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Abstract

Background

Information currently available on the impact of palladium on the immune system mainly
derives from studies assessing the biological effects of palladium salts. However, in the last
years, there has been a notable increase in occupational and environmental levels of fine
and ultrafine palladium particles released from automobile catalytic converters, which may
play a role in palladium sensitization. In this context, the evaluation of the possible effects
exerted by palladium nanoparticles (Pd-NPs) on the immune system is essential to compre-
hensively assess palladium immunotoxic potential.

Aim

Therefore, the aim of this study was to investigate the effects of Pd-NPs on the immune sys-
tem of female Wistar rats exposed to this xenobiotic for 14 days, by assessing possible
quantitative changes in a number of cytokines: IL-1a, IL-2, IL-4, IL-6, IL-10, IL-12, GM-CSF,
INF-y and TNF-a.

Methods

Twenty rats were randomly divided into four exposure groups and one of control. Animals
were given a single tail vein injection of vehicle (control group) and different concentrations
of Pd-NPs (0.012, 0.12, 1.2 and 12 ug/kg). A multiplex biometric enzyme linked immunosor-
bent assay was used to evaluate cytokine serum levels.

Results

The mean serum concentrations of all cytokines decreased after the administration of
0.012 pg/kg of Pd-NPs, whereas exceeded the control levels at higher exposure doses.
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The highest concentration of Pd-NPs (12 pg/kg) induced a significant increase of IL-1a, IL-
4,1L-6, IL-10, IL-12, GM-CSF and INF-y compared to controls.

Discussion and Conclusions

These results demonstrated that Pd-NP exposure can affect the immune response of rats
inducing a stimulatory action that becomes significant at the highest administered dose.
Our findings did not show an imbalance between cytokines produced by CD4* T helper (Th)
cells 1 and 2, thus suggesting a generalized stimulation of the immune system with a simul-
taneous activation and polarization of the naive T cells towards Th1 and Th2 phenotype.

Introduction

Palladium (Pd) is a noble metal that belongs to the platinum group elements (PGEs). Over the
past few decades, Pd found increasing application as an active catalyst material in modern
three-way automobile catalytic converters [1, 2].

The mandatory use of these devices has resulted in a significant reduction in the emission
into the atmosphere of hazardous pollutants from lean-burn engines with more than 90% of
carbon monoxide, hydrocarbons, and nitrogen oxides (NOx) being converted into less harmful
carbon dioxide, water and nitrogen [3-5]. Unfortunately, although these devices reduce emis-
sions of the aforementioned pollutants, they have become a primary anthropogenic source of
Pd, which is released into the environment, both in the fine and ultrafine (<100 nm) airborne
particle fraction, due to the physico-chemical [6-9]. This release has inevitably increased the
Pd levels in the general living and occupational environments [10-16], therefore enhancing the
likelihood of human exposure to Pd particles, also in the nano-metric scale. In this emerging
exposure scenario, concerns have been raised regarding the possible adverse effects Pd-NPs
may exert on the human health, and particularly on the immune system of exposed subjects.

Recent evidence, in fact, demonstrated the Pd ability to induce allergic reactions in suscepti-
ble individuals generally exposed to the metal through jewellery and dental restoration contact
[17-24], which could be mediated by the release of Pd ions acting as potent sensitizers [25].
Additionally, exposure to Pd-salts was demonstrated to significantly affect the production and
release of different cytokines (Table 1). An increase of the interleukin (IL)-6 levels was detected
in an in vitro skin equivalent model, consisting of human fibroblasts and keratinocytes [26].
Comparably, an enhanced secretion of IL-6 and IL-8 was observed in a three-dimensional
human tissue model based on TR146 cells isolated from a squamous cell carcinoma of the buc-
cal mucosa [27], while an and inhibiting effect on the release of IL-5, interferon (INF)-vy, and
tumor necrosis factor (TNF)-o was reported in human peripheral blood mononuclear cells
(PBMC) obtained from healthy male volunteers [28]. Similarly, our previous in vivo studies
(Table 1) showed that Pd has a significant immuno-modulating effect able to alter the T-helper
(Th)1/Th2 cytokine balance in Wistar rats subacutely and subchronically exposed to a Pd salt
[29, 30].

Concerning the immunologic effects induced by Pd nanoparticles (Pd-NPs), recent in vitro
investigations have proved the ability of such NPs to modulate the expression and release of
different cytokines, although with quite different results compared to the Pd-bulk forms
(Table 1). Wilkinson et al. [31] showed that the treatment of primary bronchial epithelial cells
(PBEC) and lung carcinoma epithelial cell line (A549) with 0.01-10 ug/ml of Pd-NPs resulted
in a concentration-dependent reduction in IL-8, in the lower concentration range, and a slight
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Table 1. In vitro and in vivo studies investigating cytokine production after exposure to Pd and Pd-NPs.

Type
of
study

In vitro

In vitro

In vitro

In vivo

In vivo

Type
of
study

In vitro

In vitro

In vitro

Test materials

Palladium with purity/
composition = 99.999%

Palladium dichloride (PdCl,)

Ammonium
hexachloropalladate
(NH,)2[PdClg]; Ammonium
tetrachloropalladate
(NH,4)o[PdCl,]; PACI,.

Potassium
hexachloropalladate (K5)
[PdClg]

Potassium
hexachloropalladate (K5)
[PdCle]

Type and physico-chemical
properties of NPs

Metallic Pd-NPs with a mean
size (+SD) of 10.4+2.7 nm.

Pd-NPs with 5—10 nm
diameter

Pd-NPs with 5—10 nm
diameter

doi:10.1371/journal.pone.0143801.t001

Experimental protocol

Cell lines/animal models

Pd exposure

Test specimen (10 mm X 10
mm X 1 mm) was placed on
human fibroblast-keratinocyte
cocultures for 0.5 min, 1, 2, 3,
5,7,10and 24 h

Cell cultures were exposed to
150 pl of various
concentrations (0.05 mM to
50 mM) of PdCl, for 24 h

Cell cultures were exposed to
concentrations of 10™-107"
M of different Pd salts for
24 h

Male Wistar rats were
exposed for 14 days to 1, 10,
100 and 250 ng/ml of (K»)
[PdClg]

Male Wistar rats were
exposed for 90 days to 1, 10,
100 and 250 ng/ml of (Ky)
[PdClg]

Experimental protocol

Three-dimensional cell culture
system consisting of human
fibroblasts and keratinocytes

(Skin®™ model ZK1200)

Three-dimensional tissue culture
model consisting of TR146 cells
(from a biopsy specimen of a
squamous cell carcinoma of the
buccal mucosa) grown on
polycarbonate filters

Phytohaemagglutinin (PHA)
stimulated peripheral blood
mononuclear cells (PBMC)
obtained from 9 healthy male
volunteers

Male Wistar rats

Male Wistar rats

Cell line

Pd-NPs exposure

Cell cultures were incubated
in media alone as control or
with Pd-NPs at a
concentration ranging from
0.01 pg/ml to 10 pg/ml for
24 h

Cell cultures were exposed
for 12 h to Pd-NPs
concentrations of 107> and
10~ M with and without
10 pg/ml of
lipopolysaccharide (LPS)

Cell cultures were exposed
for 12 h to 10~° M of Pd-NPs
with and without 10 pg/ml of

LPS

Lung carcinoma epithelial cell line
(A549); Primary bronchial
epithelial cells (PBEC).

PBMC obtained from 8 healthy
female non atopic volunteers

PBMC obtained from 12 healthy
non atopic female volunteers and
from 8 Pd-sensitized female
volunteers

Results

Palladium did not influence
cell viability; Increased
(4-fold) IL-6 levels were

observed in cultures
exposed to palladium.

PdCI2 did not reduce cell
viability at any
concentration tested;
Increased (25- to 30-fold)
IL-6 levels; Increased (10-
to 15-fold) IL-8 levels.

(NH4)2[PdCI6], and to a
lesser extent (NH4)2
[PdCI4] and PdCI2,
significantly inhibited IFN-y
release; Similar inhibitory
effects were observed for
TNF-a and IL-5 release.

Increased IL-4 production;
Increased IL-2 production
(only at 250 ng/ml); No
effects on INF-y
production.

IL-2 levels were decreased
up to 100 ng/ml and
increased at 250 ng/ml;
Increased INF-y levels; No
effect on IL-4 levels.

Results

Concentration-dependent
decrease of IL-8 in the
lower concentration range;
Increased IL-8 levels at the
highest concentration.

10-5 M of Pd-NPs
significantly increased the
release of IFN-y, and
decreased the release of
TNF-a and IL-17; No
significant effects were
observed on IL-5 and IL-10
release.

In LPS stimulated PBMC
the administration of Pd-
NPs significantly increased
INF-y release and reduced
TNF-a release, while no
significant effects were
observed on IL-5 and IL-10
release.

References

[26]

[27]

(28]

[29]

(30]
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tendency towards increased levels at the highest concentration, in addition to a decrease of
pro-inflammatory cytokine TNF-o in human epithelial cells. The influence of Pd-NPs (5-10
nm) on the release and expression of cytokines was also investigated in PBMC of non-atopic
women exposed to 107> and 10® M of this xenobiotic [32]. In this study, Pd-NPs exerted
immuno-modulatory effects enhancing the release of IFN-y and inhibiting the secretion of
TNF-o and IL-17. Similar results were also observed in PBMCs of Pd-sensitized women
exposed to comparable concentrations of Pd-NPs [33].

From a public and occupational health perspective, the increasing levels of Pd in living and
working environments, its well known hyper-sensitivity potential and the preliminary results
concerning the ability of its nano-sized form to induce immunological alterations in vitro,
seem to call for greater scientific efforts to define the possible immuno-toxic action of Pd-NPs
in animal models. This appear an even more urgent issue of research, considering that the
peculiar physico-chemical properties of materials at the nano-sized level may change their bio-
logical reactivity and potentially their harmful effects on human health [34, 35]. Therefore, the
aim of the present study was to evaluate the effects of Pd-NPs on the immune system of female
Wistar rats exposed to this xenobiotic for 14 days, by assessing possible quantitative changes in
a number of cytokines (IL-10, IL-2, IL-4, IL-6, IL-10, IL-12, granulocyte-macrophage colony-
stimulating factor (GM-CSF), INF-y and TNF-a).

Materials and Methods

Preparation and characterization of uncoated palladium nanoparticle
hydrosol

As a first step, 300 pL of a freshly prepared 0.029 molar sodium borohydride solution, obtained
by dissolution of 11 mg of sodium borohydride (p.a., Merck, Darmstadt, Germany) in 10 mL
of ultrapure water, were diluted in 100 mL of ultrapure water. Then, 500 uL of a Pd stock stan-
dard solution (1000 mg/L, PdA(NOs3), in 0.5 mol/L HNO3, Merck, Darmstadt, Germany) were
added and the mixture was shaken thoroughly. The immediate color change from transparent
to dark grey indicated the formation of Pd-NPs. The mixture was kept in the dark at room tem-
perature for 12 hours to allow complete reaction.

The Pd-NPs hydrosol obtained was characterized by continuum source—graphite furnace
atomic absorption spectrometry (CS-GFAAS; contrAA 600, Analytik Jena, Jena, Germany)
and transmission electron microscopy (TEM; Zeiss EM 10, Carl Zeiss Microscopy GmbH,
Jena, Germany) operating at 80 kV. The Pd concentration of the stock hydrosol was deter-
mined in a 100-fold dilution of the stock hydrosol in ultra pure water by means of CS-GFAAS
using the spectral line at 244.791 nm. Calibration was performed in a concentration ranging
from 20 to 80 ug Pd/L by applying adequate dilutions of a Pd stock standard solution (1000
mg/L, PA(NO3), in 0.5 mol/L HNOj, traceable to Standard Reference Materials from the
National Institute of Standards and Technology, Merck, Darmstadt, Germany) in 0.5 mol/L
HNOs. This resulted in a linear calibration function with a correlation coefficient of 0.986. The
stock hydrosol Pd concentration was found to be 4.71 + 0.05 mg/L. The measurement of 500
individual particles depicted by TEM images using Image] software (National Institutes of
Health, Bethesda, MD) revealed the size distribution of the particles to be 10 + 6 nm (Fig 1).
The hydrosol served as a stock solution for all experiments and is stable for at least 2 weeks
when stored in refrigerators at 4°C. Before use, the stored Pd-NP hydrosol was homogenized
by shaking vigorously. Finally, aliquots of the stock solution were diluted in ultrapure water to
obtain the final concentrations used in the experiments.
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Fig 1. Palladium nanoparticle characterization. Mean Size distribution histogram of Pd-NPs (A) obtained from evaluation of TEM images (B) taking into
account over 500 nanoparticles. The measurement of 500 individual particles depicted by TEM images revealed the size distribution of the particles to be

10+ 6 nm.

doi:10.1371/journal.pone.0143801.g001

Animal husbandry

Twenty three-month-old female, pathogen-free Wistar rats were supplied by the Experimental
Animal Production Plant of the Catholic University of the Sacred Heart (Rome, Italy) and
allowed to acclimatize for two weeks before starting the experiment. Wistar rats are an outbred
strain of albino rats employed in all fields of medical and biological research as a general multi-
purpose model [36]. In fact, the use of rats offers a series of advantages such as metabolic path-
way similarities to humans, similar anatomical and physiological characteristics, a large
database for comparative purposes [37]. In this regard, currently, the rat is definitely the species
of choice for non-clinical immuno-toxicity and in particular outbred Wistar rats are often used
due to their acceptable inter-animal variability [38, 39]. The animals were maintained during
the entire experiment in Makrolon cages (model 1291, with overall dimensions of
425x266x185 mm and floor area of 800 cm?®) (Tecniplast S.p.A., Buguggiate, Italy) containing a
wooden dust-free bedding (model Scobis Uno, Mucedola s.r.l,, Settimo Milanese, Italy), at a
room temperature of 23.1°C, a relative humidity of 55% and a 12-h light/dark cycle. The ani-
mals had a mean weight of 271 + 16 g and were fed with the solid “R” maintenance diet for rats
(Altromin Rieper A. S.p.A., Vandoies, Italy). Diet and purified water were provided ad libitum
to the animals. No significant changes in body weight were observed during and at the end of
the experiments.

Ethics statement

The animal study has been approved by the Ethical Committee “Commissione per la Valuta-
zione Etica di Sperimentazioni Animali e di Correttezza della Gestione dell” Animal Care” of
the Catholic University of the Sacred Heart of Rome, Italy, under permit number 20H, and has
been authorized by the Italian Ministry of Health, according to the Legislative Decree 116/92,
which implemented in Italy the European Directive 86/609/EEC on laboratory animal
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protection. Animals used in this study were housed and treated according to Legislative Decree
116/92 guidelines and all efforts were made to minimize animal suffering.

Animal administration and sampling of biological material

The twenty female Wistar rats were randomly divided into four exposure groups and one con-
trol group, with four rats per group. Rats were given a single injection of vehicle (control
group) and different concentrations of Pd-NPs (0.012, 0.12, 1.2 and 12 pg/kg) via the tail vein.
On 14™ day after exposure, rats were anesthetized with 0.5 mg of medetomine and 75 mg of
ketamine per kg body weight. Subsequently, blood from each animal was drawn by cardiac
puncture and collected in a 1.5 ml vial (Eppendorf srl, Milan, Italy). Serum samples were
obtained from blood by centrifugation (3,500 rpm per 15 min) and stored at -28°C until analy-
sis. After the blood sampling, rats were euthanized via exsanguination by cutting both the
abdominal aorta and vena cava.

This particular administration route was chosen for the xenobiotic as the intravenous route
of application produced a worst case scenario of 100% bioavailability. The doses used to treat
animals, were selected in order to resemble possible occupational and/or environmental expo-
sure scenarios. In fact, if we take into consideration the Pd airborne levels (highest mean level
of 7.70+4.15 mg/m°) reported in literature for an occupational setting [40] and a human
breathing rate of around 20 m*/day (for a man with a mean weight of 70 kg), a potential occu-
pational exposure to Pd via inhalation corresponds to an exposure dose of 2.20 mg/kg, which is
in the range of doses used in our experiments. Therefore, the higher exposure doses (1.2 and 12
mg/kg) simulated possible occupational exposure both under normal and accidental conditions
during which re-exposure can occur. The lower doses (0.012 and 0.12 mg/kg) were used to
investigate potential adverse effects at exposure levels closely resembling those of the general
population and to establish a preliminary dose-response curve for defining the toxicological
behavior of Pd-NPs [41].

Analysis of serum cytokines

A multiplex biometric enzyme linked immunosorbent assay (ELISA)-based immunoassay,
containing dyed microspheres conjugated with a monoclonal antibody specific for a target pro-
tein, was used, in accordance with the manufacturer’s instructions (Bioplex Rat Cytokine
9-Plex A panel; BioRad Inc., Hercules, CA), for the simultaneous detection and quantitation of
IL-1a, IL-2, IL-4, IL-6, IL-10, IL-12, GM-CSF, INF-y and TNF-o. Cytokine levels were deter-
mined using a Bio-Plex array reader an automated flow-based microfluidic device that uses a
dual-laser fluorescent detector with real-time digital signal processing for quantitation (Bio-
plex, Biorad).

Statistical methods

Statistical analysis was carried out by IBM SPSS statistics software (IBM Statistical Package for
Social Sciences for Windows, Version 22.0. Armonk, New York, USA). Levels of cytokines IL-
la, IL-2, IL-4, IL-6, IL-10, IL-12, GM-CSF, INF-y and TNF-o were measured after the four lev-
els of exposure on day 14. The normal distribution of observed values was checked using the
non-parametric Kolmogorov-Smirnov Z test and variance homogeneity was tested using the
Levene test. One-way analysis of variance (ANOV A) was then performed to test the signifi-
cance of differences in parameter means in the exposed and control rat groups. The Dunnett
post hoc multiple comparison test was used to test the significance (p value Dunnett t test
<0.05) of differences in values for each parameter at different exposure levels against the
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Table 2. Mean serum levels (standard error) and statistical significance of IL-1q, IL-2, IL-4, IL-6, IL-10, IL-12, GM-CSF, INF-y and TNF-a in control
and palladium nanoparticles-exposed (0.012, 0.12, 1.2 and 12 pg/kg) female Wistar rats.

Cytokines Number of Controls Doses of exposure (ug/kg) ANOVA F p value
rats test ANOVA
0.012 0.12 1.2 12
IL-1a (pg/mL) 4 245.3 (34.4) 205.3 356.9 (38.3) 293.7 (22.2) 390.0* (70.2) 3.4 0.03
(19.8)
IL-2 (pg/mL) 4 417.9 (74.0) 285.2 759.5% (141.9)  585.3 (42.9) 727.1 (129.5) 45 0.01
(37.0)
IL-4 (pg/mL) 4 135.4 (19.2) 123.6(9.3) 220.6* (25.5) 185.7 (8.4) 244.8* (34.6) 5.8 0.005
IL-6 (pg/mL) 4 163.0 (45.0) 131.7 257.0 (65.2) 211.2 (53.6) 446.8* (121.0) 3.1 0.05
(30.0)
IL-10 (pg/mL) 4 1200.1 952.3 1850.2* 1478.9 1825.1* 6.6 0.003
(166.8) (80.6) (148.9) (148.0) (194.1)
IL-12 (pg/mL) 4 158.9 (23.8) 146.3 259.9 (83.9) 193.7 (23.9) 335.8* (47.7) 2.8 0.06
(22.3)
GM-CSF (pg/ 4 383.0 (48.1) 322.7 518.6 (156.3) 478.5 (34.5) 669.4* (56.8) 2.8 0.06
mL) (29.5)
INF-y (pg/mL) 4 277.5(78.4) 188.2 379.2 (59.0) 270.1 (39.3) 529.4* (118.7) 3.3 0.04
(29.5)
TNF-a (pg/mL) 4 173.2 (29.1) 153.6 198.9 (71.7) 190.8 (32.1) 216.1 (80.2) 0.2 0.93
(20.4)

ANOVA test and statistical significance (o value ANOVA)
Significance of the difference between mean in each exposed group and mean in the controls group
* p value < 0.05

doi:10.1371/journal.pone.0143801.t002

control group. Box-plot or linear graphs were obtained for all analyzed parameters at different
exposure levels.

Results

Table 2, Figs 2 and 3 and S1 Fig show serum levels of the various cytokines (IL-1a, IL-2, IL-4,
IL-6, IL-10, IL-12, GM-CSF, INF-y and TNF-0) in rats after the intravenous administration of

Mean levels (pg/mL) of cytokines in serum

—
.
N

—,

(7
v 2, aes

0ge, kg C‘,\o\““e

"*/zas”‘iw ;
Fig 2. Mean serum levels of cytokines in Wistar rats exposed to Pd-NPs compared to control rats.
Compared to control values, a rather particular trend was observed in all cytokine serum levels in the treated
rats, with a slight decrease at the lowest exposure dose and an increase thereafter with increasing exposure
doses. Indeed, the mean serum concentrations of all cytokines appeared to decrease after the administration

of 0.012 pg/kg Pd-NPs, whereas their values exceeded the control levels at higher doses of exposure (0.12,
1.2 and 12 pg/kg).

doi:10.1371/journal.pone.0143801.g002
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Fig 3. Serum levels of different cytokines in control and palladium nanoparticle exposed rats. In the exposure range from 0.12 to 1.2 pg/kg it was
possible to observe a general, but not statistically significant (with the exception of IL-2, IL-4 and IL-10 at 0.12 pg/kg), increase in all cytokine serum levels,
while at 12 pg/kg 7 out of 9 of the cytokines examined showed remarkable (and statistically significant) increases in serum concentrations. *Group mean
significantly different from controls (p value < 0.05).

doi:10.1371/journal.pone.0143801.9003

0.012,0.12, 1.2 and 12 pg/Kg of Pd-NPs. The results obtained demonstrated that exposure to
Pd-NPs was able to affect immune response in female Wistar rats. Indeed, each cytokine inves-
tigated showed alterations in serum concentrations compared to the control levels. The mean
serum concentrations of all cytokines appeared to decrease after the administration of

0.012 pg/kg Pd-NPs, whereas their values exceeded the control levels at higher doses of expo-
sure (0.12, 1.2 and 12 pg/kg).

The highest concentration of Pd-NPs (12 pg/kg) induced a statistically significant increase
of IL-10,, IL-4, IL-6, IL-10, IL-12, GM-CSF and INF-y compared to controls, while at the same
dose of exposure the values of other cytokines, although higher than in untreated rats, did not
show significant differences. A noticeable increase in IL-2, IL-4 and IL-10 serum concentra-
tions was also observed also at 0.12 pg/kg. These results showed that the exposure to 12 ug/kg
of Pd-NPs caused an important stimulatory effect on the immune system of female Wistar rats.

Discussion

In the last few years there has been a significant increase in the Pd content of catalytic convert-
ers since this metal is cheaper and has a very high catalytic activity [2]. This enlarged Pd
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employment resulted in serious contamination of a number of environmental matrices with a
consequent increasing likelihood of general living and occupational exposure to the metal,
both in the fine and ultrafine airborne particle fractions [10-16]. Therefore, the definition of
the potential health effects induced by Pd-NP exposure has become an issue of public health
relevance.

Currently, most available information concerning the impact of Pd on the immune system
is the result of in vitro and in vivo studies that have assessed the biological effects induced by
different Pd salts [21, 26-30]. Nevertheless, the findings of these studies may not be sufficient
to explain the immunotoxic potential of Pd in the nano-sized scale as potentially released from
automobile catalyst abrasion and deterioration [3, 7, 9, 42-44]. The unique set of NP physico-
chemical characteristics, in fact, may affect their toxico-kynetic and dynamic behavior, there-
fore directly or indirectly influencing the possible interactions with the immune system, in a
potentially different manner compared to their bulk counterpart. This important issue prevents
us to extrapolate data from Pd salts to a context of nano-sized Pd exposure [34, 35, 45, 46] and
applies for a deep research on the Pd-NP toxicological profile to obtain, in turn, a more com-
prehensive assessment of the immunological toxicity of the metal.

Therefore, the present study aimed at evaluating the possible adverse effects of Pd-NPs on
the immune system of female Wistar rats intravenously exposed to these xenobiotics through
the determination of the serum levels of a series of different cytokines.

An important stimulatory action on the immune system, which becomes significant at the
highest dose of treatment has been demonstrated. In fact, an overall up-ward trend, although
not significant, was observed for all cytokine serum levels in the 0.12-1.2 pug/kg dose range
(with the exception of significant increases detected for IL-2, IL-4 and IL-10 at 0.12 ug/kg),
while at 12 ug/kg, 7 out of 9 of the cytokines examined showed significantly remarkable
increases in serum concentrations (Table 2). This systemic cytokine activation supports a clear
pro-inflammatory action of Pd-NPs when administered in vivo, which, not surprisingly, has a
rather different profile compared to the immune alterations detected in previous studies
exploring a variety of Pd salts. In fact, while we observed a stimulatory response on the produc-
tion of IFN-y and a slight increase (though not significant) in TNF-a, the exposure of PBMC
to various Pd salts induced inhibitory effects on these cytokine secretion [28]. Moreover, the
enhanced IFN-y and IL-4 levels reported herein were not detected in our previous in vivo stud-
ies (sub-acute and sub-chronic exposure of Wistar rats to potassium hexachloropalladate,
respectively), even if in each of these experiments some results (increased IL-4 and IL-2 pro-
duction after sub-acute administration and increased IFN-y levels following sub-chronic expo-
sure to Pd salt) were somewhat similar to those induced by Pd-NPs [29, 30]. These quite
conflicting results, further underlines the need to specifically investigate the Pd-NP interaction
with the immune system which seems different from that of Pd salts, probably depending on
the diverse biological reactivity determined by the peculiar chemical, optical, magnetic and
structural NP properties, as previously mentioned.

Additionally, comparing our results with those obtained with Pd-NPs in vitro, a certain var-
iability concerning the activated Th cell subsets and the induced cytokine profiles emerged [32,
33]. This seems an interesting topic of research, since understanding how the immune system
adapts to the insults of specific xenobiotics, maybe through an excessive Th1 or Th2 responses,
with different tissue damages or hypersensitivity reactions, respectively, gives the possibility to
deeply understand the toxicological behavior of such NPs, therefore identifying early and spe-
cific biological alterations [47-49]. In this perspective, a clear NP induced imbalance towards a
Th1 mediate immune response was recently reported in in vitro studies [32, 33], while our
findings demonstrated a Pd-NP induced up-ward trend among all the investigated cytokines,
therefore supporting a more complex and generalized inflammatory activation of the immune
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Fig 4. Mean serum levels of different cytokines expressed as percentage variation from control
values (100%). The particular trend of the dose—response relationship observed for all cytokines (with a
slight decrease at the lowest exposure dose and an increase thereafter with increasing exposure doses)
would seem to suggest the presence of a hormetic phenomenon since in some cases the hormetic effects are
typically graphed as a J-shaped dose response curve.

doi:10.1371/journal.pone.0143801.g004

system in exposed animals. Overall, this suggests that the systemic cytokine activation induced
by Pd-NPs in vivo was not related to a specific Th pattern since no imbalance was evident
between commonly studied Th1 and Th2 cytokine subsets.

This may reflect the complexity of the Pd-NP interaction with in vivo biological systems
which cannot be thoroughly resembled by in vitro results [50]. In fact, several in vivo factors
such as exposure mode, penetration of physiological barriers, solubility in biological media as
well as the protein corona formation, as the result of a dynamic nano-bio interaction, can dra-
matically change the effects of challenging the immune system with a given concentration of a
specific xenobiotic [51, 52].

When analyzing the dose-response relationship obtained in our study, a rather particular
trend was observed in all cytokine serum levels in the treated rats (Fig 2) with a slight decrease
at the lowest exposure dose and an increase thereafter with increasing exposure doses. Compa-
rably, Wilkinson et al. [31] observed a similar dose-response trend, with a decrease in the IL-8
release from PBEC and A549 cells at the lower concentration range and a slight tendency
towards increased levels at the highest concentration. These dose-response relationships
would seem to suggest the presence of a hormetic phenomenon since in some cases the hor-
metic effects are typically graphed as a J-shaped dose-response curve [53]. In fact, the term
“hormesis” is used to describe dose-response curves where the response is reversed between
low and high doses of a stressor (Fig 4) representing an index of biological plasticity at multiple
levels of biological organization [54]. In this regard, it is possible to hypothesize that the
decrease in cytokine levels determined at the lowest dose of exposure may be an adaptive com-
pensatory process following an initial disruption in homeostasis induced by the NP chemical
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stress, which ultimately may induce increasing alterations in the cytokine concentrations at the
higher treatment doses. Greater attention is being given to hormesis in the fields of aging and
biogerontology, toxicology, pharmacology, public health and occupational medicine research,
and recently this dose-response model has been shown to occur quite frequently also after
exposure to different types of NPs [55]. To the best of our knowledge, this is the first time that
a similar biphasic dose-response has been reported as a consequence of Pd-NP exposure. Obvi-
ously, this result should be considered with caution and further studies are needed. However,
the possible presence, at low exposure levels, of effects that may be adaptive, non-adverse or
even beneficial is an intriguing issue that deserves further attention particularly on account of
the complex regulatory mechanisms of the immune system that favor a balance between patho-
genic and protective Th cells and the crucial role that different Th subsets play in immunopa-
thology [56].

Nevertheless, considering that this is the first in vivo attempt to assess the effects of Pd-NPs
on the immune system and that our understanding of their immunotoxicity is still in an initial
phase, the biological implications of the aforementioned alterations in serum cytokine concen-
trations are uncertain. However, it should be noticed that the T helper cells, producing different
subsets of cytokines, are critical for a proper immune cell homeostasis and host defence, but
may be also major contributors to pathology of autoimmune and inflammatory diseases [48].
Therefore, it is not possible to exclude that prolonged or repeated exposure to these xenobiotics
may ultimately result in inflammatory related tissue damages, hypersensitivity or autoimmune
responses triggered by the immuno-toxic alterations exerted by Pd-NPs, also in relation to pos-
sible inherent or acquired individual susceptibility factors as well as to other environmental or
occupational co-exposed substances. Interestingly, extrapolated to a public health and occupa-
tional medicine perspective, the detected pro-inflammatory alterations, may act as possible
early indicators of biochemical alterations induced by Pd-NPs before un-reversible organ dam-
ages or systemic diseases become manifested. These changes should be deeply verified and
eventually validated as possible biomarkers to be employed in biological monitoring programs
in order to assure adequate risk management strategies.

Concerning the potential mechanisms underlining Pd-NP immune effects, it is worth not-
ing that also other types of NPs have yielded similar findings in in vitro and in vivo experi-
ments. For example in ICR mice the administration of magnetite iron oxide (Fe;O,)-NPs
induced an increase in Th1 and Th2 serum cytokine concentrations [57, 58] and titanium diox-
ide (TiO,)-NPs caused a transient release of both types of cytokines in A549 cells [59]. These
results may suggest that different types of NPs may share a common molecular mechanism of
action, maybe through oxidative stress reactions, that is able to exert a generalized stimulatory
effect on the immune system. Oxidative stress and inflammation, in fact, are interrelated by
amplification loops [60]. Pro-inflammatory cytokines, in fact, may induce a massive produc-
tion of free oxygen radicals which in turn may modulate the release of inflammatory mediators
by activating different transcription factors [61]. This amplification between oxidative stress
and inflammation may be involved in the adverse effects caused by NPs, some of which may
cause DNA damage and cell death by apoptosis [62]. However, given the limited information
available on this issue, no definite conclusions can be deduced at this stage of research.

Clearly, further in vitro and in vivo studies are needed to more deeply understand the
immune potential of Pd-NPs. In vitro experiments, in fact, may represent a valid instrument to
investigate Pd-NP induced cellular changes at bio-molecular levels and to determine their
underlying mechanistic processes. In vivo investigations, on the other side, seem necessary to
define the toxico-kinetic and dynamic behavior of NPs, as well as to confirm our preliminary
results also under conditions of long-term exposure resembling those experienced by the gen-
eral and occupational exposed populations.
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Conclusions

Intravenous administration of Pd-NPs revealed the ability of this xenobiotic to significantly
affect the immune system of Wistar rats by enhancing the serum levels of several cytokines
secreted by different Th subsets. This generalized stimulatory effect was also observed in other
in vitro and in vivo studies that investigated the immune potential of various NPs but differed
substantially from the results of previous in vitro studies that evaluated the impact of Pd-NPs
on the cytokine expression and release from PBMC cells. In view of the scant quantity of infor-
mation currently available on the immunotoxicity of Pd-NPs, these conflicting results warrant
further studies to evaluate and clarify the potentially toxic effects of Pd-NPs on the immune
system and to reach a definitive understanding of this issue. This assessment appears even
more urgent if we consider the increase in human exposure to Pd-UFPs and the fact that Pd
salts and Pd-NPs exert different effects. Our findings differ considerably from the immuno-
toxic effects induced by several Pd salts in cell lines or laboratory animals, thus confirming that
the unique physico—chemical properties of NPs give them a specific toxicological profile.
Lastly, an evaluation of cytokine levels could be an interesting and promising biomarker for
providing a more adequate assessment and management of risk with regard to nanomaterial
exposure and effects [63].
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