity between colours can be calculated as Euclidian distance in Lab space. By
extension, arithmetic operations can be performed on Lab representations, such as calculating
the mean colour of a set of colour patches.

Various possible hardware interfaces were considered to navigate Lab space. We wanted to
prioritise giving the user access to as large a range of colour as possible. It was also of interest to
include the size of the colour patch as another response channel, since previous research [13]
had reported a strong pairing between visual size and the loudness of tones.

To solve these design requirements, we opted to present the user with a single colour patch
whose appearance could be continuously manipulated. It is defined by four parameters—size
(Size) and colour (L, a�, b�)–that are mapped from two standard input devices, a Wacom tablet
and a USB joystick throttle. The user holds the Wacom pen in the dominant hand and manipu-
lates the throttle with the other. The (x, y) contact point of the pen on the tablet is mapped to a
point (a�, b�) in Lab space, and pen pressure is mapped to the radius of the colour patch. By
pressing the pen down the patch increases in size, and when the pen is lifted it disappears from
the screen. The joystick throttle is mapped to Lightness. The software was written in Max [25].
See Fig 1 for photos of the interface setup. The response channels (pen pressure, throttle, tablet
x, tablet y) have high physical and temporal resolution. Parameter mappings are linear, contin-
uous, and separate, i.e. the four physical response dimensions are not confounded in relation to

Table 1. Overview of methods used in recent studies of colour association with music.

Authors Year Colour
model

Number of
colours

Colour selection Colour presentation Number of sound stimuli

Giannakis &
Smith

2001 HSV 216 approx. equally spaced parallel patches 33 (or 72, the description
is unclear)

Datteri &
Howard

2004 - 7 arbitrary parallel patches 8

Lipscomb &
Kim

2004 - 9 (48) systematic selection (rating of composites) 48 (tones)

Bresin 2005 HSL 24 approx. equally spaced parallel patches 72 (2 pieces x 3
instruments x 12 emotions)

Barbiere et al. 2007 - 0 (7 words) arbitrary parallel word labels 4

Holm et al. 2009 - 12 (10+b/w) arbitrary parallel patches 0 (18 genre labels)

Palmer et al. 2013 HSL 37 systematic selection parallel patches 18 (classicist music)

Lindborg 2013
(unpublished
pilot)

HSL >100,000 quasi-continuous swatch colour picker 27 (soundscapes)

Lindborg present article CIE Lab 98,553 dimensions perceptually linear,
orthogonal & continuous

physical interface
(tablet & throttle)

27 (film music)

doi:10.1371/journal.pone.0144013.t001
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the four perceptual dimensions, which allows the user to quickly and intuitively learn how
move in the space and select a colour patch response.

A design challenge arises with Lab in this context since the physical response input space is
conceptually a box in four dimensions (Size, Lightness, a�, b�) but the effective output space
consists of cells that may have either a visible or an invisible colour. The latter are colours pro-
duced by tristimulus combinations that are not perceptible by the human visual system. To
cope with this situation, we created a hybrid space where cells with invisible colour are given
the colour of the closest cell with visible colour. As a result, navigating the whole input space is
meaningful, so that, for example, the user can move the pen across the entire square-shaped
tablet. For the software used in the present experiment, the hybrid space was pre-calculated
with a resolution of two Lab units, yielding 98,553 different colours. (In a newer version, pre-
calculation has been replaced by direct calculation of colour space transformations using for-
mulæ from [23], yielding fully continuous mapping between physical interface and Lab space.)
The hybrid space had 51�101�101 = 520,251 cells, but since most (~81%) did not correspond
to a visible colour, they 'borrowed' the nearest true colour from the true CIE Lab space.

To our knowledge, the integration of CIE Lab with a physical response interface has not pre-
viously been described in published perception research. We believe that its large gamut of col-
our, available for real-time manipulation, represents a novel approach to research in
crossmodal association between colour and music. The interface was employed in an investiga-
tion of colour association with a selection of music stimuli for which the affect had been vali-
dated in a previous study. Computational musical and psychoacoustic features were extracted
with commonly available tools.

Fig 1. Three photos of the response interface beingmanipulated.

doi:10.1371/journal.pone.0144013.g001
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Selection of music stimuli and extraction of audio features
In [26], Eerola and Vuoskoski derived a set of 110 music excerpts from a large collection of typ-
ical film music that was largely unfamiliar and ecologically valid from a non-expert listening
point of view. The set was rated on scales of discrete emotion (which they labeled as Anger,
Fear, Happy, Sad, Tender) and dimensional emotion (Valence, Energy, Tension), as well as two
additional scales (Beauty, Liking) intended to make it possible to control for effects of individ-
ual preference towards music of varying complexity (cf. [9] about the effect of liking in a differ-
ent context). It was used in [27] in an experiment aimed at validating perceptual features in
music information retrieval. For the purpose of the present work, we created an abbreviated
version that would span the range of both dimensional and discrete emotions, by selecting
excerpts representative of the extremes on the rating scales. For each of the discrete emotions,
two files were chosen that had been rated as very high on that scale and at the same time low
on the other four discrete emotion scales. For each of the dimensional scales, two files were
picked at the very high end and two at the very low end of that scale, which at the same time
had been rated at the opposite end on the other dimensional scales. For example, to pick files
for the discrete emotion Anger, we calculated:

max (Anger—max (Fear, Happy, Sad, Tender));

and for the dimensional emotion Valence at the high extreme, we calculated:

max (Valence—max (Energy, Tension));

and for Valence at the low end of the scale:

min (Valence—min (Energy, Tension)).

Similarly, files for Beauty and Liking scales were selected, to yield a collection of 27 stimuli.
The scores for Beauty and Liking were strongly correlated (r = 0.94), and it therefore made
sense to simplify by merging them in a variable called Preference. Using this variable, two files
representing high (i.e. very beautiful, very liked) and two files representing low Preference were
picked. The median scores of the selected excerpts by extreme group are indicated in Table 2.
During the trials, the experimenter found that the same music appeared in two original
excerpts (indices 49 and 101). This appears to have been missed by the researchers who previ-
ously worked with the full set, because the two had been rated separately in both [26] and [27].

Table 2. Colour response parameters to music excerpts expressive of five discrete emotions.

Anger Fear Happy Sad Tender

Emotion rating 6.39 7.105 7.775 6.78 6.615

Size 0.609 0.556 0.577 0.521 0.507

Lightness 43.2 37.2 58.1 40.8 50.0

a* 27.5 15.1 14.4 9.1 5.6

b* 22.5 2.2 31.4 -6.7 -11.2

Emotion rating = relative strength of emotion in music stimuli in range [1. . .9]. Size = relative size of colour patch in range [0. . .1]. Lightness = CIE Lab

Lightness (dark-to-bright) in range {0. . .100}. a* = CIE Lab a* (green-to-red) and b* = CIE Lab b* (bleu-to-yellow), both in range [-100. . .100]. Lab values

calculated with D65 as illuminant. See Methods section for details.

doi:10.1371/journal.pone.0144013.t002
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Since separate colour associations were obtained in our present experiment, both excerpts were
retained in the analysis.

The stimuli were normed for loudness with a method that is common in broadcast media
(ITU-R BS.1770-1) using a Matlab script [28]. Computational low- and mid-level musical fea-
tures (see [27] and [29] for a discussion of the hierarchy of such features) of the excerpts were
extracted using theMIR Toolbox [30], and psychoacoustic descriptors were produced with Psy-
sound3 ([31], [32]). The musical features were grouped in three categories: Rhythmic &
Dynamic (Tempo, Attack time, Lowenergy); Timbral (Spectral centroid, Brightness, Spectral
spread, Rolloff [85%], Spectentropy, Spectral flatness, Irregularity, Zerocross rate, Spectralflux);
and Tonal (Chromagram peak position, Keyclarity,Mode). For each feature, the mean across
successive time frames yielded a single representative value. The psychoacoustic descriptors
were: Loudness (N), Sharpness (S), Roughness (R) and Fluctuation strength (F). For each
descriptor, the median of values in successive time frames yielded a single representative value.
See [33] and [31] for details on the psychoacoustic models, and [34] for a work where we have
employed these descriptors. In the present work, Fluctuation strength was estimated using a
unitless function in theMIR Toolbox. Because musical features and psychoacoustic descriptor
stem from different research traditions, the terminologies and methods are slightly different.
For convenience, we refer to both as ‘audio features’ in the present work. Detailed interpreta-
tions are provided in the Results section, as and when they emerged in significant correlations
with colour patch parameters.

Analysis methods
The analysis was carried out in three parts. Relevant methods will be briefly discussed here,
before moving on to presenting the procedure and results. Statistical analyses were carried out
in R [35].

In the first part of the analysis, descriptive statistics and a priori tests were performed on the
parameters of colour patch associations to find differences in responses between discrete emo-
tions, and between high and low dimensional emotions. Only the stimuli that had been previ-
ously selected as representatives of the extremes of the emotional scales were included here.
This analysis was made using two-sample non-parametric tests. In the second part of the analy-
sis, we included all the available data. We first explored patterns of relationships between the
parameters of colour patch associations and the audio features (cf. [36]). We then investigated
the role of emotion as a mediating variable between audio features and colour patch parameters
by comparing different models using partial least squares regression (PLS; [37], as imple-
mented in [38]). PLS is a method for making inferences about the relationship between causally
related blocks of variables in terms of unobserved latent factors (in our case, the emotion rat-
ings). In the third part of the analysis, spoken responses from the focus interviews were sub-
jected to classical content analysis (for reviews, see [39] and [40]), following [41].

Ethics statement
The research project, including behavioural data collection and participant interviews, received
approval by the Institutional Review Board of Nanyang Technological University, Singapore,
reference: IRB-2014-08-010. An open call for participation was broadcast to a large number of
people via email and social media. Those who expressed an interest were invited to an individu-
ally scheduled meeting. A written document detailing the research project and the experimen-
tal procedure was provided. Before starting, the text was discussed and clarifications made
when needed. It was highlighted that the experiment would carry minimal risk, and that the
participant was free to discontinue at any point. In each case, she/he agreed to pursue with the
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experiment. Her/his name and contact address were recorded and later transferred to a sepa-
rate file. Due to an oversight, the participant was not at this point asked to sign the Consent
Form. This transpired only after the end of the experiment sessions. The participants were
then contacted individually, whereupon each one gave their written consent, retrospectively.

Perceptual Experiment

Apparatus, participants, and procedure
An experimental setup was created in an office space with carpeted floor, bookshelves along
two walls, and a 4 m2 rug on one wall. The ambient noise level was 33 dBA (50 dBC) as mea-
sured with a calibrated SPL meter (Extech 407090). The reverberation time was comfortably
short, RT60� 0.8 s as measured by a simple tool (AudioTools on an iPhone). The colour
reproduction of the screen (Apple 22” LCD) was calibrated using a Spyder4 system. Window
daylight was blacked out with thick curtains, and fluorescent tubes created a uniform ambient
light. The participant was comfortably seated with the head 70 cm from the screen, whence the
colour patch had a maximal apparent diameter of 18°. The peripheral colour of the screen was
black. To minimise visual distraction, black cloth was arranged in an area around (±75°) and
above (±45°) the screen. This created a dark background with no cluttering objects within the
field of vision (see Fig 1). For sound playback, a 2.1 system was used, consisting of two Genelec
8030 full-range near-field monitors and a 7050a subwoofer. The subwoofer crossover fre-
quency and level relative to the monitors were adjusted so that playing white noise through the
system produced identical readings on dBA and dBC scales (± 1 dB). The music excerpts
(normed for loudness as described earlier) were played back at a uniform amplification level
throughout the experiment, producing a sound pressure level between 71 and 79 dBA at the lis-
tening position.

The participants (n = 22, nine females) were recruited from a school of art, design, and
media. They were university students (8), young professionals (2), academic faculty (7), and
other staff (5). The sample might be biased in that these participants were likely to be more
attentive to visual design than the larger population. Median age was 30 years old, in a range
between 22 and 55. Each participant was offered 10 SGD as a token of appreciation.

After the purpose, duration, and procedure had been explained to the participant, she was
given some time to familiarise herself with the interface, and to do a trial run with music to get
used to the sound level. The stimuli were played in randomised order, with a short silence
between each. The participant continuously manipulated the colour and size of the patch on
the screen using the physical interface, as described in the Method section. After completing all
stimuli, the experimenter conducted a short interview organised around four previously set
questions.

Data preparation
The participants had been instructed to select a single colour and size to match each music
stimulus. When a new excerpt started playing, the experimenter observed that the participant
typically waited a couple of seconds, sometimes ‘searching around’ in the colour space, pre-
sumably until the character of the music had stabilised in their mind and a meaningful colour
association had become possible for them to express. This was clear from the focus interviews.
One participant explained: “once the music starts playing, I spend a second or so to find a start-
ing colour”. Another described the process as “I listened to the music and then first thing is: I
like or not? . . .[I] translate in my mind: what is this music? Then I choose the colour”. A third
person said he would “hear the music, then choose the colour that corresponds to the feeling
that [I] feel from the music. For some music immediately, for some [it] is more complex”
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(Participants 19, 17, and 11, respectively; see below for further results from the qualitative anal-
ysis of interviews). After deciding on a colour response, they would typically hold on to it more
or less steadily (as instructed) until the music excerpt ended. Fig 2, left diagram, illustrates a
typical development of colour association over the course of a 15-second music excerpt. There
is little previous research probing the perceptual mechanisms involved in this kind of colour
response. One study [42] reported that listeners gain knowledge about various aspects of
music, including mood, from excerpts that are 3 seconds or shorter. However, their experimen-
tal procedure was based on retrospection and free-form response without time constraints,
which is different from the present study, where participants responded simultaneously with
the stimulus. By looking at the Size response envelopes in our present data, we observed that
participants sometimes waited several seconds before even putting the pen to the tablet, and
typically took 5 seconds or more before settling on a colour. It can be assumed that some of the
waiting and searching was conditioned on knowing that each stimulus lasted around 15 sec-
onds. From inspecting the data, it was clear that the final part of the colour response envelope
was the most reliable representation of the association that the participant had made to the
music excerpt as a whole. With this in mind, we constructed an algorithm to derive a single
point (Size, Lightness, a�, and b�) from the response envelopes, as follows. The response chan-
nels were sampled at 10 Hz, producing around 600 values for each stimulus. The first half was
discarded (i.e. values were given zero weight). From the middle to the three-quarter point,
weighting values were incremented linearly, until reaching a maximum that was held constant
until the end. See Fig 2 (left diagram) for an illustration of the weighting curve. The weighted
Size and Lab averages for each stimulus and participant represented the colour patch associa-
tion. As illustrated in Fig 2 (right diagram), these could then be averaged across participants to
yield a mean colour patch for the stimulus.

Agreement
The rating agreement among the participants was measured by Cronbach’s α. Agreement was
good for Lightness (α = 0.74) and acceptable for Size (α = 0.58) and b� (α = 0.67), but poor for
a� (α = 0.42). It was found that responses on the a� parameter (green-to-red) by three partici-
pants were negatively correlated with the mean of the others, and we therefore excluded them.
After this, the agreement among the remaining 19 participants was good for Lightness (α =
0.70) and acceptable for Size (α = 0.59), a� (α = 0.60), and b� (α = 0.65).

Results with Discussions

Part one: Planned tests
Discrete emotions. Do people associate different colours with music expressive of different

discrete emotions? Two excerpts had been selected to represent each of the five discrete emo-
tions, each with a score (as reported in [26]) near the maximum on one specific discrete emo-
tion scale and relatively low scores on others. Each extreme was represented by 2 music
excerpts rated by 19 participants; there were thus 38 values for each variable (Size, Lightness,
a�, and b�). The results are given in Table 2.

All distributions were assessed with Shapiro-Wilks test. Since 5 (out of 20) were non-normal
(p< 0.05), the non-parametric Kruskal-Wallis rank sum test was chosen to test for differences
in colour parameters between emotions. Size, Lightness, a�, and b� were in turn taken as the
dependent variable. In each test, the null hypothesis was that all medians of responses by group
were equal; the alternative was that at least one group’s median differed from the rest. As can
be seen in Table 3, the tests revealed significant differences on each colour patch parameter.
Therefore, the differences between each of the five discrete emotions were tested using Tukey’s
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Honest Significance method, with familywise error rate at α = 0.05. See also the plot of error
bars in Fig 3.

The results showed that that in the present experiment, Happymusic was associated with
significantly lighter colours than Anger, Fear, and Sadmusic, and at the same time, with more
yellow (rather than blue) colours than Tender, Fear, and Sadmusic. Similarly, Angermusic was
associated with more yellow colours than Tender and Sadmusic, and with more red (rather
than green) music than Tender. No other discrete emotion difference was significant under this
test. Some effect sizes (Cohen’s d) were fairly large, such as the difference between Happy and
Sadmusic, 0.74 SD for Lightness, and 0.90 SD for b� (‘yellowness’).

Fig 2. Illustration of how colour response data were weighted and averaged. The diagram to the left shows the envelope of the colour patch association
over the course of one stimulus by one participant, overlaid with the weighting curve. To the right is the stack of ‘colour trails’ for the same stimulus by all the
participants. To the very right is a column of filled circles representing the weighted average colour patch for each participant, and below it is the overall,
mean colour patch association for the stimulus.

doi:10.1371/journal.pone.0144013.g002

Table 3. Results from tests on differences in colour association parameters between discrete emotions.

χ2 p HSD

Size 9.8 0.044* –

Lightness 24.6 0.0006*** Happy > Anger **, Happy > Fear ***, Happy > Sad **

a* 12.5 0.014* Anger > Tender **

b* 33.2 1.1e-06*** Anger > Sad **, Anger > Tender ***, Happy > Fear *, Happy > Sad ***, Happy > Tender ***

χ2 = Kruskal-Wallis statistic. HSD = Tukey’s Honest Significant Difference, controlling for familywise error rate. p = probability of obtaining a test statistic

result at least as extreme as the one that was actually observed, under the assumption that the null hypothesis (no effect) is true. Asterisk codes for

degree of significance: *** p<0.001; ** p<0.01; * p<0.05. For explanation of variable names, see Table 2.

doi:10.1371/journal.pone.0144013.t003
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Fig 3. Colour patches and error bars for Size, Lightness, a* (green-to-red), and b* (blue-to-yellow) for filmmusic excerpts expressing five discrete
emotions and low or high dimensional emotion. Colour patch ranges as in Table 2. Median values with bootstrapped 95% confidence intervals around
the median (5000 simulations each). Note that the colour plots are for illustration only. Their appearance might be approximate, as colour reproduction
depends on encoding, screen setting, and so forth. For patch size, see the Procedure section.

doi:10.1371/journal.pone.0144013.g003
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Dimensional emotions. Do colour associations align with perceived dimensional emotions
in music? Two excerpts had been selected to represent low and high Valence, Energy, and Ten-
sion (with ratings from [26]). As for the discrete emotions, the extremes were represented by
38 values for each variable (Size, Lightness, a�, and b�). The results are given in Table 4.

The distributions were assessed as before. Since 2 (out of 24) were non-normal, the non-
parametric Wilcoxon rank test with continuity correction (a.k.a. Mann-Whitney U test) was
employed to compare colour patch associations between high and low stimuli. The null
hypothesis of this test is that two vectors do not differ by more than an arbitrarily small loca-
tion shift. In other words, the test was whether music excerpts with high and low dimensional
emotion, respectively, had been associated with patches of the same size and colour, or differ-
ent. The results are given in Table 5. See also the plot of error bars in Fig 3.

The difference between colour associations with stimuli of low and high Valence was
expressed in Size, a�, and b�; effect sizes were medium (Cohen’s d = 0.39, 0.59, and 0.65 SD,
respectively). Low-valence music (e.g. perceived as unpleasant) was associated with larger col-
our patches towards red and yellow. The difference between low and high Energy stimuli was
expressed in Size, Lightness, and b�, with medium effect sizes (0.47, 0.52, and 0.48 SD, respec-
tively). Low-energy music (e.g. perceived as calm or boring) was associated with smaller, darker
colour patches towards blue. The difference between low and high Tension was expressed in
Lightness with a fairly large effect size (0.78 SD). Low-tension music (e.g. perceived as easy-
going) was associated with lighter colours.

Preference and gender. Colour association in relation to Preference (i.e. the average of
Beauty and Liking scores from [26]) were investigated in the same way as for dimensional emo-
tions. There were no statistically significant differences in colour patch associations between
music of low and high Preference.

Finally, we investigated colour association in relation to gender. There were 11 males and 8
females, and the group size difference was non-significant (Pearson’s χ2 = 2.9, p = 1 n.s.). The
distributions of colour response parameters were tested as before and several were found to be
non-normal. Therefore, the two-sample Wilcoxon test with continuity correction was chosen
to test colour patch differences between male and female participants. Note that this test allows
the two compared vectors to be of different lengths. Analysis revealed that the female partici-
pants generally made colour patches with smaller Size (W = 19938, p = 2e-13���). The effect
was of medium size (d = 0.69 SD). If true, this might indicate a gender difference of relevance
to understanding how the ‘sound to physical size’ association works, generally believed to be a
deep-seated crossmodal correspondence based on the ecological principle.

Part two: Predicting colour from audio features and emotion
We proceeded with correlation and regression analyses including all the available data. In a
first step, we correlated the colour patch parameters averaged across participants against the
previously extracted audio features of the music stimuli and colour patch parameters. All vari-
ables were power transformed using functions in [36], resulting in normal distributions
(p< 0.1). Thus a parametric correlation method could be applied, and results are shown in
Table 6.

Correlations. With familywise error rate set at α = 0.05, the significance of each compari-
son was evaluated at the αc = 0.00064 level (Dunn-Sidak’s correction for 80 comparisons). Size
correlated significantly with Sharpness, Brightness, Spectentropy, and Spectralflux. Both Sharp-
ness and Brightness are related to spectral shape, specifically, the amount of high-frequency
energy. A high Spectentropy indicates that energy is randomly distributed (i.e. with high uncer-
tainty), such as in a sound with a wide spectrum and few peaks ([30], p. 157). A high
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Spectralflux results from audio with a high degree of spectral change between consecutive anal-
ysis windows, i.e. timbral variability over time ([30], p. 58). The relationship between colour
patch Size and these features, if true, might be due to a crossmodal effect at the structural level.
Consider a bright-sounding music with a high degree of random variations (perhaps from
shrill, fluttering high-range instruments). Such a sound would attract the listener’s attention
and be perceived as having a ‘larger spectrum’. This property might be transferred to an
increased physical size of a visual object via the ecological correspondence mechanism.

The CIE Lab parameters did not correlate significantly with audio features at the strict level
set by the familywise error rate. We will nevertheless discuss a few cases where colour might
correlate more weakly with audio features, at an uncertain level of significance. Thus, Lightness
might be associated with features such as timbral Irregularity and the tonal features KeyClarity
andMode. The first represents the degree of variation of successive harmonic peaks in the spec-
trum (this would indicate a timbrally rich music); the second, the relative strength of a tonal
centre (e.g. a stable, predictable music); and the third, the degree of minor-to-major tonality, so
that a higher value is ‘more major’ (see [30], p. 112, 127, and 129). All three can be understood
as descriptors of how clearly defined the music is in terms of timbre and tonality. Lightness
might also correlate weakly with Attack time, which is a descriptor of how sharp the dynamic
variations are (i.e. note onset; see [30], p. 99). The influence of these features on Lightness, if
true, might originate in a crossmodal (amodal) association effect linked to the semantic con-
cept of ‘clarity’, so that ‘unclear’music is associated with darker and more shadowy colours.
The results involving Lightness, though not statistically significant at the αc level in the present
data, replicate reported findings in [10] and [20].

CIE a� (green-to-red), similarly to Size, was correlated with Spectentropy and several other
timbral parameters, but might differ by being in addition weakly and negatively correlated with

Table 4. Colour response parameters to music excerpts expressive of high and low dimensional emotions.

Valence Energy Tension

low high low high low high

emotion rating 2.7 7.4 2.9 7.8 2.6 7.8

Size 0.590 0.401 0.458 0.589 0.495 0.475

Lightness 41.1 53.5 46.5 60.5 54.9 34.5

a* 39.5 10.7 -9.6 8.7 7.7 -9.2

b* 18.8 -5.4 -2.3 17.9 7.6 -1.4

Emotion and colour patch ranges as in Table 2. For explanation of variable names, see Table 2.

doi:10.1371/journal.pone.0144013.t004

Table 5. Results from tests on differences in colour association parameters between high and low dimensional emotions.

Valence Energy Tension

W p d W p d W p d

Size 263 0.0061** -0.39 764 0.0013** 0.47 493 0.99 -0.05

Lightness 609 0.19 0.27 811 0.0001*** 0.52 175 0.00009*** -0.78

a* 263 0.0024** -0.59 658 0.057 0.42 363 0.13 -0.36

b* 252 0.0039** -0.65 716 0.0091** 0.48 414 0.35 -0.24

W = Wilcoxon test statistic. Probability codes as in Table 2. d = effect size (Cohen) in standard deviations. For explanation of variable names, see

Table 2, and for asterisk codes of p-values, see Table 3.

doi:10.1371/journal.pone.0144013.t005

Colour Association with Music

PLOS ONE | DOI:10.1371/journal.pone.0144013 December 7, 2015 14 / 26



Irregularity and Spectral spread, as well as with Chromagram peak position. The latter is the
unwrapped chroma, and thus depends not only on pitch class (as is the case with Chromagram
centroid) but also on tonal register ([30], p. 118). Therefore, its correlation with a�, if true,
might depend on spectral shape in ways similar to Brightness and other timbral features, rather
than absolute key.

Finally, CIE b� (blue-to-yellow) might differ from Lightness in terms of how it is influenced
by KeyClarity andMode, and from a� in that it did not appear to be influenced by certain audio
features, such as Irregularity, Spectral flatness, and Spectral spread.

Regressions. In a second step, we analysed the prediction of colour patch association vari-
ables from independent and potentially mediating variables using multivariate partial least
squares regression (PLS; following examples in [38]). The PLS algorithm finds the optimal lin-
ear combination of all potential predictors and projects this combination onto a space of lower
dimensionality (in our present case, two components) that explains a maximum of the variance
in the matrix of dependent variables (in our case, Size, Lightness, a�, and b�). Three prediction
models were defined in order to evaluate the mediating influence of emotion on colour associa-
tion with music. In the first, only audio features were included in the pool of potential predic-
tors. In the second and third models, ratings on dimensional and discrete emotion scales,
respectively, were added to the pool. In each model, we limited the number of components that
the PLS regression could consider to two. This was a reasonable size since the number of cases
was 27 in the present data. Increasing to three components might be justifiable, but when

Table 6. Correlations between colour patch parameters and audio features in 27 film music stimuli.

Colour Patch Parameters

Type Variable Size Lightness a* b*

Psychoacoustic Loudness

Psychoacoustic Sharpness 0.63*** (0.48*) (0.56**)

Psychoacoustic Roughness

Psychoacoustic Fluctuation strength (0.44*)

Rhythmic & Dynamic Tempo

Rhythmic & Dynamic Attack_time (0.5**) (0.44*) (0.4*)

Rhythmic & Dynamic Lowenergy (0.39*)

Timbral Spectral centroid (0.53**) (0.44*) (0.51**)

Timbral Brightness 0.63*** (0.44*) (0.59**)

Timbral Spectral spread (-0.42*)

Timbral Rolloff (85%) (0.6**) (0.51**) (0.51**)

Timbral Spectentropy 0.69*** (0.61***) (0.57**)

Timbral Spectral flatness (-0.45*) (-0.52**)

Timbral Irregularity (0.41*) (-0.43*)

Timbral Zerocross rate (0.53**) (0.57**)

Timbral Spectralflux 0.73*** (0.42*) (0.61***)

Tonal Chromagram (PeakPos) (0.43*)

Tonal Chromagram (Centroid)

Tonal Keyclarity (0.56**)

Tonal Mode (0.41*)

Pearson’s r on Box-Cox transformed variables. Comparisons significant at the familywise error rate corrected level (αc = 0.00064) are given without

parentheses. Comparisons where αc < p � 0.05 are included in parentheses. Comparisons with p > 0.05 are omitted for clarity. For explanation of variable

names, see Table 2, and for asterisk codes of p-values, see Table 3.

doi:10.1371/journal.pone.0144013.t006
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testing it, it did not produce significantly better results, and therefore the smaller model was
preferred. Note that models two and three differed from the first and more basic model only in
having access to more information initially, i.e. the emotion ratings. However, the complexity
of all three models was the same, as each would yield two components employed to simulta-
neously predict the four dependent variables. If the emotion ratings did not contain informa-
tion capable of providing additional explanatory strength, then there would be no difference
when going from the basic first model, with audio features only, to the extended second and
third models.

Robust R2 values (amount of total variance explained), adjusted for the number of predic-
tors, were found by performing cross-validation (in 9 folds, i.e. ‘leave three out’) and taking the
median of 5000 repetitions. 95% confidence intervals around the medians were formed using a
bootstrap method ([43], following [44], p. 214) with 5000 simulations in each case. We also
computed the level of the ‘noise floor’ (i.e., chance level) inherent in the PLSmethod by simu-
lating 5000 randomised inputs to the response interface, calculating the colour patch output,
and then producing R2 with confidence interval on these values in the same way as above.
Thus, a model producing R2 above the noise floor indicates that the corresponding parameters
might be successfully predicted. Likewise, the differences in performance between models can
be evaluated by comparing medians and confidence intervals. The results for the three models
defined above are plotted in Fig 4.

As can be inferred from Table 7 and Fig 4, each of the three models predicted the four col-
our association parameters well above chance level. In terms of Size, the confidence intervals
did not overlap. Therefore we can say that the two extended models performed significantly
better than the basic Model 1, reaching 75% of variance explained. While the model with audio
features was only somewhat successful on its own in predicting Size (70%), it was much less
successful for the CIE Lab parameters, where it explained between 55 and 60% of the total vari-
ance. In terms of Lightness, the differences between models were striking. The model extended
with discrete emotions performed best, predicting 74% of the variance, significantly more than
Model 2 (69%) and Model 1 (54%). In terms of b� (blue-to-yellow), the extended models both
explained around 66% of the variance, significantly outperforming the basic model. Finally, in
terms of a� (green-to-red), all three models explained around 59%. Here, the confidence inter-
vals overlapped, so there was no significant difference between models. Making emotion rat-
ings available to the PLS algorithm did not increase its capacity to explain variation in the a�

parameter.
In summary, Models 2 and 3, which were extended to include information on emotion rat-

ings, generally predicted colour parameters better than the basic Model 1, which only had
access to audio features. This shows that emotion ratings can function as mediator variables
(cf. [38]) when regressing audio features onto colour patch parameters, and lends support to
the hypothesis that emotion can be a mediating mechanism for crossmodal correspondences
between colour and music.

Part three: Qualitative analysis of interviews
In order to gain a richer understanding of how people associate colour with sound, the experi-
ment had included a short, structured interview, following methods in [39]. The focus inter-
views, lasting approximately 10 minutes each (range 6. . .15 minutes), were organised around
four questions: 1) “In your own words, describe your impressions of the experiment”; 2) “How
would you describe the way you chose a colour for a sound?”; 3) “What aspects of the colour
did you focus on?”; and 4) “What aspects of the sound or music did you focus on?”. The free-
form spoken responses were transcribed and carefully analysed. After elimination of filler
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Fig 4. Errorbar plot of variance explained in three models for predicting colour patch parameters.Multivariate predictions of Size, Lightness, a*, and
b* for the three models are given on the x-axis. The level of variance explained, i.e. cross-validated R2 adjusted for the number of predictors, is given on the
y-axis. Symbols indicate the median result in each case with bootstrap 95% confidence interval. The dashed black line at R2 = 0.458 indicates the noise floor
(or chance level), with the two grey dashed lines indicating its 95% confidence interval.

doi:10.1371/journal.pone.0144013.g004

Table 7. Three models for multivariate prediction of Size, Lightness, a*, and b* from audio features with and without emotion ratings.

Model 1 (audio) Model 2 (audio & dimensional) Model 3 (audio & discrete)

R2 cv. adj. R2 cv. conf. int. R2 cv. adj. R2 cv. conf. int. R2 cv. adj. R2 cv. conf. int.

Size 0.728 0.705 0.691. . .0.722 0.757 0.737 0.723. . .0.750 0.766 0.746 0.730. . .0.759

Lightness 0.580 0.544 0.517. . .0.564 0.715 0.691 0.674. . .0.711 0.762 0.742 0.725. . .0.754

a* 0.620 0.588 0.559. . .0.614 0.625 0.593 0.568. . .0.613 0.629 0.597 0.581. . .0.611

b* 0.635 0.604 0.581. . .0.619 0.683 0.657 0.637. . .0.680 0.688 0.661 0.633. . .0.669

R2 cv. = median cross-validated R2 (amount of total variance explained). adj. R2 cv. = median cross-validated R2 adjusted for the number of predictors.

conf.int. = 95% confidence interval around median adj. R2 cv., based on 5000 simulations. For explanation of variable names, see Table 2.

doi:10.1371/journal.pone.0144013.t007
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words, the text corpus consisted of 2585 words, in sentence fragments of between 3 and 18
words in length. The corpus was subjected to classical content analysis (see [40] for a review).
A coding frame was set up from the working hypothesis that participants would spontaneously
apply informal yet specific listening strategies (cf. [8]) in the crossmodal colour association
task. However, such strategies might not be explicit if they were not consciously available to the
participants, most of whom were not musically trained. Through a process of bottom-up cate-
gorisation of the text corpus, we aimed to detect implicit strategies, and infer their dependence
on different crossmodal correspondence mechanisms. Responses where the participant had in
some way expressed an association between colour, sound, and emotion, or some other emer-
gent topic, were identified and compared. They were stripped down to fragments highlighting
the essentials, and grouped by focal concepts.

Associations with emotion. We first identified fragments that explicitly related colour or
sound with emotion. There were many of these in the corpus, despite the fact that none of the
interviewer’s questions directly mentioned emotion (perceived or evoked). After categorisa-
tion, selected fragments were laid out in a Valence (V)—Arousal (A) circumplex, at the approx-
imate position indicated by a key word indicating affect. A pattern of how colours had been
named in association with affect emerged. As Fig 5 shows, fragments mentioning ‘yellow’
appeared in the V+A+ quadrant (upper right), ‘red’ in the V-A+ quadrant (upper left), ‘grey’ in
the V-A- quadrant (lower left), and ‘blue’ or ‘green’ in the V+A- quadrant (lower right). Note
that the ‘close-to-far’ physical dimension of the interface, i.e. the “y axis” of the Wacom tablet
lying flat on the table in front of the participant, was mapped to the b� colour space dimension,
i.e. from blue to yellow. The many correspondences between dimensions in colour space (e.g.
b�), semantic space (words indicating affect, interpretable in terms of e.g. Arousal), the space of
dimensional emotions (e.g. perceived Energy), spectral shape (e.g. Brightness), and physical
space (i.e. the topology of the response interface) are remarkable. These congruencies, some of
which point to SMARC-like effects (cf. [14] and [15]), are likely to depend on more than one
crossmodal mechanism, and might be investigated in future work.

Associations between colour and sound. We then identified the fragments that con-
nected colour and sound. Recall that the unfolding of the emotional mediation mechanism
might be described, in Palmer’s words: “as people listen to the music, they have emotional
responses. . . and then pick colors with similar emotional content [as the music]” ([10], p. 3).
We reviewed the patterns that had emerged from the correlation analysis (see the previous sec-
tion and Table 6) in light of the categorised interview responses. In Fig 6, we have attempted to
map out the complex relationships between text fragments within a single diagram that is
determined by audio features (grouped at the perceptual level) and the colour patch parameters
Size, Lightness, a� (green-to-red), and b� (blue-to-yellow). While this might be a speculative
mode of presentation, the layout highlights cases in which the interview response fragments
echoed the quantitative results. In particular, the diagram illustrates three patterns that
emerged from the correlation analysis in the previous section; first, the correspondence
between Lightness and tonal features, and inversely, the negative correspondences between
Lightness and rhythmic/dynamic features; second, the ‘oblique’ (or diagonal) positive corre-
spondence between timbral features and a� and b� dimensions; and third, the correspondences
between visual Size and sonic “volume” and pitch.

Four mechanisms of crossmodal association. Finally, we distilled response fragments
that evidenced the different classes of crossmodal association reviewed in the Introduction—
structural, ecological, semantic, and emotional—via focal concepts. Through this process, sub-
categories emerged that were brought together into a tentative framework, shown in Table 8.
The leftmost column in the table includes the four hypothesised basic mechanisms, the middle
column suggests a ‘link function’ (i.e., the direction of attention) and the rightmost column
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lists examples of relevant participant response fragments from the present study. Note that sev-
eral fragments mentioned ‘blue’ in relation to water, and ‘green’ in relation to nature or ani-
mals. These are examples, perhaps trivial, of the ecological principle of crossmodal association
at work. More subtle is the distinction between, on the one hand, fragments connecting a col-
our or sound with an actual physical action (e.g. tapping), and, on the other hand, the imagina-
tion of being in a physical environment (i.e. imagery or memory). We suggest that the former
could include examples of structural crossmodal association, and the latter of emotionally
mediated crossmodal association, for the following reason. As it is well known that music can
evoke emotions linked with (specific) memories or (prototypical) imagery, it might be that
such memory or imagery presents itself to the conscious mind as ‘non-concrete’ entities, or
mental representations, alongside the auditory input. The interpretation of such a non-con-
crete entity, in particular if it contains objects with an ecologically veridical colour, would then
strongly influence the way a colour association is made with the music.

Fig 5. Fragments of spoken interview responses indicating an association between colour and emotion words, distributed in the Valence-Arousal
circumplex. Numbers in parentheses refer to Participant and Interview Question.

doi:10.1371/journal.pone.0144013.g005
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Summary of results
Summing up and comparing with results from previous studies, we must first caution against
broad generalisations given our relatively small sample of participants. At the same time, direct
comparisons with previous studies might be unreliable since the reviewed studies used colour
schemes in which the parameters are perceptually confounded.

The planned tests revealed that in the present data, Happymusic was associated with col-
ours of significantly higher CIE Lightness than Anger, Fear, or Sadmusic. This is comparable to
previous findings (e.g. [10], p. 2, and [20], p. 3), where music in major keys was rated as more
‘light’ or ‘bright’ than music in minor keys, if we accept the broad assumption that music in the

Fig 6. Fragments of spoken interview responses indicating approximate patterns of associations between colour parameters (dotted lines) and
audio features (full lines). Numbers in parentheses refer to Participant and Interview Question.

doi:10.1371/journal.pone.0144013.g006

Table 8. Fragments of spoken interview responses indicating amechanism of crossmodal association.

mechanism directed to response fragments indicating crossmodal association

structural audio spatialisation panning demanded zig-zag (6.2) left-right. . . strong panning effect (8.2) panning. . . move left-right (16.4)

structural physical tapping rhythm. . . I tap the pen (16.2) giddy-giddy sounds. . . speccles of colours [makes tapping gesture] (17.4)

structural movement
(imagined)

sound pushing others away (13.3) tripping. . . catch[ing] up (1.2) running around (5.4)

ecological water blue water (1.3, 21.2) water blue (4.4, 5.2, 8.2, 11.2, 16.2)

ecological nature, birds nature blueish/greenish (17.2) nature green (5.2, 11.2) birds green (1.3) animals green, forest (16.2)

cognitive /
semantic

tactile feel this area [of the colour response interface] warm. . . muddy. . . cold (19.1)

cognitive /
semantic

audiovisual noise white (7.2) noise vocals machines white (4.4) mechanical. . . gray (21.4) singing red (11.2)

emotional memory memory childhood (13.1). . . strong memories (13.4) [memories of] walking in Colombia. . . crowds brownish-
red (8.3)

emotional imagery I imagine myself on the beach (6.2) sound of water. . .I visualise a beach (21.2) film (10.4) movie (11.2)

Numbers in parentheses refer to Participant and Interview Question.

doi:10.1371/journal.pone.0144013.t008
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major is generally perceived as more happy. At the same time, Happymusic was associated
with more yellow (rather than blue) colours than Tender, Sad, or Fearmusic; this replicates
and extends findings reported in [10] and [20]. In our study, Angermusic was associated with
more yellow colours than Sad or Tendermusic, and, at the same time, with more red (rather
than green) colours than Tendermusic. This shows that colour might be used as a response
method to identify well-defined discrete emotions. In our study, Angermusic tended to be
associated with large, dark patches towards red and yellow (i.e. ‘terracotta’), replicating findings
in [20]. Tendermusic was associated with small, light patches towards red and blue (i.e. ‘vio-
let’). Happymusic was given large, very light patches towards red and yellow (i.e. ‘orange’).
Fear and Sadmusic tended to be associated with medium-sized, dark patches towards the mid-
dle of the a�-b� plane (i.e. ‘grey’). None of the reviewed previous studies had investigated
dimensional emotions. In our study, music of low Valence tended to be associated with large,
dark colours towards red and yellow (similar to Anger), while music of high Valence was given
small, light patches towards green and blue (similar to Tender). Music with low Energy was
associated with small patches towards green and blue, while high Energymusic was given large
patches towards red and yellow (similar toHappy). These findings were consistent with results
from the qualitative analysis of focus interviews, which showed that the participants were able
to verbalise their colour association strategies, albeit implicitly. This was evidenced, for exam-
ple, in the connections they spontaneously made between between emotion-words and colour-
words, such as ‘danger’ being mentioned together with ‘red’; ‘happy’ with ‘yellow’; ‘gloom’ with
‘grey’; and ‘calm’ with ‘blue’. This compares well with previously reported findings (see [10],
Fig 6; and [20]). Finally, the females in this study generally made associations using smaller
patches than the males did.

A correlation analysis indicated patterns of relationships between colour patch parameters
and audio features. We have interpreted the strong correlations between colour patch Size and
timbral features of the stimuli as a crossmodal effect at the structural level, whereby music with
a brighter and more variable spectrum is perceived as ‘larger’, and thus associated with visual
objects of larger size. This might provide an extension of well-known amodal correspondences
to physical size, for example with loudness (see [2]), to modal attributes of timbre. The slightly
weaker correlations between Lightness and tonal or timbral features might be crossmodally
mediated by the semantic concept of ‘clarity’. The correspondences between timbral features
and both a� and b� were complex and call for further research in order for the patterns that
this study has uncovered to be better understood. Comparison with previous work is difficult
as none reported computationally extracted audio features. Palmer and collaborators [10] used
excerpts of orchestra music with different tempo and reported interesting findings, but in our
data, Tempo as detected by theMIR Toolbox was not significantly associated with any colour
patch parameter. Future research might elucidate this matter. Lipscomb and Kim [13] included
a factor called “loudness” but it was in fact an amplification percentage on a sampler. Their
samples were not normed by a psychoacoustic method, and it cannot be ruled out that their
loudness factor was confounded with other audio features such as timbre. In our present work
the stimuli were normed, which explains why Loudness (N50) did not correlate significantly
with any of the colour patch parameters.

We investigated the contribution of emotion to predicting colour patch parameters over
and above audio features by performing multivariate linear regressions and comparing three
different models. In the basic model, only audio features were available as predictors, while in
two extended models, the pool of potential predictors also included discrete and dimensional
emotions, respectively. In each model, colour patch parameters were predicted above chance
level, and in some cases, up to 75% of the variance was explained. The robustness of the predic-
tive models was evidenced by high cross-validated R2. Comparison between models revealed
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that the inclusion of emotion ratings significantly contributed to increased cross-validated R2

values for three of the colour patch parameters, Size, Lightness, and, b� (blue-to-yellow), though
not for a�. The importance of emotion to the association task was given further support by the
qualitative analysis of interviews, which showed that the colour patch decision strategy for sev-
eral participants was explained or justified by a reference to a visual imagery or episodic mem-
ory of a physical situation, which included strong sonic and visual components along with an
evoked affect (cf. [7]).

Colour association to music is but one part of the complex research field of crossmodal
interactions. As a response modality, colour presents a non-verbal means to understanding
how people respond to sound. An important part in the present work was the design of an
improved colour response interface. Compared to response methods used in previous pub-
lished research, ours has certain advantages. Firstly, the interface presents a single colour patch
instead of many, thus avoiding visual distraction and confusion. Secondly, the response is fast
and continuous, and can be used to track a melodic phrase or dynamic envelope. Thirdly and
more generally, using colour as a response modality provides a way to study music perception
that does not rely on semantic scales. As Gabrielsson wrote: “Music experience is a complex
phenomenon, and is influenced by a variety of interacting factors. Different individuals react
differently, and reactions to the same music may vary on different occasions. Many people find
it extremely difficult to describe their experience; it seems to elude common vocabulary.” ([45],
p. 547). Thus, a ‘free-form’ colour response interface might be useful in music studies with very
young children, or with adults of limited semantic capacity such as stroke patients.

General Discussion
The way people make colour association with music depends on their individual psychological
makeup [4], but also, and to a high degree, on the nature of the sound itself; categorical listen-
ing strategies might apply. We have seen that some music-colour associations can be explained
by neuro-biological mechanisms via structural amodal correspondences [2], by ecological
mechanisms via physical source identification [46], and by semantically mediated correspon-
dences via visual imagery [7]. How can emotional mechanisms function in this context? In
[46], Gaver proposed that if the perceived input is rich in information, the brain’s task of
decoding it is simple. This is the case for source identification within natural environments,
where amodal stimulus attributes inferred from different sensory inputs are correlated statisti-
cally; this principle might also be fundamental to explaining musical expectancy (cf. [7] and
[47]). In a situation of temporary sensory deprivation, however, an organism might still need
to correctly infer the physical size of a source to identify a threat. In darkness, the detection of
environmental changes depends on accurate sound perception, while in daylight, both visual
and sonic inputs are available. The capacity to match input from the two domains—to correctly
associate sonic perception with an audiovisual memory of a visually verified physical source—
gives a survival advantage. The ecological mechanism is thus produced via statistical corre-
spondences based on natural covariation of sensory attributes. It could then be argued that
crossmodal associations based on the principle of ecological perception are independent of
emotional processing. Conversely, affectively mediated modal correspondences in humans
(and possibly in other higher animals) might arise from the lack of environmental stimulation.
In a context of ecological listening, Gaver proposed that in cases where the sensorial input
under-specifies a detected event, leaving the source uncertain in the mind of the perceiver,
some other mechanism might try to “fill the gap”. He wrote: “If the input for perception is
inadequate to specify events, then processing mechanisms must be complex to compensate.”
([46], p. 288). But what happens if higher level processing such as memory recall is still not
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sufficient? There is experimental evidence that, while sound from an identified source might
elicit a predictable affective response, an acoustically equivalent but unidentifiable sound might
not do so, or to a lesser extent [48]. Could it be, in such cases, that the ecological crossmodal
association mechanism does not kick in? This would suggest that fantasy and imagination
could be sparked from incompletely identified events. Interestingly, this mechanism might
cause a blurring of the perceived locale of an under-specified event, if ecological and emotional
associations contradict each other. We may imagine that, for example, the brain can either
determine a ‘source’ of sensory information as residing outside its observing consciousness, as
an abstract yet actual entity in the world (e.g., a ghost); or alternatively, it can perceive the
‘source’ as residing inside its mind, as a ‘non-concrete’ entity (e.g., an idea or memory). In
either case, it appears the human brain is adept at creating meaningfulness out of thin data,
when veridicity escapes it. In this sense, crossmodal associations might emerge from an emo-
tional mechanism that is neither structural nor cognitive, and that works in the opposite way
to the ecological principle.

Limitations and future work
One limitation of the present work lies with the interface design. The motor actions afforded
by the physical part of the interface are likely to have limited the responses during the experi-
ment. It is not impossible that the instructions given to the participants before the experiment
attenuated individual differences with regard to the range of emotional responses by restricting
free visual association and spontaneous imagery that might otherwise have been evoked by the
music (cf. [49], p. 9). For example, one person said during the interview: “the sounds were not
‘round’ like the circle, they sound[ed] more dynamic, tense” (participant 2). While this person
found that the “interface is intuitive [and] responds well”, others were less comfortable with it:
“the pressure determines the shape is another distracting element. . . single size could be better”
(participant 5). It happened on a handful of occasions that a participant would spontaneously
move the pen on the Wacom tablet in large sweeping gestures, suggesting that the participant
was more preoccupied, at that point, with producing the physical gesture in response to the
music, rather than the 'mishmash' of visual colours on the screen. Averaged over time, the
response data in such situations would unfortunately simply be more or less ‘grey’, as the inter-
face could not capture the intention behind such gestures. For some participants, the physical
gesture of manipulating the interface took on a meaning in itself, beyond that of simply pro-
ducing a colour patch. For example, one said: “sometimes rhythm beatings, I tap my pen
according to the soundfiles” (participant 16), and another highlighted “the rhythms. . .of scrib-
bling” while making the gesture in the air (participant 9). Could such gestures be coded as cate-
gorical responses? Future experimental designs might look into developing the colour response
interface further, to account for recognition of gestures. Meanwhile, we are developing a ver-
sion of the CIE Lab response interface for Internet-based experiments. More data will lead to
increased analytical power, even if the residual error is expected to be large in view of the
reduced control over experimental setting, equipment, and procedure (see [50] for consider-
ations of conducting perceptual research online).

Another limitation of the present work lies in the unresolved conflict or complementarity of
the dimensional and discrete emotion models. A possible way forward might be the “hybrid
model” of emotion, where “common discrete emotions can be regarded as attractors or hot
spots in [a continuous two-dimensional] affect space” ([26], p. 41). This might produce a
broad and inclusive model, one that is able to characterise the difference between aesthetic and
utilitarian emotions, something which would be suitable for research in multimodal association
with the wider world of soundscapes, inclusive of, but vastly larger than, the purely musical.

Colour Association with Music

PLOS ONE | DOI:10.1371/journal.pone.0144013 December 7, 2015 23 / 26



The present work has shown that when associating colour with music, emotion can function
as a mediating mechanism. That is, people associate colour with music in ways that are congru-
ent with the emotions they spontaneously perceive in the music, or with emotions that are con-
nected with memories or imagery within themselves while listening. In future work, we will
develop the colour response method further and extend our knowledge of the way crossmodal
association works to listening contexts beyond music for film, including, for example, sound-
scapes, electroacoustic music, and audiovisual performance. We expect all of the structural,
ecological, cognitive, and emotional crossmodal association mechanisms to be active in these
contexts.
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