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Abstract
Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is

different from the process observed in conventional reservoirs. In micro fractures which are

inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffu-

sion and gas desorption should be further considered in organic nano pores. Also, the Klin-

kenberg effect should be considered when dealing with the gas transport problem. In

addition, following two factors can play significant roles under certain circumstances but

have not received enough attention in previous models. During pressure depletion, gas vis-

cosity will change with Knudsen number; and pore radius will increase when the adsorption

gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that

incorporates all known mechanisms for simulating gas flow in shale strata is presented. The

objective of this study was to provide a more accurate reservoir model for simulation based

on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms,

including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally inte-

grated into different continua in the model. Sensitivity analysis was conducted to evaluate

the effect of different mechanisms on the gas production. The results showed that adsorp-

tion and gas viscosity change will have a great impact on gas production. Ignoring one of fol-

lowing scenarios, such as adsorption, gas permeability change, gas viscosity change, or

pore radius change, will underestimate gas production.

Introduction
Due to the increasing energy shortage in recent years, gas production from shale strata has
played an increasingly important role in the volatile energy industry of North America and is
gradually becoming a key component in the world’s energy supply [1, 2]. Shale strata or shale
gas reservoirs (SGR) are typical unconventional resources with a critically low transport
capability in matrix and numerous “natural” fractures. Core experiments have shown that
90% of shale bedrock permeability are less than 150 nd, and diameters of the pore throat are
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4~200 nm [3]. Natural gas has been stored in SGRs in three forms [2]: (a) as free gas in the
micro fractures and nano pores; (b) as dissolved gas in the kerogen [4]; and (c) as adsorption
gas in the surface of the bedrock. About 20%~85% of gas in SGRs is stored in form [5].

Gas transport in extremely low-permeability shale formations is a complex process with
many co-existing mechanisms, such as viscous flow, Knudsen diffusion, slip flow [6, 7], and
gas adsorption-desorption. Some scholars have studied gas transport behavior in SGRs. E.
Ozkan used a dual-mechanism approach to consider transient Darcy and diffusive flows in the
matrix and stress-dependent permeability in the fractures for naturally fractured SGRs [8].
However, they ignored the effects of adsorption and desorption. Moridis considered Darcy’s
flow, non-Darcy flow, stress-sensitivity, gas slippage, non-isothermal effects, and Langmuir
isotherm desorption [9]. They found that the production data from tight-sand reservoirs can
be adequately represented without accounting for gas adsorption whereas there will be signifi-
cant deviations if gas adsorption were omitted in SGRs. But they did not consider gas diffusion
in the Korogen. Bustin studied the effect of fabric on gas production from shale strata. How-
ever, it was assumed the matrix does not have viscous flow or diffusion mechanisms. It was
also assumed that gas transport in the fracture system obeys Darcy’s law, which is not suffi-
ciently accurate [10]. Yu-Shu Wu proposed an improved methodology to simulate shale gas
production, but the gas adsorption-desorption were ignored in the model [11]. It is necessary
to develop a mathematical model that incorporates all known mechanisms to describe the gas
transport behavior in tight shale formations.

The simulation work was greatly simplified when the apparent permeability was first intro-
duced by Javadpour. In 2009, the concept of apparent permeability, considering Knudsen diffu-
sion, slippage flow, and advection flow, was proposed [4]. Through this method, the flux vector
term can be simply expressed in the form of Darcy’s equation, which greatly reduces the com-
putation complexity. Then the concept of apparent permeability was further applied to pore
scale modeling for shale gas [12, 13]. Civan and Ziarani derived the expression for apparent
permeability in the form of the Knudsen number [14, 15] on a unified Hagen-Poiseuille equa-
tion [16].

In this paper, a general numerical model for SGRs was proposed which was constructed
based on the dual porosity model (DPM). Mass balance equations were constructed for both
matrix and fracture systems using the dusty gas model. In the matrix, Knudsen diffusion, gas
desorption, and viscous flow were considered. Gas desorption was characterized by the Lang-
muir isothermal equation. In the fracture, viscous flow and non-darcy slip permeability were
considered. The increase of the pore radius due to gas desorption was calculated from the gas
desorption volume from the pore wall. Gas viscosity was characterized as a function of the
Knudsen number. Weak form equations were derived for the system based on the constant
pressure boundary and got solved using COMSOL. A comprehensive sensitivity analysis was
conducted, and a detailed investigation was done to determine their impact on the shale gas
production performance. The results showed that considering gas viscosity change greatly
increased gas production under given reservoir conditions and slowed down the production
decline curve. Considering pore radius increase due to gas desorption from the pore wall
resulted in a higher production, but the effect was not very significant under the given reservoir
conditions. In SGRs, both the matrix and fracture permeability changed during production.
Ignoring one of these factors such as Knudsen diffusion, slippage effect, desorption, viscosity
decrease, and porosity increase would lead to a lower cumulative production. Therefore, it is
crucial to incorporate these factors into the existing models to obtain a more accurate shale gas
production prediction.
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(%); ρs, Density of shale core (kg/m

3)); ρm, Gas
density in the bedrock (kg/m3)); μg, Gas viscosity
(Pa�s); σ, Crossflow coefficient.



Pore Distribution and Gas Transport Process in SGRs
Understanding the pore distribution and geometry of shale strata is of great importance in
understanding the gas transport process in the media. Fig 1 shows the gas distribution and geom-
etry of shale strata frommicro to macro scales. It informs us that in the fracture, only free gas
exists. And in the matrix which is full of kerogen, free gas and adsorption gas co-exist. In such a
complicated system, gas desorbs from the pore wall and transports in the matrix system. Due to
pressure difference between the matrix and fracture system, gas transfers between the matrix and
fracture. Then, gas flows to the wellbore and is produced to the surface [3]. This model con-
structed in this study was inspired according to this gas transport process in shale strata.

Model Construction
This theoretical study was based on the following basic assumptions:

1. Single component, one phase flow in SGRs;

2. Ignore the effect of gravity and heterogeneity on the gas flow;

3. Ideal gas behavior for the natural gas in shales, and gas deviation factor z = 1;

4. Formation rocks were incompressible, and the porosity change due to rock deformation
was ignored;

5. Isothermal flow process was present in the whole reservoir life;

6. Gas adsorption-desorption kinetics obeyed the Langmuir curve, and can achieve equilib-
rium state quickly at any reservoir pressure (diffuse quickly).

Consider a generalized mass balance equation [16] in every grid block is as follows:

dM
dt

þr � r u
*

� �
¼ Q ð1Þ

where M is mass accumulation term; u is velocity; ρ is density; Q is source term; and t denotes
time.

Fig 1. Gas distribution in shale strata frommacro-scale to micro-scale. In the fracture there exist free gas and in the matrix free gas and adsorption gas
co-exist.

doi:10.1371/journal.pone.0143649.g001
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For shale strata which are full of micro-fractures, two general methods can be used to deal
with the fracture-matrix interaction. One is the dual porosity continuum method (DPCM),
including dual porosity and dual permeability (DPDM) [17], or MINC (multiple interacting
continua) [18]. The other one is the explicit discrete fracture model [19]. Though the later
model is more rigorous, it is still limited in applications to field study due to its computational
intensity and lack of detailed knowledge of fracture distribution [14]. In this study, the DPCM,
which is shown in the Fig 2, was used in this study to describe the complex fracture
distribution.

For the DPCM, there are two mass balance equations that correspond to fracture and matrix
systems, respectively, as indicated by Warren and Root [17].

With the subscripts f andm representing fracture and matrix system, respectively, the two
sets of equations are illustrated as follows:

dM
dt

� �
f

þ ðr � ðr u
*ÞÞf ¼ Qf ð2Þ

dM
dt

� �
m

þ ðr � ðr u
*ÞÞm ¼ Qm ð3Þ

The first term on the left side is the mass accumulation term; the second term on the left
side is the flow vector term; and the right side is the source/sink term.These terms are
addressed correspondingly in the following sub-sections.

Mass accumulation term
The general form of the mass accumulation term is:

M ¼ �
X

b
Sb rb ð4Þ

where β denotes the fluid phase, ϕ is porosity, Sβ is the faction of pore volume occupied by the
phase β, ρβ is the density of the phase β. Specifically for a gas reservoir, Sβ = 1.

However, in matrix system of shale strata, there are adsorption gas and free gas in the sys-
tem which is shown in Fig 1. The free gas, which occupies the pores of the matrix, can be

Fig 2. Idealization of the heterogeneous porousmedium as DPM.

doi:10.1371/journal.pone.0143649.g002
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represented by Mfree ¼ ϕ
P

β Sβ ρβ, and the adsorbed gas in the surface of the bulk matrix can be

represented asMadsorp = ∑(1 − ϕ)qa, where qa is the adsorption gas volume per unit bulk
volume.

Gas desorption occurs when the pressure difference exists in organic grids (kerogen). With
free gas production, the pressure in the pores decreases, which results in the pressure difference
between the bulk matrix and the pores. Due to this pressure drop, the gas desorbs from the sur-
face of the bulk matrix. The most commonly used empirical model that describes the sorption
and desorption of gas in shale and provides a reasonable fit to most experimental data is the
Langmuir single-layer isotherm model [12, 14, 20, 21], which is expressed in Eq (5):

Vads ¼
vL � p
pL þ p

ð5Þ

where vL is the Langmuir volume, denoting the amount of gas sorbed at infinite pressure p1,
and pL is the Langmuir pressure, corresponding to the pressure at which half of the Langmuir
volume vL is reached. Normally, vL and pL are measured under standard temperature and pres-
sure (STP) conditions.

So, the adsorption gas volume per unit of bulk volume can be expressed in Eq (6):

qa ¼
rsMg

Vstd

Vstd ¼
rsMg

Vstd

VLpm
pL þ pm

ð6Þ

where qa is the adsorption gas per unit area of the shale surface, kg/m3; Vstd is the mole volume
under standard condition (0°C, 1atm), m3/mol; qstd is the adsorption volume per unit mass of
shale, m3/kg; VL is the Langmuir volume, m3/kg; pL is the Langmuir pressure, Pa; and ρs is the
density of shale core, kg/m3.

The mass accumulation considering free gas and adsorption gas can be represented
asM = ∑(ϕρβ + (1 − ϕ)qa), and the corresponding partial differential form is
d
dt

R
Vn
M dVn ¼ @ðrg�Þ

@t
þ @½qg ð1��Þ�

@t
.

Based on the equation of state (EOS): pV ¼ nRT ¼ m
M
RT; rg ¼ m

V
¼ pM

ZRT
¼ pg

@qa
@t

¼ @qa
@pm

� @pm
@t

¼ @

@pm

rsMg

Vstd

VLpm
pL þ pm

� �
� @pm
@t

¼ MgpLVLrs

VstdðpL þ pmÞ2
@pm
@t

ð7Þ

dM
dt

� �
m

¼ @ðrg�Þ
@t

þ @½qgð1� �Þ�
@t

¼ g�m þ ð1� �mÞMgpLVLrs

VstdðpL þ pmÞ2
" #

@pm
@t

ð8Þ

As there is only free gas in the fracture system, the mass accumulation term can be described
as follows:

dM
dt

� �
f

¼ @ðrg�ÞÞ
@t

¼ gφf

h i @pf
@t

ð9Þ

Flow vector term
This paper distinguishes the gas flow in shale gas reservoirs by flowing media: matrix and frac-
ture systems. Due to the differences of pore sizes in those two media, gas flow mechanisms are
different. Fig 3 shows the general flow process from matrix to fracture, then to wellbore in the
shale strata.

Modeling of Gas Production from Shale Reservoirs
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Flow vector term in the matrix
The general Darcy’s law informs us the relationship between velocity and pressure drop, as pre-
sented in the Eq (10):

u
* ¼ � 1

m
K
*

� rpþ rg � rzð Þ ð10Þ

For low density fluids such as gases, it is assumed that the effect of gravity can be ignored.
Therefore, a simplified empirical form of Darcy’s law can be used for the flow vector term in
pores ranging from tens to hundreds of microns:

r:ðr u
*Þ ¼ �r: r

K
*

m
rp

� �� �
ð11Þ

whereK
*
is the permeability tensor. In the matrix system, where pores are in the range of nano-

meters, the conventional Darcy’s law cannot be used to describe the flow process. Bird et al.
concluded that gas transportation in nano pores is a multi-mechanism-coupling process that
includes Knudsen diffusion, viscous convection, and slip flow. Fig 4 shows the flow

Fig 3. Transport scheme of shale gas production in DPM.Gas desorbed from the matrix surface and
transferred to the fracture, then flow into the wellbore. Non-darcy flow, Knudsen diffusion, slip flow, and
viscous flow have been considered.

doi:10.1371/journal.pone.0143649.g003

Fig 4. Gas flowmechanisms in a nano pore.Red solid dots represent Knudsen diffusion, while blue ones
represent viscous flow.

doi:10.1371/journal.pone.0143649.g004
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mechanisms of gas transport in the nano pores of shale strata [22]. The following subsections
describe those flow mechanisms further.

(1). Viscous flow. When the mean free path of the gas is smaller than the pore diameter
(Knudsen number is far less than 1), then the motion of the gas molecules is mainly affected by
the collision between molecules. There exists viscous flow caused by the pressure gradient
between the single component gas, which can be described by Darcy’s law [23]:

Jv ¼ U :rC ¼ � rmkmi

mg

rpmð Þ ð12Þ

where Jv is the mass flow (kg/(m2 � s)), ρm is gas density in bedrock (kg/ m3), kmi is the intrinsic
permeability (Guo et al., 2015) of bedrock (m2), μg is the gas viscosity (Pa � s), and pm is the
pore pressure in the bedrock (Pa).

(2). Knudsen Diffusion. When the pore diameter is small enough so that the mean free
path of the gas is close to the pore diameter (i.e., Knudsen number> 1), the collision between
the gas molecules and the wall surface dominates. The gas mass flow can be expressed by the
Knudsen diffusion [23]:

Jk ¼ �MgDkmðrCmÞ ð13Þ

where Jk is the mass flow caused by Knudsen diffusion (kg/(m2 � s)), Mg is the gas molar mass
(kg/mol), Dkm is the diffusion coefficient of the bedrock (m2/s), and Cm is the gas mole concen-
tration (mol/ m3).

(3). Slip flow. In low-permeability formations (less than 0.001 md) or when the pressure
is very low, gas slip flow cannot be omitted when studying gas transport in tight reservoirs [6,
24]. Under such kind of flow conditions, gas absolute permeability depends on gas pressure,
which can be expressed as follows:

ka
*

¼ ki
*

1þ b
p

� �
ð14Þ

where ka is the apparent permeability, ki
*
is the intrinsic permeability, and b is the slip coeffi-

cient. Some empirical models have been developed to account for slip-flow and Knudsen diffu-
sion in the form of apparent permeability, including correlations developed from the Darcy
matrix permeability [8], correlations developed based on flow mechanisms [3, 4, 25], and semi-
empirical analytical models by Moridis et al. in 2010 [9]. This research adopted Javadpour’s
method, which considered slip flow, viscous flow, and Knudsen diffusion [4]. The apparent
permeability is given as follows:

km
*

¼ kmi

*

1þ bm
pm

� �
ð15Þ

bm ¼ 16m
3000r

8pRT
M

� �0:5

þ 8pRT
M

� �0:5 m
r

2

a
� 1

� �
ð16Þ

where α is the tangential momentum accommodation coefficient (TMAC), which characterizes
the slip effect. α is a function of wall surface smoothness, gas type, temperature, and pressure,
which varies from 0 to 1 [4, 26, 27]. In the shale matrix with pores in nano to micro scale, it is
necessary to consider the effect of slip effect and Knudsen diffusion. Cao et al. (2005) also
pointed out that when the gas free mean path is close to the pore radius, the flow falls in the
slip regime [28]. The TMAC α in the Eq (16) can be used to characterize the slip effect or
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rarefaction effect. TMAC represents the part of gas molecules reflected diffusely from the tube
wall relative to specular reflection [4]. The slip length can be related to the TMAC using equa-
tion l ¼ 2�a

a Kn [28]. From this we can find that under a certain Kn, the smaller the TMAC α,

the larger the slip length. More gas molecules will under slip flow regime. Arkilic et al. obtained
the α about 0.8 for light gases flowing in silicon microchannel [28, 29]. Javadpour has also
employed 0.8 as the value for tangential momentum accommodation coefficient in deriving
gas permeability in shale matrix [4]. For simplification and consistency, we also employ 0.8 as
the TMAC value in this paper. The accurate TMAC value for a specific gas in the mudrock can
be obtained using lab experiments or numerical methods, such as Molecular Dynamics
method, Monte Carlo method, and direct simulation Monte Carlo method, etc.

So, the flow vector term in the matrix is:

ðr � ðr u
*ÞÞm ¼ �r: rgm

km
*

m rpm
� �� �

¼ �r: gpm
km
*

m rpm
� �� �

For the matrix system, it should be noted that with the gas desorption from the pore wall,
the pore radius increases. The volume of gas desorbed from the wall can be characterized by
the Langmuir isotherm curve. Considering the gas desorption, the effective pore radius can be
expressed as follows [18]:

reff ¼ rmax � dCH4

Pm=PL

1þ Pm=PL

ð17Þ

Here, reff is the initial pore radius, dCH4
is the molecular diameter of methane, PL is the Lang-

muir pressure, and rmax is the maximum pore radius, which is the initial pore radius plus the
molecular diameter. With the matrix pressure decreasing during the production process, gas
desorbs from the pore wall. So, from Eq (17), we can find that the pore radius is increasing
with production. If the matrix pressure can approach 0, which is the ideal scenario, the final
pore diameter will be equal to initial radius ri. The process is shown in Fig 5.It can be found
that after the gas desorbed from the pore wall,the gas transport channel will become larger.Due
to the increase of the pore radius,the collision of gas moleculars with the pore wall will become
less dominant.Eq (16) has shown this change.With pore radius increase,the slip effect coeffi-
cient bm will decrease. The contribution of Knudsen diffusion and slip flow will contribute less
to the gas flux with pore radius increases. At the same time, with the pore radius increase, the
viscous flow which is denoted using the blue dots in Fig 4 will become more dominant and con-
tribute more to the gas flux. The total gas flux is the combined effect of these effects.

Fig 5. Pore radius change due to gas desorption. If single molecule gas desorption Langmuir isothermal is
considered, when all the molecules have desorped from the surface, then the pore radius will increase as
shown in the right part.

doi:10.1371/journal.pone.0143649.g005
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Flow vector term in the fracture
In this study, Knudsen diffusion and viscous flow are considered for the gas flow in the frature
system. The mass flux can be expressed as the summation of the two mechanisms. Therefore,

Jf ¼ Jfv þ Jfk ¼ � rf kfi
mg

ðrpf Þ �
rf Dkf

pf
ðrpf Þ ð18Þ

Or

Jf ¼ � kfirf

mg

1þ bf
pf

 !
rpf
� �

ð19Þ

Using the form of conventional Darcy’s flow equation, the fracture apparent permeability
can be expressed as:

kf
*

¼ kfi
*

1þ bf
pf

 !
ð20Þ

where

bf ¼
Dkfmg

kfi
ð21Þ

Dkf ¼
4kfi

2:8284
ffiffiffi
kfi
φf

q
ffiffiffiffiffiffiffiffiffi
pRT
2Mg

s
ð22Þ

where pf is the fracture pressure, kfi is the initial fracture permeability, kf is the apparent frac-
ture permeability, bf is the Klinkenberg coefficient for the fracture system, Dkf is the Knudsen
diffusion coefficient for the fracture system, and ∅f is the fracture porosity.

Combining all of the above, the flow vector term in the fracture is:

ðr:ðr u
*ÞÞf ¼ �r: rgf

kf

*

m
rpf

 ! !
¼ �r: gpf

kf

*

m
rpf

 ! !
ð23Þ

Source and sink term
For DPCM, it is of great importance to consider the interaction between the matrix and the
fracture in simulation. There are different methods for handling this issue in reservoir simula-
tion. The boundary condition approach explicitly calculates the amount of the matrix-fracture
petroleum fluid transfer by imposing boundary condition at each time step. It is very useful in
well testing [8, 30]. However, this method is impractical in full field simulation due to its high
computational cost. Another method is the Warren-Root method [17, 30]. The Warren-Root
method calculates the cross flux between the fracture and matrix systems by assuming a
pseudo-steady state flow between the matrix and fracture when the no-flow boundary is con-
fined. The gas transfer between the matrix and fracture systems is represented in Eq (24):

T ¼ kmrgsðpm � pfÞ
m

ð24Þ

where s ¼ 4 1
L2x
þ 1

L2y
þ 1

L2z

� �
is the crossflow coefficient between the matrix and fracture systems,
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and Lx, Ly, and Lz are the fracture spacings in the x,y, z directions, respectively. In the fracture
system, there exists a source term that flows into fracture from the matrix and a sink term that
flows out of the fracture into the wellbore. Therefore, for the matrix system, the sink term that
flows out of the matrix to the fracture can be described as follows:

Qm ¼ �T ð25Þ

The sink term followed the model developed by Aronofsky and Jenkins [31], which consid-
ers gas production from vertical well and can be expressed using Eq (26):

qp ¼
kfrf

mg

y

ln re=rw

� �
þ sþ Dq

h i ðpf

� �pwfÞ ð26Þ

In Eq (26), when the production well is in the corner, θ = π/2. When the production well is
in the center, θ = 2π [32]. In addition, pwf is the bottomhole flowing pressure; pf

�
is the average

pressure in the fracture system; rw is the well radius; and re is the drainage radius, which can be
expressed as follows:

re ¼
0:14

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðDxÞ2 þ ðDyÞ2�

q
kx ¼ ky

0:28
ðky=kxÞ1=2Dx2 þ ðkx=kyÞ1=2Dy2
h i0:5

ðky=kxÞ1=4 þ ðkx=kyÞ1=4
kx 6¼ ky

ð27Þ

8>>>><
>>>>:

where Δx, Δy, kx, and ky are the length of grid and permeability in the x and y directions. For
the fracture sytem, Qf = T − qp.

Gas viscosity change
Currently, some reservoir simulators have considered gas viscosity change, which is a function
of pressure. However, this study considered the gas viscosity change to be a function of the
Knudsen number (the ratio of the free molecular length to the pore diameter), which is depen-
dent on the gas transport period, as discussed previously. Gas viscosity changes with the Knud-
sen number in the production process [33].

Fig 6 shows that the ratio of the effective viscosity to the initial viscosity changes with the
Knudsen number, which is a function of gas pressure. Eq (28) shows the relationship between
gas viscosity and the Knudsen number. Beskok and Karniadakis (1999) have derived the
expression of the Knudsen number using a more general form, as shown in Eq (29), which is
easier to be considered in the numerical simulation [16]. Also, the results of this analytical
equation has good agreement with DSMC results and with the linearized Boltzmann solution.

mgm ¼ m0

1

1þ bKn

; mgf ¼ m0

1

1þ bKn

ð28Þ

where μ0 is the initial viscosity at the initial reservoir pressure (pm = pf = pi). This suggested a
Knudsen dependence of the rarefaction parameter β and provided an analytical expression for
this dependence. Eq (29) expresses the definition of the Knudsen number, which can be related
to be the basic parameters that change with pressure:
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Kn ¼
mg

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pRT�m

MgKi

s
ð29Þ

The final mathematical model to characterize gas transport in SGRs can be expressed as fol-
lows:

Matrix : g�m þ ð1� �mÞMgpLVLrs

VstdðpL þ pmÞ2
" #

@pm

@t
�r � g

"
kmiðpm þ bmÞ

mg

ðrpm

!2
4 #35 ¼ �T ð30Þ

Fracture : g�f½ � @pf

@t
�r � g

pfkfðpf þ bfÞ
mg

ðrpf

" !2
4 #35 ¼ T� qp ð31Þ

With following boundary conditions considered in this paper:

Initialcondition : pmjt¼0 ¼ pf jt¼0 ¼ pi ð32Þ

Boundaryconditionformatrix : Fm � njG1
¼ 0

@p
@n

jG1
¼ 0

� �
ð33Þ

Boundaryconditionforfracture : Ff � njG1
¼ 0

@p
@n

jG1
¼ 0

� �
; pfðx; y; tÞjG2

¼ pw ð34Þ

Fig 6. Gas viscosity variation with the Knudsen number (from 0.01 to 1), also means from slip flow to
transition flow.Gas viscosity has changed a lot when the Knudsen number changes, which means it is
necessary to consider the gas viscosity variation (Modified from [33]).

doi:10.1371/journal.pone.0143649.g006
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In this paper, the model Eqs (30)–(34) and four versions of its simplification have been con-
sidered: (1) considering the basic DPM, which has considered none of adsorption, non-Darcy
flow, gas viscosity, and pore radius change. (2) considering the basic DPM with adsorption
which corresponds to the first term of the left part of Eq (30); (3) considering the basic DPM
with adsorption and non-Darcy permeability change. That is, bm 6¼ 0 and bf 6¼ 0; (4) consider-
ing the basic DPM with adsorption, non-Darcy permeability change, and gas viscosity change
which is represented in the Eq (28); and (5) considering adsorption, non-Darcy permeability
change, gas viscosity change, and pore radius change. Pore radius change is represented in Eq
(17), in which reff represents the changing radius as shown in bm (r = reff in Eq (16)).

The finite element method was used to solve the PDE equations from Eqs (30)–(34), which
are listed above. First, multiply a test function v(x,y) on both sides of original Eq (30) where O
is the domain; Γ1 is outside boundary; and Γ2 is the inner boundary.

g�m þ ð1� �mÞMgpLVLrs

VstdðpL þ pmÞ2
� @pm

@t
v �r � g

�
kmiðpm þ bmÞ

mg

ðrpm

�" �" #
v ¼ �Tv ð35Þ

Z
O

g�m þ ð1� �mÞMgpLVLrs

VstdðpL þ pmÞ2
� @pm

@t
v dxdy �

Z
O

r � g
�
kmiðpm þ bmÞ

mg

ðrpm

�" �2
4

3
5v dxdy

¼ R O � Tv dxdy ð36Þ

Using Green’s Theorem (Divergence Theory and Integration by parts in multi-dimension),
we obtain that:

Z
O

r � g
�
kmiðpm þ bmÞ

mg

ðrpm

�" �#
v dxdy

¼
Z
@O

g
�
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�" �
� n!
#
v ds�

Z
O

g
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" #
rpm � rvdxdy ð37Þ

Z
O

g�m þ ð1� �mÞMgpLVLrs

VstdðpL þ pmÞ2
� @pm
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v dxdy �

Z
@O

g
kmiðpm þ bmÞ

mg

ðrpm

" !" #
� n!

" #
v ds

þ
Z

O

g
kmiðpm þ bmÞ

mg

" #
rpm � rvdxdy

¼ R O � Tv dxdy ð38Þ

If we just consider the solution on the domain O, the weak form for the governing Eq (30)
is:

Z
O

g�m þ ð1� �mÞMgpLVLrs

VstdðpL þ pmÞ2
� @pm

@t
v dxdy þ

Z
O

g
kmiðpm þ bmÞ

mg

" #
rpm � rvdxdy ¼ R O � Tv dxdy ð39Þ

"

Taking the similar procedures on governing Eq (31), we obtain:

Z
O

g�f �
@pf

@t
v dxdy þ

Z
O

g
pfkfðpf þ bfÞ

mg

" #
rpm � rvdxdy ¼ R OðT� qpÞv dxdy ð40Þ

"
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Model Verification
As there is no real field data which is same with this therotical case, a common method to verify
the righteousness is to compare the results of the numerical simulation against the analytical
results. Wu et al. derived the analytical solution for 1D steady-state gas transport [34], which is
shown in Eq (41). Thus, we can verify our model by comparing the results from simpilification
version of the model in this paper with the analytical results. The reservoir properties and Klin-
kenberg properties used in this verification were obtained from the experimental study of the
welded tuff at Yucca Mountain.

pðxÞ ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðpðLÞ2 þ 2b½ðpðLÞ�Þ þ 2qmmgðL� xÞ

k1b

s
ð41Þ

where b is the Klinkenberg factor, 7.6×105 Pa; p(L) is the gas pressure at the outlet (x = L),
1.0 × 105 Pa; qm is the air injection rate, 1.0 × 10−6 kg/s; μg is the gas dynamic viscosity,
1.84 × 10−5 Pa.s; L is the length from the inlet (x = 0) to the outlet, 10 m; x is the task location
along the gas transport path, m; k1 is the intrisic permeability for welded tuff atYucca Moun-
tain, 5.0 × 10−19 m2; and β is the compressibility factor, 1.8 × 10−5 Pa-1m-1. Fig 7 presents the
match results between the model presented in this paper and the analytical solution. As shown
in Fig 7, the results obtained using the model presented in this paper agrees well with the ana-
lytical solution [34] provided by Wu et al., which validated our mathematical model.

Results and Analysis
The 2-D reservoir model is shown in Fig 8. For simplification, we only studyed the ¼ area of
the whole reservoir. The reservoir parameters are shown in Table 1. The parameters used in
this paper were selected based on the literature review regarding shale gas simulation [10]. The
simulated reservoir is located at a depth of 5463 ft with a pressure gradient of 0.53 psi/ft and a
temperature gradient of 0.065 K / ft, which corresponded to the initial reservoir pressure and

Fig 7. Comparison between analytical solution and numerical simulation in this paper.

doi:10.1371/journal.pone.0143649.g007
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reservoir temperature of 20MPa and 353.15 K, respectively. Other parameters are listed in
Table 1.

In this study, firstly we investigated the impact of parameters such as the initial reservoir
pressure, matrix permeability, fracture permeability, matrix porosity, and fracture porosity on
shale gas production. Then, the mechanisms discussed earlier were gradually incorporated into
the simulation model to investigate their impact on gas transport in the shale strata. These

Fig 8. Real reservoir and simplified 2-D reservoir simulation model.

doi:10.1371/journal.pone.0143649.g008

Table 1. Parameters used in the simulationmodel.

Parameter Value Unit Definition

D 5463 ft reservoir depth

Gp 0.54 psi/ft reservoir pressure gradient

GT 0.059 K / ft reservoir temperature gradient

kmi 0.04 md matrix initial permeability

kfi 10 md fracture initial permeability

ϕm 0.05 Dimensionless matrix porosity

ϕf 0.001 Dimensionless fracture porosity

R 8.314 Pa * m3 / (mol * K) gas constant

z 1 Dimensionless gas compressibility factor

pi 10.4 MPa initial reservoir pressure

pw 3.45 MPa bottom hole pressure

Mg 0.016 kg/mol mole weight of CH4

Vstd 0.0224 m3/mol standard gas volume

pL 2.07 MPa langmuir pressure

VL 2.83 × 10−3 m3/kg langmuir volume

ρs 2550 kg/m3 shale rock density

μg 1.02 × 10−5 Pa * s initial gas viscoisty

rw 0.1 m wellbore radius

Lx 0.2 m fracture spacing

doi:10.1371/journal.pone.0143649.t001
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mechanisms are adsorption, permeability change due to comprehensive slip effect, viscosity
change, and radius change due to gas adsorption.

Effect of Gas adsorption
In this study, we compared scenarios in which adsorption was considered and was not consid-
ered. When adsorption was considered, there is an adsorption term on the left hand side of Eq
(30). Only free gas is considered in the matrix system if adsorption is ignored. The following
analysis are all based on the scenario in which adsorption was considered. First, we need to
know the effect of adsorption on the gas production. Fig 9 illustrates the effect of adsorption on
the production rate and cumulative production. It is obvious that adsorption has a great effect
on the production rate and cumulative production. Ignoring the effect of adsorption gas leads
to great underestimations in the gas production in such situations.

Effect of non-Darcy flow
Effect of non-Darcy flow can be considered by adjusting the slip coefficient which appereas in
Eq (30). If non-Darcy flow is considered, the slip coefficient bm = bf = 0. Fig 10 illustrates the
matrix permeability and fracture permeability change with time. From the Fig 10, it is clear
that the gas permeabilities in the matrix and fracture gradually increase during pressure depe-
tion. The matrix permeability has a greater increase then the fracture permeability. This result
has also validated the righteous of our model. The fluid flow channels are larger in the fractures
than those in matrix. So, the slip effect coefficient in the fracture (bf) will be smaller compared
with those in matrix (bm). So, the change of gas permeability will also be small. As shown in Fig
11, the impact of non-Darcy on the production rate and the cumulative production are plotted
on the log-log scales. It is clear that considering non-Darcy flow increases the production rate
and cumulative production; however, there is not a significant difference between these two
scenarios. This is because though matrix permeability increases a lot as shown in Fig 10(A),
however, fracture permeability is critical in determining fliud flow rate from the fracture sys-
tem to the wellbore. Therefore, it is important to increase the fracture permeability rather than
matrix permeability by including hydraulic fractures in using stimulations.

Fig 9. Effect of adsorption on gas production performance. (a) production rate vs. time; (b) cumulative production vs. time.

doi:10.1371/journal.pone.0143649.g009
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Effect of gas viscosity change
Effect of gas viscosity change was evalutaed on the basis of the previous study, which consid-
ered adsorption and non-Darcy flow. That is, if the gas viscosity change is considered, then
bm 6¼ 0, bf 6¼ 0. The gas viscosity change is represented in Eq (28). If the gas viscosity change is
not considered, then bm 6¼ 0, bf 6¼ 0, and the gas viscosity is a constant. As shown before, the
gas viscosity decreases with production and pressure depletion. Fig 12 shows the comparison
of the production rate and cumulative production between these two scenarios. It can be seen
that gas viscosity has a great impact on the production rate and cumulative production under
the production condition of this paper. From Eq (28), we can find that gas viscosity is a non-
linear function of the pressure. During the gas production process, pressure decrease leads to a

Fig 10. Matrix and fracture permeability change with time. (a) matrix permeability vs. time; (b) fracture permeability vs. time.

doi:10.1371/journal.pone.0143649.g010

Fig 11. Effect of Non-Darcy flow on gas production performance. (a) production rate vs. time; (b) cumulative production vs. time.

doi:10.1371/journal.pone.0143649.g011
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decrease in the gas viscosity, which results in an increase in the production. Therefore, ignoring
the effect of gas viscosity change decreases the estimated production.

Effect of pore radius change
Pore radius change is represented in Eq (17), which will change the radius shown in the part of
bm (r = reff) in Eq (16). All the factors that have been considered before are still considered
when analyzing the effect of pore radius change: adsorption, non-Darcy flow, and gas viscosity
change. From Eq (17), we can find that the maximum pore radius in the production will be
intrinsic radius plus the diameter of CH4. Therefore, the pore radius actually does not change
too much. However, reff is affected by the matrix pressure, which changes during reservoir
depletion; therefore, it is still important to consider this effect. The effect of the pore radius
change on the production rate and cumulative production are shown in Fig 13. From Fig 13,

Fig 12. Effect of gas viscosity change on gas production. (a) production rate vs. time; (b) cumulative production vs. time.

doi:10.1371/journal.pone.0143649.g012

Fig 13. Effect of pore radius increase due to gas desorption on gas production. (a) production rate vs. time; (b) cumulative production vs. time.

doi:10.1371/journal.pone.0143649.g013
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we can find that although there is a slight increase in the production rate and cumulative pro-
duction. The effect of the radius change is not very significant.

Fig 14 shows the comparison of the above 5 models: (1) basic DPM which has not consid-
ered adsorption, non-Darcy flow, gas viscosity, and pore radius change; (2) Considering
adsorption; (3) Considering adsorption and non-Darcy permeability change; (4) Considering
adsorption, non-Darcy permeability change, and gas viscosity change; (5) Considering adsorp-
tion, non-Darcy permeability change, gas viscosity change, and pore radius change. It can be
found that the mechanisms that have considered will increase the production. Ignoring any
one of these factors will lead to an underestimated gas production.

Sensitivity Analysis
To study the effect of reservoir parameters on gas production, we used the model that consid-
ered the effect of adsorption and non-Darcy flow. The effect of the following reservoir parame-
ters was analyzed. (1) initial pressure; (2) matrix permeability; (3) fracture permeability; (4)
matrix porosity; and (5) fracture porosity. For each scenario, we compared the production rate
and cumulative production for three stages. In this study, when discussing the effect of certain
parameters, the other parameters were kept the same as those listed in the Table 1.

Effect of initial pressure
Initial reservoir pressure is very important in the production, especially for gas reservoir which
has no other driving force. Here, we analyzed the effect of the initial pressure on gas produc-
tion. We considered the scenarios of the initial pressure being equal to 0.2 MPa, 2.0 MPa, and
20 MPa. Other parameters were kept the same as those listed in the Table 1. Fig 15 shows the
comparison of the production rate and cumulative production under different initial reservoir
pressures. From the plots, we can find that initial pressure has a great effect on the gas produc-
tion; there is 3- to 5- fold increase in the cumulative production when the intial pressure

Fig 14. Comparison of five different models: (1) basic model; (2) Considering adsorption; (3) Considering
adsorption and non-Darcy permeability change; (4) Considering adsorption and non-Darcy permeability
change, gas viscosity change; (5) Considering adsorption, non-Darcy permeability change, gas viscosity
change and pore radius change.

doi:10.1371/journal.pone.0143649.g014
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increases 10-fold. With the increase of reservoir initial pressure, gas production rate and gas
cumulative production increase.

Effect of matrix and fracture permeability
Permeability is the king in the reservoir production. For DPM, matrix permeability and frac-
ture permeability are not the same and the effects of these two kinds of permeability are also
different. In this study, the effects of matrix permeability and fracture permeability on gas pro-
duction were evaluated together to show which effect will be more important. Fig 16 shows the
effects of matrix permeability when the permeability is varied from 1.0×10−4 mD to 1.0×10−5

mD to 1.0×10−6 mD. Fig 17 shows the effects of fracture permeability when the permeability
changes from 0.1 mD to1 mD to 10 mD. From these figures, we can find that the production
rate and cumulative production increase when the matrix permeability or fracture permeability
increases. However, from the comparison between Fig 16(A) and Fig 16(B), and between Fig
17(A) and Fig 17(B), we can find that increasing fracture permeability has a more apparent
effect on the production rate and cumulative production compared with the matrix permeabil-
ity. This result has validated that the fracture system is the mian fluid flow channels which is
the also the assumption for the dual porosity model. In the dual porosity model, the matrix sys-
tem is the main storage space and the fracture system is the main fluid flow space.

Effect of matrix and fracture porosity
Porosity decides the gas amount which can be stored in the reservoir. Study on the effect of
matrix and fracture porosity can help us choose target reservoir and speed history match. For
studying the effect of porosity, three levels of matrix porosity and fracture porosity were con-
sidered and evaluated. We have compared the difference when we change the matrix porosity
from 1% to 10% to 20% and the difference when we change the fracture porosity from 0.01% to
0.1% to 1%. From Figs 18 and 19, we can find that porosity increase leads to production
increase. Also, from the comparison between Fig 18(A) and Fig 18(B), and between Fig 19(A)
and Fig 19(B), it can be found that matrix porosity has a more siginificant effect on shale gas

Fig 15. Effect of initial reservoir pressure on gas production. (a) production rate vs. time; (b) cumulative production vs. time.

doi:10.1371/journal.pone.0143649.g015
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production compared with fracture porosity, which conforms to the assumption of dual poros-
ity model.

Conclusion
This paper presents a theoretical model and mechanism study for shale gas production. Fol-
lowing conclusions were obtained from this study:

A new mathematical model that considers adsorption, non-Darcy permeability change, gas
viscosity change, and pore radius increase due to gas desorption was constructed;

Fig 16. Effect of matrix permeability on gas production. (a) production rate vs. production time; (b) cumulative production vs. production time.

doi:10.1371/journal.pone.0143649.g016

Fig 17. Effect of fracture permeability on gas production. (a) production rate vs. production time; (b) cumulative production vs. production time.

doi:10.1371/journal.pone.0143649.g017
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Results analysisshowed that considering one of following scenarios: adsorption, non-Darcy
permeability change, gas viscosity change, and pore radius change increases the production
estimate. Among these mechanisms, adsorption and gas viscosity change have a great impact
on gas production. Ignoring one of these effects decreases gas production;

Sensitivity analysis of the reservoir parameters showed that initial reservoir pressure has a
great impact on gas production. Fracture permeability has a more important effect than the
matrix permeability. Porosity increase leads to the increase of gas production. However, matrix
porosity is more important than fracture porosity.

Fig 19. Effect of fracture porosity on gas production. (a) production rate vs. production time; (b) cumulative production vs. production time.

doi:10.1371/journal.pone.0143649.g019

Fig 18. Effect of matrix porosity on gas production. (a) production rate vs. production time; (b) cumulative production vs. production time.

doi:10.1371/journal.pone.0143649.g018
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